
Scratchbox migration to Subversion

Janne Kataja
janne.kataja@movial.fi

Scratchbox migration to Subversion
by Janne Kataja

Published $Date: 2004/09/16 14:24:09 $
Copyright © 2004 Nokia.

Revision history

Version: Author: Description:

2004-09-01 Kataja Corrections

2004-08-31 Kataja Proposal

2004-08-03 Kataja Initial version

Table of Contents
1. Introduction ..1

1.1. Conclusions...1

2. Usage...3

2.1. Accessing the repository...3
2.2. Repository layout..4
2.3. Tags and branches...4

3. Install ..6

3.1. Prerequisites..6
3.2. Backing up the repository...6
3.3. Providing access to the repository...6

3.3.1. Browser access...7
3.3.2. Access using svnserve custom protocol...7
3.3.3. Authenticated access using ssh tunnel..7
3.3.4. Apache..8
3.3.5. WebDAV autoversioning..10

4. Conversion..11

4.1. Backing up CVS repository..11
4.2. Create the repository...11
4.3. Importing an existing CVS repository..11
4.4. Importing file properties..12
4.5. Cleaning up...14

A. Basic usage of the svn client...15

A.1. Checkout files...15
A.2. Adding and removing content..15
A.3. Tagging and branching...15
A.4. Merging between revisions..16
A.5. Updating working copy..16
A.6. Committing changes...16
A.7. Properties..16

Bibliography ...18

iii

Chapter 1. Introduction

This document is a study on changing Scratchbox development version control system to Subversion.
Currently Scratchbox project uses CVS. Many of the problems with CVS are due to CVS being built
upon RCS. RCS only tracks changes in single files and doesn’t allow concurrent users. CVS adds
support for modules and multiple users as an afterthought. Subversion is a version control system that is
designed to replace CVS and overcome it’s limitations.

This document covers basic terms and usage of Subversion. Also explains how to set up repository
access to that repository, what Debian packages are needed, and finally how to convert an existing
repository from CVS to Subversion without loss of information. The tutorial sections in this document
are written for system administrators and developers with some experience in using CVS.

Subversion and CVS both are licensed under open source license. CVS is licensed under GNU GPL.
Subversion is licensed under Apache-style license. Subversion depends on Berkeley DB, which in turn is
dual-licensed open source and commercial. Commercial licenses are not required for usage.

1.1. Conclusions

Recommend changing version control system from CVS to Subversion. Any showstopper problems
didn’t arise. An existing repository can be converted from CVS to Subversion with process that is
described elsewhere in this document. This conversion will not result in loss information, except for CVS
revision numbering.

Changing CVS to Subversion requires the following work tasks.

• Install Subversion software to server and clients.

• Convert existing CVS repository to Subversion.

• Change in the documentation, website and possibly source code. These have usage instructions and
references to e.g. CVS file locations.

• Change website update script and IRC channel bot notify script hooks.

• Developer training.

There are some advantages in changing to Subversion.

• Subversionsupports transactions. Commits to the repository are processed as atomic transactions.
Either all or nothing gets published.

• The Subversioncommands also work on directories. Directories can be added, copied, moved or
deleted. In CVS, directories are meant to be permanent, and changes need to be done in hand. This
possibly leads to problems, for example when any checked out workspaces are invalidated.

1

Chapter 1. Introduction

• Subversion usesbinary diff algorithm. Changes to binary files are versioned as well. Only the latest
revision of a binary file gets stored inside a CVS repository.

• Copying is a cheap, constant time operation. The functional equivalent of tagging and branching is
done by copying files within the repository.

• Subversion allows to attachmetadata propertiesto files and paths.

• Directories and properties are versionedjust like files.

The main concern in Subversion is that it uses Berkeley DB repository as a backend. The Berkeley DB
database files are non-portable, and might break between version changes and different architectures.
Next version of Subversion (release 1.1) will include FSFS, which is an alternative backend
implementation. It uses ordinary filesystem directories to store files, even if those files are still in a
binary-only format. See fsfs information page (http://web.mit.edu/ghudson/info/fsfs) for more
information. CVS stores repository in an ordinary filesystem, with revision diff information stored in text
format.

