
Scratchbox Remote Shell

Timo Savola
tsavola@movial.fi

Scratchbox Remote Shell
by Timo Savola

Copyright © 2004, 2005 Nokia

Revision history

Version: Author: Description:

2005-02-08 Savola Based onDevice tools

Table of Contents
1. Introduction to sbrsh ...1

1.1. Changes from version 1.4 to version 6..1

2. Using the daemon...2

2.1. Configuration..2
2.1.1. Basic options..2
2.1.2. Advanced options...2
2.1.3. Mount options...3

2.2. Authentication...3

3. Using the client...5

3.1. Configuration..5
3.2. Running...6

4. Debugging...7

5. Building sbrsh..8

6. Security issues..10

References...11

A. sbrsh 6.6 README ..12

iii

Chapter 1. Introduction to sbrsh

The Scratchbox Remote Shell is a remote command execution system similar to rsh and ssh. It is
designed with slow devices and Scratchbox’s [1] special requirements in mind. It supports common types
of program execution (including terminal emulation), but it is optimised for non-interactive usage. The
communication happens on a TCP/IP connection and is not encrypted—sbrsh is meant to be used only on
trusted networks (such as a company’s LAN or an USB network between a PC and a handheld device).

The server (sbrshd) is run on a device having the same CPU architecture as the compilation target that is
being used in Scratchbox. It executes the commands issued by the client (sbrsh) inside a “sandbox” that
is created by mounting network filesystems (typically exported by the host that runs the client) and
binding local directories (such as/dev).

Sbrshd contains support functionality that makes network-transparent fakeroot [2] sessions possible. Due
to this sbrshd requires fakeroot header files to compile.

Sbrsh is released under the GNU General Public License version 2 [3].

1.1. Changes from version 1.4 to version 6
• The version numbering was changed so that the major version corresponds to the protocol version and

the minor version is the build number.

• The insecure password is no longer used. Instead, there is an option for using identd to authenticate
connections. (SeeChapter 6for more information.)

• Sbrshd no longer needs normal user accounts for anything: the access rights are configured in
/etc/sbrshd.conf and the sandbox directories are created at/var/sbrshd/ . This also means that
sbrshd does not need to validate login shells.

• The host-sideumask setting automatically affects the target-side environment.

• Sbrshd can be run in “sandboxless” mode where it runs commands in the system environment instead
of a sandbox.

1

Chapter 2. Using the daemon

Installing Scratchbox[4] has instructions for installing the sbrsh daemon. This chapter assumes that you
have already installed sbrshd on a device. Using the init script is recommended but not required. This
document will deal with the init script where applicable, but the init script’s options are similar to
sbrshd’s command-line options.

2.1. Configuration

Sbrshd can be configured by editing the the variables at the top of/etc/init.d/sbrshd .

2.1.1. Basic options

PORT

The TCP port number for the daemon. Default is 1202.

IDENT

If true, an identd lookup is done to verify that the connections are initiated by authorised users.
Default is false, but it is recommended that you enable this if it is practical in your working
environment. SeeChapter 6for more information.

DEBUG

If true, a detailed debug log will be written into file/tmp/sbrshd-PORT.log where PORT is the
value of thePORToption. Default is false. You can open and close the debug log also at
runtime—seeChapter 4for instructions.

EXPIRATION

The duration in minutes to keep mount points mounted in the sandbox directories. Default is 15
minutes. Value 0 causes unmounting immediately after command execution and value “none”
means that unmounting is done only when sbrshd is stopped.

SBRSHD

If you have installed the sbrshd binary to a directory other than/usr/sbin , or you want to run
several versions of sbrshd, you can specify the path to the executable here.

PIDFILE

The process ID of the daemon is stored in this file while it is running. If you are running several
sbrshd’s, you should use different files here.

2

Chapter 2. Using the daemon

2.1.2. Advanced options

LOCAL_ONLY

If true, the daemon listens to connections only from the localhost. Default is to listen to connections
from everywhere.

This option is provided for possible future needs: if NFS is replaced with a secure alternative, it
might also be sensible to tunnel sbrsh connections through ssh.

NO_SANDBOX

If true, the daemon does not create a sandbox directory and chroot to it before executing the
command. Default is to use a sandbox.

