
Scratchbox toolchains

Ricardo Kekki
rkekki@movial.fi

Scratchbox toolchains
by Ricardo Kekki

Copyright © 2004, 2005 Nokia

Revision history

Version: Author: Description:

2005-04-01 Savola Fixed a typo

2005-02-17 Savola Fixed build option example

2005-02-07 Savola Scratchbox 1.0 updates

2004-09-07 Kekki Initial version

Table of Contents
1. Introduction ..1

2. Scratchbox toolchains..2

2.1. General..2
2.2. Toolchain design...2
2.3. Wrappers...2
2.4. Toolchain installation..3

3. Building custom toolchains...4

3.1. Toolchain build system..4
3.2. Environment..4
3.3. Compiling toolchains..4
3.4. Changing source packages..6
3.5. Building binary packages..6

4. Testing toolchains...8

4.1. Initial tests...8
4.2. Regression tests...8

References...10

iii

Chapter 1. Introduction

Toolchain is a collection of tools used to develop software for a certain hardware target. Toolchains are
based on particular versions of compiler, libraries, special headers and other tools. A cross-toolchain is a
toolchain for compiling binaries for different CPU architecture than the host CPU.

Scratchbox is a cross-compilation toolkit for embedded Linux application development. It is designed for
compiling software for different target CPU architectures. Scratchbox allows creating several target
environments. Each target is a separate environment that has a selected toolchain, target CPU and an own
file system.

Building toolchains is not always trivial. Scratchbox uses scripts for building predefined toolchains.
After building a toolchain it should be tested to know that it works properly. Testing toolchains is harder
than building toolchains.

1

Chapter 2. Scratchbox toolchains

2.1. General

Scratchbox toolchains provide the cross compilation tools for compiling binaries for the target
environment. Each toolchain is built for a certain CPU target and they are based on certain gcc and
C-library sources.

Scratchbox toolchains can be used both inside and outside Scratchbox. In Scratchbox each target uses a
certain toolchain with a specific target CPU. Scratchbox uses wrappers to make the toolchains appear as
if they were native toolchains. Outside Scratchbox the toolchains are used as any normal cross
compilation toolchains.

All the installed toolchains can be found in the/scratchbox/compilers directory.

2.2. Toolchain design

The toolchains use either glibc or uClibc C-libraries. The glibc toolchain is based on Debian gcc-3.3,
binutils, libc6 and linux-kernel-headers packages. Also some Scratchbox patches are applied to the
packages. The uClibc build uses Erik Andersen’s uClibc toolchain build script which uses uClibc’s own
patches.

Scratchbox.org [1] offers prebuilt toolchains for x86 and ARM targets. Only these targets are currently
supported because too much work to support all different configurations. With the Scratchbox toolchain
sources you can build your own custom toolchains.

Scratchbox toolchain building scripts allow you to build easily predefined toolchains and give the
possibility to build custom toolchains for different targets. Changing the toolchain binutils, compiler or
C-library packages can be a more demanding task.

2.3. Wrappers

Scratchbox uses agcc wrapperfor wrapping most of the toolchain command binaries. In the
/scratchbox/compilers/bin/ directory you can see the linked binaries. The wrapper knows how to
handle each command and depending on the command it might change some of the command
parameters. Then it runs the actual command from the correct path that depends from the selected target.
The gcc wrapper reads all the target specific information from the target configuration files that can be
found in the/scratchbox/users/username/targets/ directory.

2

Chapter 2. Scratchbox toolchains

Scratchbox has also anld wrapperfor linking the binaries properly. When compiling inside Scratchbox a
fake-nativeld is used. Outside Scratchbox a normally behaving ld is used. For example inside
Scratchbox the dynamically linked binaries are linked against the libraries that are in standard library
paths, not in the toolchain’s library path.

The gcc wrapper uses ccache by default. The default cache directory is/scratchbox/ccache/ .
Ccache can be disabled by setting the environment variable SBOX_USE_CCACHE to “no”. The cache
directory can be changed with the CCACHE_DIR environment variable.

2.4. Toolchain installation

The following binary packages are available:

• scratchbox-toolchain-arm-gcc3.3-glibc2.3

• scratchbox-toolchain-arm-gcc3.2-uclibc20040229

• scratchbox-toolchain-i686-gcc3.3-glibc2.3

• scratchbox-toolchain-i386-gcc3.2-uclibc20040229

For each toolchain that you want to use you need to create a Scratchbox target. For installation and target
creation instructions seeInstalling Scratchbox[2].