2

Chapter 2. Usage

The svn commands also work on directories. Directories can be added, copied, moved or deleted.
Changes only take place aftersvn commit. Directories and properties are versioned just like files.

The Subversion repository is assigned a repository global revision number after each commit. Subversion
revisions apply to the whole repository. Revision N represents the state of the repository after Nth
commit. A file in the repository might be identical in revision N and N+1.

2.1. Accessing the repository

file://

Local file-based access. file:// access uses repository database files on the local host. Example
checkout ofscratchboxmodule trunk using file based access:

$ svn checkout file:///work/svn/scratchbox/trunk work-dir

Note: Subversion repository which uses Berkeley DB as a backend shouldn’t be accessed over
a network filesystem.

http:// and https://

http:// or secure access over https://

Example checkout ofscratchboxmodule trunk from scratchbox.org using http based access:

$ svn checkout http://scratchbox.org/repos/scratchbox/trunk work-dir

Apache 2.0 based Subversion server is based on WebDAV protocol, which is in turn based on http.
This allows to use other programs than a Subversion aware client to access the repository. WebDAV
is supported by many other programs, like file managers (Windows Explorer, Nautilus), office
applications (Openoffice, Microsoft Office), etc. It’s also possible to go to repository URL with a
browser and browse the repository contents as it appears on the latest revision.

svn://

Connects to a server runningsvnservedaemon using a custom protocol. Example checkout of
scratchboxmodule trunk from scratchbox.org using anonymous svnserve access:

$ svn checkout svn://scratchbox.org/scratchbox/trunk work-dir

3

Chapter 2. Usage

svn+ssh://

Connects to remote machine usingsshand then runssvnservecommand on that machine. Checkout
scratchboxmodule trunk from scratchbox.org over ssh tunnel:

$ svn checkout svn+ssh://scratchbox.org/work/svn/scratchbox/trunk work-dir

2.2. Repository layout

Before importing any projects, consider the repository layout. Subversion handles tags and branches as
ordinary directories. Repository locations for those are a matter of convention.

• / is the repository root. Add new projects under here.

• project/ is a project module that contains everything that is related to a project.

• trunk/ is a project’s main development line.

• tags/contains snapshots of the main development line at a certain revision. Contents shouldn’t be
changed!

• branches/contains various branches of the main development line.

Note: Tags location should only be used as a read-only snapshot. Tags are used to give a symbolic
name to a project at a certain revision (example release). Because Subversion doesn’t process tags
any different than other directories, the files inside a tagged release can be changed. Please ensure
that users will treat this location as should!

In CVS, tag and branch names cannot start with a digit or contain periods. This ends up up with branches
exampleSBOX_0_9_8. As Subversion tags and branches are no different from directories, they can be
named more freely, examplescratchbox-0.9.8.

2.3. Tags and branches

Subversion has no concept of tagging or branching. These operations are substituted with copying files
within the repository. Tags and branches exists as separate directories inside the repository and there is
no difference between these operations. Repository locations for tags and branches are a matter of
convention (see below for a suggested layout).

Making a copy usingsvn copyis a cheap, constant time operation. Subversion doesn’t actually duplicate
the data inside the repository. Example below tags trunk as Scratchbox 1.0 release location.

svn copy http://scratchbox.org/repos/scratchbox/trunk \

4

Chapter 2. Usage

http://scratchbox.org/repos/scratchbox/tags/scratchbox-1.0 \
-m "tagging scratchbox 1.0 release"

After the operation completes, the new repository location/scratchbox/tags/scratchbox-1.0remains as
a snapshot copy of the project trunk/scratchbox/trunk at that time.

A copy can be also made from the basis of a revision number. This is specified by passing the parameter
-r N to thesvn copycommand, whereN is a revision number.

5

Chapter 3. Install

3.1. Prerequisites

Required Debian packages (version level).

• cvs2svn (0.1263)

• libsvn0 (1.0.5)

• subversion (1.0.5)

3.2. Backing up the repository

Subversion uses Berkeley DB as a backend database. Berkeley DB includes hot backup support that
allows making a backup while the database is in use. Naively copying the files while the database is in
use could result in an unusable backup. The problem with Berkeley DB files is that they are
non-portable. Those files might break between version changes and different architectures.

