Using the GNU Compiler Collection

For ccc version 4.2.1

Richard M. Stallman and the Gcc Developer Community

Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@gnu.org
Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (©) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction e v v v v oo vvve e e e et i eeeenoooenoeeaossns 1
1 Programming Languages Supported by GCC 3
2 Language Standards Supported by GCC D
3 GCC Command Options v e e eveeeeoeeeeooccsoocesss 7
4 C Implementation-defined behavior + . oo vveeeeeeees.. 217
5 Extensions to the C Language Family................ 225
6 Extensions to the C+4 Languagevoeeeeeeeenann. 469
7 GNU Objective-C runtime features.cceeveeeon.. 479
8 Binary Compatibility « « o v oo v v v i i ennneennnnn 485
9 gcov—a Test Coverage Programccevveeenn.. 489
10 Known Causes of Trouble with GCC 497
11 Reporting BugsS e e v v v v v vttt vt eeonnneeeeeonns 515
12 How To Get Help with GCC . . . o v v v e e v e oo e e e e vvnnn 517
13 Contributing to GCC Development « .« oo veeeeeeeeea.. 519
Funding Free Softwarec0veveiieennn. 521
The GNU Project and GNU/LINUX 4 v o v v v v v v v e vvevennnn 523
GNU GENERAL PUBLICLICENSE . . o v v e et v v e e e venn 525
GNU Free Documentation [icense « o o o oo oo v vveeesssnns 531
Contributors to GCC . v v v v i v e ittt eseeeenonns 539
Option INdeX e e e e v oo v e v vveeereeesoooooooooooosas 555

Keyword Index v oo v oo oo et ittt eeeeeeennnnnnns 569

i

Using the GNU Compiler Collection (GCC)

Table of Contents

Introductiono i it i eeeesenennns 1

1 Programming Languages Supported by GCC

2 Language Standards Supported by GCC 5

3 GCC Command Optionsu... 7
3.1 Option SUMMATYttt e 7
3.2 Options Controlling the Kind of Output 18
3.3 Compiling C++ Programs 21
3.4 Options Controlling C Dialect 22
3.5 Options Controlling C+4 Dialect............................ 26
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 33
3.7 Options to Control Diagnostic Messages Formatting........... 38
3.8 Options to Request or Suppress Warnings 38
3.9 Options for Debugging Your Program or GCC................ 56
3.10 Options That Control Optimization 69
3.11 Options Controlling the Preprocessor 100
3.12 Passing Options to the Assembler 109
3.13 Options for Linking i 109
3.14 Options for Directory Search.............................. 112
3.15 Specifying subprocesses and the switches to pass to them.... 114
3.16 Specifying Target Machine and Compiler Version 121
3.17 Hardware Models and Configurations...................... 122

3.17.1 ARC Options ... 122
3.17.2 ARM Optionsoouuiie e 122
3.17.3 AVR Options.t 127
3.17.4 Blackfin Options. ... i 127
3.17.5 CRISOptions....... ..o, 128
3.17.6 CRX Optionso i, 130
3.17.7 Darwin Options 130
3.17.8 DEC Alpha Optionsooo ... 134
3.17.9 DEC Alpha/VMS Optionscovviieeeann... 138
3.17.10 FRV Options. ... 138
3.17.11 GNU/Linux Options............ccooviiiinennnino... 142
3.17.12 H8/300 Optionso, 142
3.17.13 HPPA Optionsoooiii i 143
3.17.14 Intel 386 and AMD x86-64 Options 146
31715 TA-64 Options. 154
3.17.16 M32C Options ..o 157

3.17.17 M32R/D Options. ...t .. 158

iii

v

Using the GNU Compiler Collection (GCC)