Even when not using a sandbox, it is still possible to mount NFS filesystems and bind directories,
but that will affect the system environment. If one would want to use the sandboxless mode, one
would typically not define any mounts either.

ALLOW_ROOT

If true, the daemon allows the root user to execute commands. This is generally a bad idea, so it’s
best to leave this disabled. The option is provided in case someone reallyreally needs to do this.

Note: You can use sbrsh within a fakeroot session even when this option is disabled. The
commands will be run using normal privileges in a fakeroot session.

2.1.3. Mount options

Sbrshd uses the/bin/mount and/bin/umount commands for creating the sandbox. The mount
command provided by the util-linux package uses the--bind option for binding directories, but this
may not be the case with all versions of mount. For example Busybox [5] uses the-obind option
instead. Sbrshd tries to auto-detect if the mount binary is Busybox, but it is also possible to specify the
correct bind option. You can also specify which mount and umount binaries to use.

The init script does not directly support specifying these options. If you should ever need them, refer to
sbrsh’s README (Appendix A).

3

Chapter 2. Using the daemon

2.2. Authentication

Sbrshd permits command execution only for connections that originate from IP-addresses that are listed
in /etc/sbrshd.conf . It also checks that the user executing the command is listed after the IP-address,
but this check is not reliable unless you have enabled the identd support (seeChapter 6).

The sbrshd.conf file lists one address per line and enumerates the allowed user accounts after it:

<address> <user1> <user2> <...> <userN>

The tokens are separated by arbitrary whitespaces. You can use the ‘#’ character to start a comment.

The user list can be replaced with the ‘*’ wildcard character which indicates that all users from the
address are granted access. The address can contain the wildcard at its end. The line “* *” grants access
to everyone.

This is an example sbrshd.conf

192.168.0.1 bill steve larry
192.168.0.* alice bob
10.* guest
172.192.* *

There is a shortcut for adding new users and/or IP-addresses to sbrshd.conf. You can use the following
command:

/usr/sbin/sbrshd add <user>@<address>

where <user> is a username or the ‘*’ wildcard and <address> is a full IP-address or a pattern (as defined
above).

4

Chapter 3. Using the client

3.1. Configuration

The remote execution hosts are defined in a configuration file that associates symbolic names to the
hosts. The target name and the configuration file can be specified when invoking sbrsh. The default is to
use the first target defined in the~/.sbrsh file (where ‘~’ is the user’s home directory).

Note: When Scratchbox uses sbrsh to automatically run foreign binaries on a remote host, it first
checks if the config file /targets/TARGET.sbrsh (where “TARGET” is Scratchbox’s active
compilation target) exists and only then falls back to sbrsh’s default config file.

The target configuration also lists the NFS filesystems and local directories that are used to create the
sandbox at the target device.

This is an example .sbrsh

The following is a typical target configuration:
ARM 192.168.0.202:1203

nfs 192.168.0.200:/scratchbox/users/tsavola/targets/ARM / rw,nolock,noac
nfs 192.168.0.200:/scratchbox/users/tsavola/home /home rw,nolock,noac
bind /tmp /tmp
bind /proc /proc
bind /dev /dev
bind /dev/pts /dev/pts

You can also omit the mounts:
Sandboxless armdevice.office.company.com

As you can see from the example, the filesystem description must be indented by whitespaces and you
can use the ‘#’ character to start a comment. “ARM” and “Sandboxless” are target names, and
“192.168.0.202” and “armdevice.office.company.com” are the corresponding remote host addresses.
“1203” after the IP-address is the listening port of the sbrsh daemon.

The whitespace-separated parameters of the “nfs” filesystem entries are (from left to right): the NFS
filesystem (typically exported by the Scratchbox host), the mount point inside the sandbox and NFS
options. The parameters of the “bind” entries are: the system directory on the device and the mount point
inside the sandbox.

Note: The order of the filesystem entries is significant. The root filesystem must be the first, and so
on.

5

Chapter 3. Using the client

3.2. Running

You can run commands with sbrsh like this:

> sbrsh ls -l # run a command with one argument
> sbrsh -d /tmp pwd # specify the working directory
> sbrsh -t ARM true # run a command on the ARM target
> sbrsh # run $SHELL

See the README (Appendix A) for more details.