A portable backup should be created usingsvnadmin dumpcommand instead. Using this command, the
current repository is saved into a portable dump file. The making of and restoration of the backups takes
longer, as each commit is reproduced. Using this command it’s also possible to make incremental dump
files. Gzip compresses a dump to approx. one quarter of it’s original size. Example
/etc/cron.daily/svnbackupbackup script follows. The script creates snapshot files
svn-date-revrevision.dump.gz, where date is the current date inyyyymmdd format andrevision the
latest repository global version number. Create the target directory (here/var/backups/svn) before
running this.

$ cat /etc/cron.daily/svnbackup
#!/bin/sh

SVN=/work/svn
BACKUP=/var/backups/svn

svnadmin dump ${SVN} | gzip
> ${BACKUP}/svn-‘date +%Y%m%d‘-rev‘svnlook youngest ${SVN}‘.dump.gz

The portable dump file contents can be recovered usingsvnadmin loadcommand. It reads contents from
stdin and playbacks the original revisions to the repository as they appear in the dump. Example follows.

$ zcat /var/backups/svn/svn-20040823-rev2272.dump.gz | svnadmin load /work/svn

6

Chapter 3. Install

3.3. Providing access to the repository

Subversion’s network access layer is modular. Access to the repository can be set up using different
methods: local file based, custom svn protocol, custom svn protocol over ssh, and http including https.
The repository can be accessed with multiple methods at the same time, given that every process can read
and write the Berkeley DB files. Processes should also write to the database files using a friendly umask.

3.3.1. Browser access

If the repository is accessed using Apache WebDAV-based server, it is also possible to go to repository
URL with a browser and browse the repository. Contents are shown as they appear on the latest revision.
Older revisions cannot be viewed.

Third party software is required to browse the repository history and run diffs. ViewCVS is a Python
CGI-script that was originally written to browse CVS repositories. The latest ViewCVS development
version installed from sourcevievcvs-1.0-devalso supports browsing Subversion repositories. See
ViewCVS homepage (http://viewcvs.sourceforge.net/) for more information.

Apache 2.0 modulemod_svn_viewprovides, like ViewCVS, a web-based view of a Subversion
repository. It is different from ViewCVS because it uses the Subversion libraries directly. It generates a
simple XML output that can be run through XSL Transformations via mod_transform to generate a
customized look. See mod_svn_view homepage
(http://www.outoforder.cc/projects/apache/mod_svn_view/) for more information.

3.3.2. Access using svnserve custom protocol

Runningsvnservein daemon mode provides an access to the repository. Clients connect using a custom
protocol. Option-r restricts access to a repository root path.

svnserve -d -r /work/svn/

Configurations file/work/svn/conf/svnserve.confsets the user database file and access realms for
authenticated and anomymous access. Usernames and passwords need to be typed in the users database
file set withpassword-dbdirective. Authentication using e.g. PAM or LDAP is not possible. Passwords
are not sent in plaintext over the network.

3.3.3. Authenticated access using ssh tunnel

Users will connect using SSH and runsvnservecommand.

7

Chapter 3. Install

All SSH users should have read and write permissions to the repository. Users will also require a sane
umask when e.g. Berkeley DB logfiles are generated in repository database directory. The firstsvnserve
lying on the $PATH should be a wrapper script that setsumask 002and then executes the realsvnserve
binary, for example as follows.

$ cat /usr/local/bin/svnserve
#!/bin/sh
umask 002
/usr/bin/svnserve "$@"

Access to individual modules inside the repository cannot be restricted in this access method.

3.3.4. Apache

Apache 2.0 can provide access to a repository over http or https using the modulemod_dav_svn.
Additional required Debian packages (version level) are as follows.

• apache2

• libapache2-svn (1.0.6)

Install the above package. Then enable Subversion modulesdav, dav_fsanddav_svn. To enable a
module, add symlinks to modules’.load and.conf files from/etc/apache2/mods-available/to
/etc/apache2/mods-enabled/directory.