3.17.18 M680x0 Options.covveinieii i 159
3.17.19 M68hclx Options.ovviun i 164
3.17.20 MCore Options. oo 165
3.17.21 MIPS Options. ... 165
3.17.22 MMIX Options.couii i 172
3.17.23 MNI0300 Optionsonerei it 173
31724 MT Options. ..ot 174
3.17.25 PDP-11 Options.covuini e 174
3.17.26 PowerPC Options, 176
3.17.27 IBM RS/6000 and PowerPC Options................. 176
3.17.28 S/390 and zSeries Options................coovina... 186
3.17.29 Score Optionsooeiini i 189
3.17.30 SH Optionst 190
3.17.31 SPARC Options ..., 193
3.17.32 Options for System V......, 197
3.17.33 TMS320C3x/C4x Options............oooiuiiiin. .. 197
3.17.34 V850 Options ... 199
3.17.35 VAX Options ... 201
3.17.36 VxWorks Options ..., 201
3.17.37 x86-64 Optionscournii i 201
3.17.38 Xstormyl6 Options. ..., 201
3.17.39 Xtensa Options.ot 201
3.17.40 zSeries Options.oovitin e 203
3.18 Options for Code Generation Conventions.................. 203
3.19 Environment Variables Affecting GCC..................... 210
3.20 Using Precompiled Headers 212
3.21 Running Protoize i 214
C Implementation-defined behavior....... 217
4.1 Translation 217
4.2 Environment..............oi i 217
4.3 Tdentifiers i 217
4.4 Characters.ot 218
4.5 Integerso o 218
4.6 Floating point i 219
4.7 Arraysand pointers ... 220
4.8 Hints. ..ot 221
4.9 Structures, unions, enumerations, and bit-fields.............. 221
410 Qualifiers. 222
411 Declarators 222
412 Statements ... 222
4.13 Preprocessing directives 222
4.14 Library functions........... .. . o i 223
4.15 Architecture 223
4.16 Locale-specific behavior............, 223

5 Extensions to the C Language Family..... 225

5.1 Statements and Declarations in Expressions 225
5.2 Locally Declared Labels 226
5.3 Labelsas Values o i 227
54 Nested Functions. 228
5.5 Constructing Function Calls............... 230
5.6 Referring to a Type with typeof 231
5.7 Conditionals with Omitted Operands 232
5.8 Double-Word Integers i 233
5.9 Complex Numbers i 233
5.10 Decimal Floating Types 234
511 Hex Floats. o 234
5.12 Arrays of Length Zero............ 234
5.13 Structures With No Members 236
5.14 Arrays of Variable Length 236
5.15 Magcros with a Variable Number of Arguments. 237
5.16 Slightly Looser Rules for Escaped Newlines................. 238
5.17 Non-Lvalue Arrays May Have Subscripts................... 238
5.18 Arithmetic on void- and Function-Pointers................. 238
5.19 Non-Constant Initializers 238
5.20 Compound Literals........o i 238
5.21 Designated Initializers............ 239
522 Case Ranges....... ... i 241
5.23 Cast toa Union Type 241
5.24 Mixed Declarations and Code 241
5.25 Declaring Attributes of Functions.......................... 242
5.26 Attribute Syntax............ 256
5.27 Prototypes and Old-Style Function Definitions.............. 259
5.28 C++ Style Commentscoieiiiinn . 260
5.29 Dollar Signs in Identifier Names........................... 260
5.30 The Character inConstants.......................... 260
5.31 Inquiring on Alignment of Types or Variables 261
5.32 Specifying Attributes of Variables 261

5.32.1 M32R/D Variable Attributes 265

5.32.2 386 Variable Attributes........... 266

5.32.3 PowerPC Variable Attributes......................... 267

5.32.4 Xstormyl6 Variable Attributes 268
5.33 Specifying Attributes of Types............................ 268

5.33.1 ARM Type Attributes 272

5.33.2 386 Type Attributes........... ... i 272

5.33.3 PowerPC Type Attributes............................ 273
5.34 An Inline Function is As Fast Asa Macro.................. 273
5.35 Assembler Instructions with C Expression Operands 275

5.35.1 Sizeofanasm........... 280

5.35.2 1386 floating point asm operands...................... 280
5.36 Constraints for asm Operands 281

5.36.1 Simple Constraints i 281

5.36.2 Multiple Alternative Constraints...................... 283

vi

Using the GNU Compiler Collection (GCC)