3

Chapter 3. Building custom toolchains

3.1. Toolchain build system

Scratchbox toolchain build scripts are available in thesb-toolchainssource package that is available at
the Scratchbox download page [1] for each Scratchbox version.

Scratchbox toolchains are built with the GAR system [3]. It is a mechanism for automating the
compilation and installation of third-party source code. It appears in the form of a tree of directories
containing Makefiles and other ancillary bookkeeping files (such as installation manifests and checksum
lists).

Thegcc/glibc directory contains the glibc toolchain scripts andgcc/uclibc the uClibc toolchain
scripts. Thegcc/glibc/versions file has all the information of the debian package versions. It tells
which debian packages are used for compiling the toolchains. Thegcc/glibc/files directory
contains the Scratchbox patches. Only some of them are in use.

The sb-toolchains source package is used also to buildarch toolsanddevice toolswhich are target
dependent. The build instructions in this document automatically build all of them; there is currently no
documented way to disable that.

3.2. Environment

Toolchains have to be built with an already existing compiler. Scratchbox has the HOST target for this.
HOST’s host-gcc toolchain is for compiling binaries for the host. It’s configured to make the compiled
binaries use the Scratchbox’s host libraries.

When building toolchains you need write privileges to the/scratchbox/compilers and
/scratchbox/device_tools directories. Thescratchboxsource package contains the
scripts/permhack script for changing the privileges, but you can also do it like this:

chown -R username:groupname /scratchbox/compilers/
chown -R username:groupname /scratchbox/device_tools/

Toolchain building needs the Debian devkit package to be installed; the build script uses the dpatch and
dpkg commands.

4

Chapter 3. Building custom toolchains

3.3. Compiling toolchains
1. Make sure you have the scratchbox-devkit-debian package installed on your system.

2. Download the sb-toolchains source package (seeSection 3.1). Extract it into a directory that is
visible inside Scratchbox (such as/scratchbox/users/username/home/username).

3. Change the permissions of the Scratchbox installation directories (seeSection 3.2).

4. Login to Scratchbox.

5. Modify the HOST target to use the Debian devkit:

[sbox-HOST: ~] > sb-conf setup HOST --devkits debian --force

6. Install /etc/passwd and Debian-specific files on the HOST target:

[sbox-HOST: ~] > sb-conf install HOST --etc --devkits

7. Reselect the HOST target so that the environment gets updated:

[sbox-HOST: ~] > sb-conf select HOST

8. If you want to build the default toolchains, run thebuild script in thesb-toolchains directory:

[sbox-HOST: ~] > cd sb-toolchains
[sbox-HOST: ~/sb-toolchains] > ./build --build

If you want to build custom toolchains, use theMakefile . You need to pass the following variables
to make:

TC_SOURCE

source directory; for example “gcc/glibc”

TC_NAME

compiler name; for example “i686-gcc-3.3.4-glibc-2.3.2”

TC_ARCH

architecture; for example “i386”

TC_SUBARCH

sub-architecture; for example “i686”

TC_CPU

CPU type (optional)

Examples:

[sbox-HOST: ~/sb-toolchains] > make TC_SOURCE=gcc/glibc \
TC_NAME=armv3l-gcc-3.3.4-glibc-2.3.2 TC_ARCH=arm TC_SUBARCH=armv3l TC_CPU=arm7

[sbox-HOST: ~/sb-toolchains] > cat my-compiler.config
TC_SOURCE = gcc/glibc

5

Chapter 3. Building custom toolchains

TC_NAME = arm-gcc-3.3.4-glibc-2.3.2
TC_ARCH = arm
TC_SUBARCH = arm
[sbox-HOST: ~/sb-toolchains] > make TOOLCHAIN=my-compiler.config

3.4. Changing source packages

Before changing the source package versions, test building the toolchains with the default configuration
to see that the Scratchbox environment works properly.

The glibc and uClibc sources are fetched in different ways. Glibc toolchain build uses a version file for
managing the package versions. Each package is downloaded separately from the download site that is
defined bygar.conf.mk . (You can override the MASTER_SITES variable in the.gar-local.conf

file.)

The uClibc toolchain source version is defined in thegcc/uclibs/Makefile . The same file also
defines the sources download site.