Example access with no restrictions, so that an anonymous user would have full rights. TheLocation
block sets urls that begin withhttp://scratchbox.org/repos/to be served withDAV module
mod_dav_svn. Subversion repositorySVNPath is kept in/work/svn.

<Location /repos>
DAV svn
SVNPath /work/svn
</Location>

There are several ways to set up access restrictions to repository location. It is possible to use any
authentication modules that Apache provides, for example basic authentication, LDAP or host IP. Add
the following lines toLocation block to add basic authentication. Also, create the users passwords file
/etc/apache2/svn.passwdwith htpasswdtool.

AuthType Basic
AuthName "Subversion Repository"
AuthUserFile /etc/apache2/svn.passwd
Require valid-user

Users can be authenticate with LDAP authentication usingmod_auth_ldap.

AuthType Basic

8

Chapter 3. Install

AuthName "Subversion repository"
AuthLDAPURL ldap://ldap.scratchbox.org/dc=scratchbox,dc=org?uid?sub
Require valid-user

Users can be authenticated by LDAP group authentication as well.

Require group cn=developers,ou=groups,dc=scratchbox,dc=org

To allow anonymous chekcout access to the repository, add the following line toLocation block before
Require. First tries to authenticate the user using basic authentication, then falls back to anonymous
access.

Satisfy any

Apache modulemod_authz_svnallows to define access restrictions on a directory basis. For this,
specify access policy control file withAuthzSVNAccessFiledirective inLocation block.

AuthzSVNAccessFile /etc/apache2/dav_svn.authz

Also create a subversion access policy control file to/etc/apache2/dav_svn.authz, as follows. User
groups have to be provided in this file, searching them from LDAP is not supported.

[groups]
developers = crash,test,dummy

[/]
give read access for all
* = r
read/write to developers group
@developers = rw

[/project/trunk]
read/write to luser
luser = rw

A complete configuration example follows. This example sets up authenticated access using basic
authentication, path-based restrictions and allow anonymous checkouts.

<Location /repos>
DAV svn
SVNPath /work/svn

AuthType Basic
AuthName "Subversion Repository"
AuthUserFile /etc/apache2/svn.passwd

AuthzSVNAccessFile /etc/apache2/dav_svn.authz

Satisfy any

9

Chapter 3. Install

Require valid-user
</Location>

Repository access does not show up in Apache access log.

3.3.5. WebDAV autoversioning

Subversion includes autoversioning support for WebDAV shares. This allows clients to access a
WebDAV share while the server is transparently versioning any changes. This option is set with
SVNAutoversioningdirective in Apache location block. Unfortunately, autoversioning interoperability
support was not yet stable enough for real usage. The autoversioning support was tested against
OpenOffice 1.1 and Microsoft Word 2000.

10

Chapter 4. Conversion

Follow this procedure to convert an existing CVS repository to Subversion.

4.1. Backing up CVS repository

Backup the CVS repository before proceeding. It also might be a good idea to remove write permissions
from CVSROOT so that no one will make a commit while the conversion is unfinished.

4.2. Create the repository

Run the following command to create a repository at/work/svn. Do not create the repository on a
network filesystem. It might work, but more likely might corrupt the repository. Berkeley DB uses direct
mmap and requires strict POSIX locking semantics.

svnadmin create /work/svn

The directory/work/svn/db now contains a Berkeley DB environment. Repository users, also
www-data, should have write permissions there. New logfiles that are generated in this directory need to
be owned by the group as well. Write permissiosn are required also for read-only access. Access
restrictions will be taken care of in an upper level (Apache server).

chmod 2775 /work/svn/db /work/svn/dav
chmod 0775 /work/svn/db/*

4.3. Importing an existing CVS repository

There are different ways to migrate an existing CVS repository to Subversion. This example uses
cvs2svnfor a full conversion of trunk, tags and branches. The conversion also includes historical data on
the files.

As of version 0.1263-1,cvs2svntool doesn’t support multicomponent paths, with no plans to fix this1.
Use the following script as a workaround to this problem. Essentially, it first usescvs2svnscript to
convert a module, and then re-orders the layout.2. Note that the procedure might be broken if file names
include spaces.