5.36.3 Constraint Modifier Characters....................... 284
5.36.4 Constraints for Particular Machines................... 285
5.37 Controlling Names Used in Assembler Code 299
5.38 Variables in Specified Registers......................... ... 300
5.38.1 Defining Global Register Variables 300
5.38.2 Specifying Registers for Local Variables 302
5.39 Alternate Keywordso i 302
5.40 Incomplete enum Types........ccoviniiii ... 303
5.41 Function Names as Strings. ..., 303
5.42 Getting the Return or Frame Address of a Function......... 304
5.43 Using vector instructions through built-in functions......... 305
544 Offsetof ... 306
5.45 Built-in functions for atomic memory access................ 306
5.46 Object Size Checking Builtins.................. 308
5.47 Other built-in functions provided by GCC.................. 310
5.48 Built-in Functions Specific to Particular Target Machines. ... 316
5.48.1 Alpha Built-in Functions.......................... ... 316
5.48.2 ARM iWMMX4t Built-in Functions.................... 317
5.48.3 ARM NEON Intrinsics. 320
5.48.3.1 Addition 320
5.48.3.2 Multiplication i 324
5.48.3.3 Multiply-accumulate 326
5.48.3.4 Multiply-subtract L 327
5.48.3.50 Subtraction........... 328
5.48.3.6 Comparison (equal-to)........................... 331
5.48.3.7 Comparison (greater-than-or-equal-to) 332
5.48.3.8 Comparison (less-than-or-equal-to) 333
5.48.3.9 Comparison (greater-than)....................... 333
5.48.3.10 Comparison (less-than)......................... 334
5.48.3.11 Comparison (absolute greater-than-or-equal-to)... 335
5.48.3.12 Comparison (absolute less-than-or-equal-to) 335
5.48.3.13 Comparison (absolute greater-than) 335
5.48.3.14 Comparison (absolute less-than)................. 335
5.48.3.15 Test bitso 335
5.48.3.16 Absolute difference............... 336
5.48.3.17 Absolute difference and accumulate.............. 337
5.48.3.18 Maximum ... oovvnt 338
5.48.3.19 Minimum. 339
5.48.3.20 Pairwise add............l 339
5.48.3.21 Pairwise add, single_opcode widen and accumulate
.. 340
5.48.3.22 Folding maximum........... 341
5.48.3.23 Folding minimum 341
5.48.3.24 Reciprocal stepo 342
5.48.3.25 Vector shift left 342
5.48.3.26 Vector shift left by constant..................... 345
5.48.3.27 Vector shift right by constant 347

5.48.3.28 Vector shift right by constant and accumulate. ... 350

5.48.3.29
5.48.3.30
5.48.3.31
5.48.3.32
0.48.3.33
5.48.3.34
5.48.3.35
5.48.3.36
0.48.3.37
0.48.3.38
5.48.3.39
5.48.3.40
5.48.3.41
5.48.3.42
0.48.3.43
5.48.3.44
5.48.3.45
5.48.3.46
0.48.3.47
0.48.3.48
5.48.3.49
5.48.3.50
5.48.3.51
0.48.3.52
9.48.3.53
5.48.3.54
5.48.3.55
5.48.3.56
0.48.3.57
9.48.3.58

0.48.3.60
0.48.3.61
5.48.3.62
5.48.3.63
5.48.3.64
0.48.3.65
5.48.3.66
5.48.3.67
5.48.3.68
0.48.3.69
0.48.3.70
5.48.3.71
5.48.3.72
5.48.3.73
5.48.3.74

Vector shift right and insert..................... 352
Vector shift left and insert...................... 353
Absolute value....... i 354
Negationoo .. 355
Bitwise not i 355
Count leading sign bits......................... 356
Count leading zeros, 356
Count number of set bits 357
Reciprocal estimate 357
Reciprocal square-root estimate 358
Get lanes from a vector......................... 358
Set lanes ina vector........... ..., 359
Create vector from literal bit pattern............ 360
Set all lanes to the same value 360
Combining vectors 363
Splitting vectorso i 364
Conversionsui et 365
Move, single_opcode narrowing.................. 365
Move, single_opcode long 366
Table lookup o 366
Extended table lookup 367
Multiply, lane. i 368
Long multiply, lane............................. 368
Saturating doubling long multiply, lane 368
Saturating doubling multiply high, lane.......... 369
Multiply-accumulate, lane 369
Multiply-subtract, lane 370
Vector multiply by scalar....................... 371
Vector long multiply by scalar 371
Vector saturating doubling long multiply by scalar

... 371
Vector saturating doubling multiply high by scalar

... 371
Vector multiply-accumulate by scalar............ 372
Vector multiply-subtract by scalar............... 373
Vector extract ..., 373
Reverse elements.............. 375
Bit selection.............. .o 376
Transpose elements............................. 378
Zipelements......... ... 379
Unzipelements 380
Element/structure loads, VLDI1 variants 380
Element /structure stores, VST1 variants......... 384
Element /structure loads, VLD2 variants 386
Element /structure stores, VST2 variants......... 388
Element /structure loads, VLD3 variants 390
Element /structure stores, VST3 variants......... 392