The glibc toolchain packages can be updated with the following process:

1. Download the new source packages to thegcc/glibc/files directory. For example in Debian
you can use this command:

$ cd /scratchbox/users/username/home/username/sb-toolchain/gcc/glibc/files
$ apt-get source gcc-3.3

2. Update the new package names inversions file.

$ /scratchbox/login
[sbox-HOST: ~] > cd sb-toolchains/gcc/glibc
[sbox-HOST: ~/sb-toolchains/gcc/glibc] > vi versions

3. Generate MD5 checksums of the new packages.

[sbox-HOST: ~/sb-toolchains/gcc/glibc] > make makesums

4. Test that all used patches get written properly.

5. Compile and test the new toolchain.

3.5. Building binary packages

The toolchains can be packaged outside or inside Scratchbox. You can create tarballs and Debian
packages inside Scratchbox, but if you want to create RPMs you need therpmbuild command which is

6

Chapter 3. Building custom toolchains

not included in Scratchbox. If you are using a Debian GNU/Linux system, you can get rpmbuild from the
“rpm” Debian package.

You can create all three package types of the default toolchains using thebuild script:

$ cd /scratchbox/users/username/home/username/sb-toolchains/
$./build --package

Custom toolchains are packaged using thepackages, tarball , deband/orrpm targets ofMakefile .
This time the following options are needed:

TC_NAME

compiler name (seeSection 3.3)

TC_PACKAGE

name of the binary package; for example “scratchbox-toolchain-i686-gcc3.3-glibc2.3”

TC_REPLACE

name of a package this new package replaces (optional)

Examples:

[sbox-HOST: ~/sb-toolchains] > make tarball deb \
TC_NAME=armv3l-gcc-3.3.4-glibc-2.3.2 \
TC_PACKAGE=scratchbox-toolchain-armv3l-gcc3.3-glibc2.3

$ cat my-compiler.config
TC_SOURCE = gcc/glibc
TC_NAME = arm-gcc-3.3.4-glibc-2.3.2
TC_ARCH = arm
TC_SUBARCH = arm
TC_PACKAGE = scratchbox-toolchain-arm-gcc3.3-glibc2.3
TC_REPLACE = scratchbox-toolchain-arm-glibc
$ make packages TOOLCHAIN=my-compiler.config

7

Chapter 4. Testing toolchains

4.1. Initial tests

All created compilers should be at least tested to compile, link and run a simple test program. The test
program should be tested to link both statically and dynamically. These tests should be done with both a
C and a C++ program.

Thesb-toolchains/test_tools/test_scripts/init_tests.sh script can be used for these
initial tests.

4.2. Regression tests

These tests are a collection of test for the C and C++ frontends of gcc. The tests can be found in gcc’s
directory gcc-VERSION/gcc/testsuite.

The result of running the testsuite are various *.sum and *.log files in the testsuite subdirectories. The
*.log files contain a detailed log of the compiler invocations and the corresponding results, the *.sum
files summarise the results. These summaries contain status codes for all tests:

• PASS: the test passed as expected

• XPASS: the test unexpectedly passed

• FAIL: the test unexpectedly failed

• XFAIL: the test failed as expected

• UNSUPPORTED: the test is not supported on this platform

• ERROR: the testsuite detected an error

• WARNING: the testsuite detected a possible problem

The Scratchbox toolchains should be tested with these tests. These tests can be run with
sb-toolchains/test_tools/test_scripts/reg_tests.sh or manually as described inGCC
Testing[5].

Runnig the gcc testsuite requires DejaGnu and Expect host tools. These can be compiled runningmake
install in thesb-toolchains/test_tools/dejagnu/ directory. This will also build Expect.
Remember that these are host tools so they have to be compiled with the HOST target. You also need to
change the permissions of the/scratchbox/tools directory.

chown -R username:groupname /scratchbox/tools/

8

Chapter 4. Testing toolchains

9

References
[1] Scratchbox download page (http://scratchbox.org/download/).

[2] Installing Scratchbox (http://scratchbox.org/documentation/docbook/installdoc.html), Valtteri
Rahkonen.

[3] GAR Architecture (http://www.lnx-bbc.org/garchitecture.html).

[4] Scratchbox development team contacts (http://scratchbox.org/contact/).

[5] GCC Testing (http://gcc.gnu.org/install/test.html).

10