One notable difference to ssh is that sbrsh doesn’t use the shell to execute commands, and thus does not
read any profile or resource files. It creates the target environment by copying variables from the
client-side environment. It also transfers the umask setting to the target environment.

Sometimes you may not want to pass some architecture-specific variables for the target binaries or want
to change them. Sbrsh can override or unset variables in the remote end by using variables prefixed with
“SBOX_ENV_”. The following examples should illustrate the behaviour:

> export SBOX_ENV_FOO=bar
> sbrsh env | grep ^FOO
FOO=bar

> export SBOX_ENV_PATH=(UNSET)
> sbrsh env
sbrsh server: Can’t execute command: env (No such file or directory)

Sbrsh doesn’t copy the resource limit settings to the remote environment, but they can be tuned with
environment variables of the form “SBOX_RLIMIT_RESOURCE”:

• Limit total CPU time of the process to 10 seconds:

> export SBOX_RLIMIT_CPU=10

• Always create core dumps:

> export SBOX_RLIMIT_CORE=unlimited

6

Chapter 4. Debugging

The daemon reports all error conditions to syslog. It also supports a debug log where it writes lot of
information about its state and what happens during command execution.

Debug can be enabled permanently in the init script (seeSection 2.1). The debug log can also be opened
temporarily using this command:

/etc/init.d/sbrshd enable-debug

Debug log can be closed at any time using this command:

/etc/init.d/sbrshd disable-debug

The log is written into file/tmp/sbrshd-PORT.log where PORT is the TCP port number the sbrshd
listens to. (Default is/tmp/sbrshd-1202.log .)

Here is an example session:

/etc/init.d/sbrshd enable-debug
Opening sbrshd debug log: done.
cat /tmp/sbrshd-1202.log
07-01-1970 07:55:46.374 3392 DAEMON Debugging enabled
07-01-1970 07:55:46.375 3392 DAEMON sbrshd version 6.6
07-01-1970 07:55:46.375 3392 DAEMON Port: 1202
07-01-1970 07:55:46.375 3392 DAEMON Local only: no
07-01-1970 07:55:46.375 3392 DAEMON Sandbox: yes
07-01-1970 07:55:46.375 3392 DAEMON Ident: no
07-01-1970 07:55:46.375 3392 DAEMON Allow root: no
07-01-1970 07:55:46.375 3392 DAEMON Mount expiration: 900 seconds
07-01-1970 07:55:46.375 3392 DAEMON Checking for expired mounts
07-01-1970 07:55:46.376 3392 DAEMON Waiting for connection

In this example, “3392” is the process ID of the sbrsh daemon and “DAEMON” is the type of the
process. Sbrshd has four types of processes that write log entries: DAEMON accepts connections and
handles mounts, HANDLER handles I/O between the client and the command process, RELAY relays
fakeroot messages and COMMAND “bootstraps” and executes the command.

7

Chapter 5. Building sbrsh

This chapter contains instructions for building sbrsh from source code. You shouldn’t normally need to
do that, since the sbrsh program is included in Scratchbox and all toolchains ship sbrshd binaries for their
target architectures. SeeInstalling Scratchbox[4] andScratchbox toolchains[6] for more information.

Sbrsh can be cross-compiled inside and outside Scratchbox. Sbrshd requires fakeroot’s header files
which are currently only available in Scratchbox’s toolchain packages. The sbrsh source package is
available in the/scratchbox/packages directory in the Scratchbox installation, but it can also be
downloaded from the Scratchbox website [1].

The following examples build sbrsh inside Scratchbox. The client is compiled for use in Scratchbox:

1. Extract the sbrsh source package:

[sbox-TARGET: ~] > tar xfz /scratchbox/packages/sbrsh-6.6.tar.gz

2. Make sure you have selected the HOST target:

[sbox-TARGET: ~] > sb-conf select HOST

3. Go to the source directory and build the sbrsh executable:

[sbox-HOST: ~] > cd sbrsh-6.6
[sbox-HOST: ~/sbrsh-6.6] > make sbrsh

4. If you want to use your newly built sbrsh as a CPU-transparency method, you can install it under
/host_usr and modify an existing target configuration using thesb-confcommand:

[sbox-HOST: ~/sbrsh-6.6] > mkdir -p /host_usr/bin
[sbox-HOST: ~/sbrsh-6.6] > cp sbrsh /host_usr/bin/
[sbox-HOST: ~/sbrsh-6.6] > sb-conf setup TARGET --cputransp /host_usr/bin/sbrsh --force

The server is cross-compiled for a preconfigured target:

1. Select the target your wish to compile sbrshd for:

[sbox-HOST: ~/sbrsh-6.6] > sb-conf select ARM

2. Go back to the source directory and clean it:

[sbox-ARM: ~] > cd sbrsh-6.6
[sbox-ARM: ~/sbrsh-6.6] > make clean

3. Build the sbrshd executable using fakeroot’s headers:

[sbox-ARM: ~/sbrsh-6.6] > make sbrshd \

8

Chapter 5. Building sbrsh

CPPFLAGS="-I/scratchbox/device_tools/fakeroot-1.2.3/arm-gcc-3.3.4-glibc-2.3.2/include"

4. If you are using the Debian devkit, you can also build a binary package for Debian:

[sbox-ARM: ~/sbrsh-6.6] > dpkg-buildpackage -rfakeroot -b

5. SeeInstalling Scratchbox[4] for sbrshd installation instructions.

9

Chapter 6. Security issues

sbrsh is insecure for the following reasons:

1. the communication is not encrypted;

2. user authentication is not reliable unless identd is used;

3. sbrsh allows the mounting of arbitrary NFS filesystems.

Note: NFS in itself is also insecure.

Point 1.Sbrsh does not apply encryption on the TCP communication—after all, sbrsh is a development
tool and designed to run on slow systems. You could use an ssh tunnel to encrypt the communication, but
that would still leave the NFS communication unencrypted. (Also, thefakeroot relayimplemented by
sbrshd does not currently support this.)

Point 2.There is no guarantee that the username sent by the client is correct. If you (the administrator of
a network containing Scratchbox workstations and sbrshd devices) would like to restrict access to sbrshd
reliably (possibly due to Point 3), you should install an identd on the workstations and enable identd
lookup in sbrshd (seeSection 2.1.1). sbrsh has been tested with the “gidentd” Debian package [7].

Point 3.You can specify any NFS server and path in sbrsh’s target configuration. This is not a bug: If
Scratchbox is installed on an NFS server, the Scratchbox itself runs in your workstation but the
filesystems are exported by the server. In this case, your workstation connects to the sbrshd device and
asks it to mount filesystems from the NFS server, which is correct. Unfortunately this also means that
you can mount your coworker’s filesystems...

These points imply that you should use only dedicated devices for running sbrshd with no sensitive
material (such as private keys) and you should make the device available only to your development team
on a local network. But don’t be afraid; you should be safe when following these guidelines.

10

References
[1] Scratchbox website (http://scratchbox.org/).

[2] Fakeroot in Scratchbox (http://scratchbox.org/documentation/docbook/fakeroot.html), Timo Savola.

[3] GNU General Public License (http://www.gnu.org/copyleft/gpl.html).

[4] Installing Scratchbox (http://scratchbox.org/documentation/docbook/installdoc.html), Valtteri
Rahkonen.

[5] Busybox (http://busybox.net/).

[6] Scratchbox toolchains (http://scratchbox.org/documentation/docbook/toolchain.html), Ricardo
Kekki.

[7] Debian — gidentd (http://packages.debian.org/gidentd).

11

Appendix A. sbrsh 6.6 README

General Information
===================

Scratchbox Remote Shell is an rsh/ssh-like utility for Linux that supports
terminal emulation, automated mounting of network shares, chroot, etc.

sbrsh is distributed under the General Public License version 2. See COPYING
for the full license.