Element /structure loads, VLD4 variants 394

Vil

viii

Using the GNU Compiler Collection (GCC)

5.48.3.75 Element/structure stores, VST4 variants......... 396
5.48.3.76 Logical operations (AND) 398
5.48.3.77 Logical operations (OR) 398
5.48.3.78 Logical operations (exclusive OR) 399
5.48.3.79 Logical operations (AND-NOT) 400
5.48.3.80 Logical operations (OR-NOT)................... 401
5.48.3.81 Reinterpret casts............. oL 402
5.48.4 Blackfin Built-in Functions 407
5.48.5 FR-V Built-in Functions 408
548.5.1 Argument Types............ooiiiiiiiiinno .. 408
5.48.5.2 Directly-mapped Integer Functions 408
5.48.5.3 Directly-mapped Media Functions................ 409
5.48.5.4 Raw read/write Functions 410
5.48.5.5 Other Built-in Functions......................... 411
5.48.6 X86 Built-in Functions............................... 411
5.48.7 MIPS DSP Built-in Functions 418
5.48.8 MIPS Paired-Single Support.......................... 422
5.48.8.1 Paired-Single Arithmetic......................... 423
5.48.8.2 Paired-Single Built-in Functions.................. 423
5.48.8.3 MIPS-3D Built-in Functions 424
5.48.9 PowerPC AltiVec Built-in Functions 427
5.48.10 SPARC VIS Built-in Functions 459
5.49 Format Checks Specific to Particular Target Machines 459
5.49.1 Solaris Format Checks 459
5.50 Pragmas Accepted by GCC......... 460
5.50.1 ARM Pragmas ..., 460
5.50.2 M32C Pragmas. ...t 460
5.50.3 RS/6000 and PowerPC Pragmas...................... 460
0.50.4 Darwin Pragmas.............. 460
5.50.5 Solaris Pragmas L 461
5.50.6 Symbol-Renaming Pragmas 461
5.50.7 Structure-Packing Pragmas.................. 462
5.50.8 Weak Pragmas L. 462
5.50.9 Diagnostic Pragmas............ 463
5.50.10 Visibility Pragmas................ 463
5.51 Unnamed struct/union fields within structs/unions 464
5.52 Thread-Local Storage........... 464

5.52.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage 465
5.52.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage ... 466

6 Extensions to the C++4 Language......... 469
6.1 When is a Volatile Object Accessed?........................ 469
6.2 Restricting Pointer Aliasing 469
6.3 Vague Linkage 470
6.4 #pragma interface and implementation 471
6.5 Where’s the Template? i ... 473
6.6 Extracting the function pointer from a bound pointer to member

function.o 475
6.7 CH+-Specific Variable, Function, and Type Attributes....... 475
6.8 Namespace Association i 476
6.9 Java Exceptions.......... ... i 476
6.10 Deprecated Features........ ..., 477
6.11 Backwards Compatibility 478

7 GNU Objective-C runtime features....... 479

7.1 +load: Executing code before main......................... 479

7.1.1 What you can and what you cannot do in +load........ 480
7.2 Typeencodingot 481
7.3 Garbage Collection..............c i 482
7.4 Constant string objects............... ... L. 483
7.5 compatibility_alias 484

8 Binary Compatibility 485

9 gcov—a Test Coverage Program 489
9.1 Introduction to gCov i 489
9.2 Invoking gCov......... ..o 489
9.3 Using gcov with GCC Optimization 494
9.4 Brief description of gcov datafiles.......................... 495
9.5 Data file relocation to support cross-profiling................ 495

10 Known Causes of Trouble with GCC..... 497
10.1 Actual Bugs We Haven'’t Fixed Yet........................ 497
10.2 Cross-Compiler Problems 497
10.3 Interoperationueiioiniiin i, 497
10.4 Incompatibilities of GCC 499
10.5 Fixed Header Files i 502
10.6 Standard Libraries i 503
10.7 Disappointments and Misunderstandings................... 503
10.8 Common Misunderstandings with GNU C++ 504

10.8.1 Declare and Define Static Members 504
10.8.2 Name lookup, templates, and accessing members of base

ClaSSes . oot 505

10.8.3 Temporaries May Vanish Before You Expect........... 506

10.8.4 TImplicit Copy-Assignment for Virtual Bases 507

10.9 Caveats of using protoize...........cccoiiiiii.. 508

10.10 Certain Changes We Don’t Want to Make................. 509

1X

X Using the GNU Compiler Collection (GCC)