#!/bin/sh

MODULE=$1
SVN=/work/svn

11

Chapter 4. Conversion

CVS=/work/cvs/scratchbox
MSG="re-order repository layout"

Convert from CVS to SVN using cvs2svn
cvs2svn --existing-svnrepos -s $SVN $CVS/$MODULE

Then re-order repository layout
svn mkdir file://$SVN/$MODULE -m "$MSG"
svn move file://$SVN/branches file://$SVN/$MODULE/branches -m "$MSG"
svn move file://$SVN/tags file://$SVN/$MODULE/tags -m "$MSG"
svn move file://$SVN/trunk file://$SVN/$MODULE/trunk -m "$MSG"

Run the above script to import all CVS modules to Subversion.

$ for module in crocodile fakeroot-net sb-toolchains scratchbox \
scratchbox-libs www chroot-uid ee linux-headers sbrsh \
scratchbox-base scratchbox-utils ; do

cvs2svn.sh $module ;
done

4.4. Importing file properties

The conversion script does not convert all of the file properties properly. A checkout of the modules is
needed to change the properties. If disk space is at low, then the modules can be processed one at a time.
Change the working directory to a drive with enough space for holding copies of all trunks, tags and
branches. Checkout everything from the repository to a local working copy.

Note: Because of how Subversion handles metadata, the imported properties don’t apply
retrospectively. Metadata is versioned over time, just like the file contents, and there is no easy way
to change the history. Properties will though persist to the later revisions of files.

$ cd /tmp
$ svn checkout file:///work/svn/

Note: Running the above checkout command takes some time. Go and have a cup of coffee.

Now change the working directory to the local copy.

$ cd svn

Filenames and filename patterns that should not be attempted to be stored in the repository can be set by
attachingsvn:ignoreproperty to a directory. The files that are listed in that property are also ignored

12

Chapter 4. Conversion

when displaying informational messages. Setting this property has the same effect that.cvsignorefile in
CVS. Run the following command to replace.cvsignorefiles withsvn:ignoreproperties.

Note: Subversion doesn’t support special filename ! lines like .cvsignore files.

$ find -name .cvsignore | while read file ; do
svn propset svn:ignore -F $file "‘dirname $file‘" ;
svn delete -m "replaced .cvsignore with svn:ignore" $file

done

Keywords like $Author$, $Date$, Id, etc. are not automatically expanded in Subversion like they are
in CVS. Propertysvn:keywordsneeds to be set for the completion to take place. The following
command will grep for Author, Date and Id keywords and add relevant keyword expansion properties for
those files. Any existing keywords are lost.

Note: Keyword expansion could damage binary files if they contain text that can be interpreted as
keywords.

$ find . -type f -a ’(’ -path ’*/.*’ -prune -o -print ’)’ | while read file ; do
plist=""
for p in Author Date Id Rev ; do

if grep -q ’\$’${p}’:’ "$file" ; then
plist="${p} $plist"

fi
done
if ["$plist" != ""] ; then

svn propset svn:keywords \"${plist%% }\" $file
fi

done

Subversion uses executable property to control exec bit set on repository files. This should be set for e.g.
build scripts stored in the repository. Run the following command to search for files with exec bits set
from the CVS directories, then attachsvn:executableproperties to those files in the Subversion side.
Note that the script sets those bits only only starting from the current revision number.

$ for module in crocodile fakeroot-net sb-toolchains scratchbox \
scratchbox-libs www chroot-uid ee linux-headers sbrsh \
scratchbox-base scratchbox-utils ; do

find /work/cvs/scratchbox/$module -type f -perm +1 | grep -v Attic | while read f ; do
f=${f/\/work\/cvs\/scratchbox\/$module\//}
f=${f%%,v}
svn propset svn:executable ON $module/trunk/$f \

$module/tags/*/$f $module/branches/*/$f
done

done

Now commit the changes made

13

Chapter 4. Conversion

$ svn commit -m "imported svn:ignore, svn:keywords and svn:executable properties"

This completes repository import from CVS.

4.5. Cleaning up

This step is not necessary but might be convenient. CVS branch names cannot start with a digit or
contain periods. ending up with branches for example called v1_2_3 instead of 1.2.3. Existing branches
and tags may be renamed to be more verbose.