Client Usage
============

Execute a remote command:
sbrsh [-t|--target <target>]

[-c|--config <path>]
[-d|--directory <dir>]
[<command> [<arguments>]]

Mount or unmount all filesystems of a target:
sbrsh [-t|--target <target>]

[-c|--config <path>]
--mount|--umount

--target symbolic name of the target configuration; the first target
in the config file will be used by default

--config specifies the absolute path to the user’s configuration file
(default is "$HOME/.sbrsh")

--directory the user’s current directory at the target device
(default is "/")

command name of the binary to be executed (may be looked up from
PATH); if command is not specified, the SHELL environment
variable is used; if SHELL is not set, "/bin/sh" is used

arguments zero or more arguments for the command

Daemon Usage
============

sbrshd [-p|--port <port>]
[-l|--local-only]
[-n|--no-sandbox]
[-i|--ident]
[-r|--allow-root]
[-d|--debug <path>]
[-e|--mount-expiration <minutes>|none]
[-m|--mount-bin <path>]
[-u|--umount-bin <path>]

12

Appendix A. sbrsh 6.6 README

[-t|--mount-tab <path>]
[-b|--bind-opt <options>]

--port sets a custom port number (default is 1202)
--local-only makes sbrshd only accept connections from the local host
--no-sandbox does not create a sandbox directory, create mounts or chroot
--ident uses identd for validating incoming connections
--allow-root allow commands to be run with user and group id 0
--debug enables debugging to a log file
--mount-expiration specifies the number of minutes to wait before expiring

unused mount points (default is 15); 0 means that filesystems
are unmounted immediately after commands exit; "none" means
that filesystems are unmounted only when sbrshd exits

--mount-bin specifies the mount binary path (default is "/bin/mount")
--umount-bin specifies the umount binary path (default is "/bin/umount")
--mount-tab specifies the mount table path (default is "/etc/mtab")
--bind-opt specifies the option used when binding a path to a mount point

(default is "--bind", or "-obind" if mount binary is Busybox)

The pid of the daemon process is printed to stdout. The command exits
immediately.

The debug log can be opened and closed at run-time by sending the daemon
process the SIGUSR1 (open log) and SIGUSR2 (close log) signals. If the
debug log was not opened at startup with the --debug option, the debug log
will be written to "/tmp/sbrshd-<port>.log" (where <port> is the value of the
--port option).

Client Config
=============

The client configuration file lists all known TARGETs (see Client Usage).
The first line of a TARGET block must not contain whitespaces before the
name of the TARGET. The subsequent lines must be indented. "#" is a line end
comment character.

The layout of the first line:
<target> <ip>[:<port>]

The subsequent lines define the mounts needed by the TARGET (TYPE is either
"nfs" or "bind"):

<type> <share/path> <point> [<nfs options>]

Here’s an example configuration:

ARM 172.16.6.76:1202
nfs 1.2.3.4:/playground / rw,nolock,noac
bind /dev /dev
bind /proc /proc
bind /var/tmp /tmp

13

Appendix A. sbrsh 6.6 README

Daemon Config
=============

The daemon configuration file is /etc/sbrshd.conf. It lists all client IP
addresses and user accounts that are granted access. The user account list
can be replaced with "*" to permit all users from a host. The "*" wildcard
can also be used at the end of an IP address. "#" is a line end comment
character.

The layout is:
<ip> <username1> <username2> <...> <usernameN>

Here’s an example configuration:

172.16.6.10 john bob alice
172.16.6.85 *
172.16.6.* guest
192.168.* *

Environment Variables
=====================

The command execution environment at the target device can be controlled via
a few environment variables.

"SBOX_ENV_" prefix will be stripped from all variables having one. If a
corresponding variable without the prefix exists, it will be overridden.
If the variable’s value is "(UNSET)", the corresponding variable will be
removed from environment. For example the dynamic linker can be controlled
this way (via the LD_* variables) without affecting the sbrsh client itself.

The resource limits can be set using variables with the "SBOX_RLIMIT_"
prefix. The value can be either an integer or "unlimited". The supported
setting are:

SBOX_RLIMIT_CPU CPU time in seconds
SBOX_RLIMIT_FSIZE max filesize
SBOX_RLIMIT_DATA max data size
SBOX_RLIMIT_STACK max stack size
SBOX_RLIMIT_CORE max core file size
SBOX_RLIMIT_RSS max resident set size
SBOX_RLIMIT_NPROC max number of processes
SBOX_RLIMIT_NOFILE max number of open files
SBOX_RLIMIT_MEMLOCK max locked-in-memory address space
SBOX_RLIMIT_AS address space (virtual memory) limit

14