10.11 Warning Messages and Error Messages.................... 512
11 Reporting Bugscccevuuun.. 515
11.1 Have You Found a Bug?........, 515
11.2 How and where to Report Bugs 515
12 How To Get Help with GCC............ 517
13 Contributing to GCC Development...... 519
Funding Free Software 521
The GNU Project and GNU/Linux 523
GNU GENERAL PUBLIC LICENSE........ 525
Preamble.o 525
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION 526
Appendix: How to Apply These Terms to Your New Programs 530
GNU Free Documentation License 531
ADDENDUM: How to use this License for your documents. 537
Contributors to GCC 539
OptionIndexcoiviiiiiineinnnnnnnn 555

Keyword Index, 569

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and in-
compatibilities, and how to report bugs. It corresponds to the compilers version 4.2.1. The
internals of the GNU compilers, including how to port them to new targets and some in-
formation about how to write front ends for new languages, are documented in a separate
manual. See section “Introduction” in GNU Compiler Collection (GCC) Internals.

Using the GNU Compiler Collection (GCC)

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, and Ada.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Using the GNU Compiler Collection (GCC)

Chapter 2: Language Standards Supported by GCC)

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

GCC supports three versions of the C standard, although support for the most recent
version is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/TEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c89’ or
‘~std=1809899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 22.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘~std=1509899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/gcc-4.2/c99status.html for details. To select this standard, use
‘~std=c99’ or ‘-std=1509899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in two Technical Corrigenda published
in 2001 and 2004. GCC does not support the uncorrected version.

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 5 [Extensions to the C Language Family], page 225.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-std=gnu89’ (for C89 with GNU extensions) or ‘-std=gnu99’ (for C99 with
GNU extensions). The default, if no C language dialect options are given, is ‘~std=gnu89’;
this will change to ‘-std=gnu99’ in some future release when the C99 support is complete.
Some features that are part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <is0646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In ad-
dition, complex types, added in C99, are not required for freestanding implementations. The

http://gcc.gnu.org/gcc-4.2/c99status.html

6 Using the GNU Compiler Collection (GCC)

standard also defines two environments for programs, a freestanding environment, required
of all implementations and which may not have library facilities beyond those required of
freestanding implementations, where the handling of program startup and termination are
implementation-defined, and a hosted environment, which is not required, in which all the
library facilities are provided and startup is through a function int main (void) or int
main (int, char *[]). An OS kernel would be a freestanding environment; a program
using the facilities of an operating system would normally be in a hosted implementation.

GCCO aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~-ffreestanding’; it will then define __STDC_HOSTED__ to 0 and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 22.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 10.6 [Standard Libraries|, page 503.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C or Objective-C++. The most author-
itative manual is “Object-Oriented Programming and the Objective-C Language”, available
at a number of web sites:

e http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ is
a recent (and periodically updated) version;
e http://www.toodarkpark.org/computers/objc/ is an older example;

e http://www.gnustep.org and http://gcc.gnu.org/readings.html have additional
useful information.

There is no standard for treelang, which is a sample language front end for GCC. Its only
purpose is as a sample for people wishing to write a new language for GCC. The language
is documented in ‘gcc/treelang/treelang.texi’ which can be turned into info or H'TML
format.

See section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See section “Standards” in The GNU Fortran Compiler, for details of standards supported
by GNU Fortran.

See section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.

http://gcc.gnu.org/readings.html
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
http://www.toodarkpark.org/computers/objc/
http://www.gnustep.org
http://gcc.gnu.org/readings.html

Chapter 3: GCC Command Options 7

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=¢’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 21, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very
different from ‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘~L’ more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W—for example,

‘~fmove-loop-invariants’, ‘~Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘~ffoo’ would be ‘~fno-foo’. This manual documents
only one of these two forms, whichever one is not the default.

See [Option Index], page 555, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 18.

-c¢ -8 -E -o file -combine -pipe -pass-exit-codes
-x language -v -### --help --target-help --version Q@file

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 22.
-ansi -std=standard -fgnu89-inline
—aux-info filename
-fno-asm -fno-builtin -fno-builtin-function
-fhosted -ffreestanding -fopenmp -fms-extensions
-trigraphs -no-integrated-cpp -traditional -traditional-cpp
-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char

C++ Language Options)
See Section 3.5 [Options Controlling C++ Dialect], page 26.