Notes
1. See related bug report (http://cvs2svn.tigris.org/issues/show_bug.cgi?id=7)

2. Based on cvs2svn.sh (http://cvs2svn.tigris.org/nonav/issues/showattachment.cgi/8/cvs2svn.sh).
Changed REPOS parameter to repository install path (here/work/svn), added CVS parameter to
CVS root path (here/work/cvs/scratchbox) and also addedexisting-svnreposparameter tocvs2svn
call

14

Appendix A. Basic usage of the svn client

Subversion command-line clientsvn interface is modelled aftercvs. See alsosvn helpfor more
commands and options.

A.1. Checkout files

svn checkout URL [PATH]

Checkout a local copy from the repository.

$ svn checkout https://scratchbox.org/repos/scratchbox/trunk work-dir

Note: Checkout the trunk of a project, and not the project itself. If you check out a complete
project, your local copy contains a copy of every branch and tag.

A.2. Adding and removing content

svn add PATH

Adds a local path to the repository.

svn import PATH URL

Recursively import a copy of path to repository.

$ svn import README https://scratchbox.org/repos/scratchbox/trunk

svn delete PATH
svn delete URL

Delete a file or a directory from a local copy or from the repository.

A.3. Tagging and branching

svn copy SOURCE DEST

Copies a file or a directory in local copy or inside the repository. Tags and branches are also
produced with this command. Making a copy is a cheap, constant time operation. Example below
tags the project trunk.

$ svn copy https://scratchbox.org/repos/scratchbox/trunk \
https://scratchbox.org/repos/scratchbox/tags/project-1.0 \

15

Appendix A. Basic usage of the svn client

-m "tagging project 1.0 release"

A.4. Merging between revisions

Merge applies the differences between two revisions. It results only in modifications to a local working
copy.

svn merge -r N:M SOURCE [PATH]

SOURCE can be a URL or a local working copy item. Revisions N and M are the ones to be
compared.

To merge changes that have taken place in a branch, compare the initial branch state to the current
branch state. Use svn log to see when the branch was created in (example revision 1337). The
current branch state is always the HEAD revision.

$ svn merge -r 1337:HEAD \
https://scratchbox.org/repos/scratchbox/branches/my-branch

svn merge URL1[@N] URL2[@M] [DEST]

Applies the differences between the two source URLs to the local working copy.

A.5. Updating working copy

svn update [PATH]

Updates local copy.

svn status [PATH]]

Prints out all files that have local modifications. Subversion keeps a cache of the original files that
are used for comparison. The repository is not connected.

A.6. Committing changes

svn commit [PATH]

Send local changes to the repository. Commit is processed as an atomic transaction (either all or
nothing gets published).

16

Appendix A. Basic usage of the svn client

A.7. Properties

Subversion supports versioned metadata properties to be attached to files and paths. Properties are set
using svn propset command. Perhaps there could be a policy to setlicenseproperty on certain files.

$ svn propset license ’GPL’ foo.c

Subversion has reserved namespace of special properties starting ’svn:’. For example,svn:executable
property is used to control exec bit set on repository files. This should be set for e.g. build scripts stored
in the repository.

$ svn propset svn:executable ON configure

Filenames and filename patterns that should not be attempted to be stored in the repository can be set by
attachingsvn:ignoreproperty to a directory. The files that are listed in that property are also ignored
when displaying informational messages. Setting this property has the same effect that.cvsignorefile in
CVS.

$ svn propset svn:ignore "foo.o" .

Keywords like $Author$, $Date$, Id, etc. are not automatically expanded in Subversion like they are
in CVS. Propertysvn:keywordsneeds to be set for the completion to take place.

$ svn propset svn:keywords Id foo.c

See [2, chapter 7, section 2] for a complete list of special properties.

17

Bibliography
[1] cvs2svn project homepage (http://cvs2svn.tigris.org/).

[2] Version Control with Subversion (http://svnbook.red-bean.com/svnbook/index.html) Ben
Collins-Sussman Brian W. Fitzpatrick C. Michael Pilato.

18