8 Using the GNU Compiler Collection (GCC)

-fabi-version=n -fno-access-control -fcheck-new
-fconserve-space -ffriend-injection
-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fno-operator-names
-fno-optional-diags -fpermissive

-frepo -fno-rtti -fstats -ftemplate-depth-n
-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -fvisibility-inlines-hidden
-Wabi -Wctor-dtor-privacy

-Wnon-virtual-dtor -Wreorder

-Weffc++ -Wno-deprecated -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions
-Wsign-promo

Objective-C and Objective-C++ Language Optlions
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 33.

-fconstant-string-class=class-name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions

-fobjc-gc
-freplace-objc-classes
-fzero-link

-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 38.

-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]
-fdiagnostics—show-option

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 38.

-fsyntax-only -pedantic -pedantic-errors

-w -Wextra -Wall -Waddress -Waggregate-return -Wno-attributes
-Wc++-compat -Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment
-Wconversion -Wno-deprecated-declarations
-Wdisabled-optimization -Wno-div-by-zero -Wno-endif-labels
-Werror -Werror=* -Werror-implicit-function-declaration
-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2
-Wno-format-extra-args -Wformat-nonliteral

-Wformat-security -Wformat-y2k

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Wimport -Wno-import -Winit-self -Winline
-Wno-int-to-pointer-cast

Chapter 3: GCC Command Options

-Wno-invalid-offsetof -Winvalid-pch

-Wlarger-than-len -Wunsafe-loop-optimizations -Wlong-long
-Wmain -Wmissing-braces -Wmissing-field-initializers
-Wmissing-format-attribute -Wmissing-include-dirs
-Wmissing-noreturn

-Wno-multichar -Wnonnull -Wno-overflow
-Woverlength-strings -Wpacked -Wpadded

-Wparentheses -Wpointer-arith -Wno-pointer-to-int-cast
-Wno-poison-system-directories

-Wredundant-decls

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wstack-protector

-Wstrict-aliasing -Wstrict-aliasing=2

-Wstrict-overflow -Wstrict-overflow=n

-Wswitch -Wswitch-default -Wswitch-enum

-Wsystem-headers -Wtrigraphs -Wundef -Wuninitialized
-Wunknown-pragmas -Wno-pragmas -Wunreachable-code
-Wunused -Wunused-function -Wunused-label -Wunused-parameter
-Wunused-value -Wunused-variable -Wvariadic-macros
-Wvolatile-register-var -Wwrite-strings

C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs -Wold-style-definition
-Wstrict-prototypes -Wtraditional
-Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 56.
-dletters -dumpspecs -dumpmachine -dumpversion
-fdump-noaddr -fdump-unnumbered -fdump-translation-unit|[-n]
-fdump-class-hierarchy[-n]
-fdump-ipa-all -fdump-ipa-cgraph
-fdump-tree-all
-fdump-tree-original[-n]
-fdump-tree-optimized|-n]
-fdump-tree-inlined[-n]
-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias
-fdump-tree-ch
-fdump-tree-ssa[-n| -fdump-tree-pre[-n]
-fdump-tree-ccp[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw] -fdump-tree-mudflap[-n]
-fdump-tree-dom[-n]
-fdump-tree-dse[-n]
-fdump-tree-phiopt|-n]
-fdump-tree-foruprop[-n]
-fdump-tree-copyrename[-n]
-fdump-tree-nrv -fdump-tree-vect
-fdump-tree-sink
-fdump-tree-sra[-n]|
-fdump-tree-salias
-fdump-tree-fre[-n]
-fdump-tree-vrp[-n]
-ftree-vectorizer-verbose=n
-fdump-tree-storeccp[-n]
-feliminate-dwarf2-dups -feliminate-unused-debug-types
-feliminate-unused-debug-symbols -femit-class-debug-always
-fmem-report -fprofile-arcs
-frandom-seed=string -fsched-verbose=n

10 Using the GNU Compiler Collection (GCC)

-ftest-coverage -ftime-report -fvar-tracking

-g —glevel -gcoff -gdwarf-2

-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+
-fdebug-prefix-map=old=new

-p -pg -print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib
-print-prog-name=program -print-search-dirs -Q
-print-sysroot-headers-suffix

-save-temps -time

Optimization Options
See Section 3.10 [Options that Control Optimization|, page 69.

-falign-arrays -falign-functions=n -falign-jumps=n
-falign-labels=n -falign-loops=n

-fbounds-check -fmudflap -fmudflapth -fmudflapir
-fbranch-probabilities -fprofile-values -fvpt -fbranch-target-load-optimize i
-fbranch-target-load-optimize2 -fbtr-bb-exclusive

-fcaller-saves -fcprop-registers -fcse-follow-jumps
-fcse-skip-blocks -fcx-limited-range -fdata-sections
-fdelayed-branch -fdelete-null-pointer-checks -fearly-inlining
-fexpensive-optimizations -ffast-math -ffloat-store

-fforce-addr —-ffunction-sections

-fgcse -fgecse-1m -fgecse-sm -fgecse-las -fgcse-after-reload
-fcrossjumping -fif-conversion -fif-conversion2

-finline-functions -finline-functions-called-once

-finline-limit=n -fkeep-inline-functions

-fkeep-static-consts -fmerge-constants -fmerge-all-constants
-fmodulo-sched -fno-branch-count-reg

-fno-default-inline -fno-defer-pop -fmove-loop-invariants
-fno-function-cse -fno-guess-branch-probability

-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-funsafe-math-optimizations -funsafe-loop-optimizations -ffinite-math-only [}
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-register-move
-foptimize-sibling-calls -fprefetch-loop-arrays

-fprofile-generate -fprofile-use

-fregmove -frename-registers

-freorder-blocks -freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop

-frounding-math -frtl-abstract-sequences

-fschedule-insns -fschedule-insns2

-fno-sched-interblock -fno-sched-spec -fsched-spec-load
-fsched-spec-load-dangerous

-fsched-stalled-insns=n -fsched-stalled-insns-dep=n
-fsched2-use-superblocks

-fsched2-use-traces -fsee -freschedule-modulo-scheduled-loops
-fsection-anchors -fsignaling-nans -fsingle-precision-constant
-fstack-protector -fstack-protector-all

-fstrict-aliasing -fstrict-overflow -ftracer -fthread-jumps
-funroll-all-loops —-funroll-loops -fpeel-loops
-fsplit-ivs-in-unroller -funswitch-loops
-fvariable-expansion-in-unroller

-ftree-pre -ftree-ccp -ftree-dce -ftree-loop-optimize
-ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -fivopts
-ftree-dominator-opts -ftree-dse -ftree-copyrename -ftree-sink
-ftree-ch -ftree-sra -ftree-ter -ftree-lrs -ftree-fre -ftree-vectorize
-ftree-vect-loop-version -ftree-salias -fipa-pta -fweb

Chapter 3: GCC Command Options

11

-ftree-copy-prop -ftree-store-ccp -ftree-store-copy-prop -fwhole-program

--param name=value -0 -00 -01 -02 -03 -Os

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor|, page 100.

-Aquestion=answer
-A-question[=answer]|

-C -dD -dI -dM -dN

-Dmacro[=defn] -E -H

-idirafter dir

-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-imultilib dir -isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc
-P -fworking-directory -remap
-trigraphs -undef -Umacro -Wp,option
-Xpreprocessor option

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 109.

-Wa,option -Xassembler option

Linker Options
See Section 3.13 [Options for Linking], page 109.
object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
-s -static -static-libgcc -shared -shared-libgcc -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 112.

-Bprefix -Idir -iquotedir -Ldir -specs=file -I- --sysroot=dir

Target Options
See Section 3.16 [Target Options], page 121.

-V version -b machine

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations|, page 122.
ARC Options
-EB -EL
-mmangle-cpu -mcpu=cpu -mtext=text-section
-mdata=data-section -mrodata=readonly-data-section
ARM Options
-mapcs-frame -mno-apcs-frame
-mabi=name
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=name -msoft-float -mhard-float -mfpe
-mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mmarvell-div

12

Using the GNU Compiler Collection (GCC)

-mstructure-size-boundary=n

-mabort-on-noreturn

-mlong-calls -mno-long-calls

-msingle-pic-base -mno-single-pic-base
-mpic-register=reg

-mnop-fun-dllimport

-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns
-mpoke-function-name

-mthumb -marm

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name

-mlow-irqg-latency

AVR Options

-mmcu=mcu -msize -minit-stack=n -mno-interrupts
-mcall-prologues -mno-tablejump -mtiny-stack -mint8

Blackfin Options

-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer

-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mid-shared-library

-mno-id-shared-library -mshared-library-id=n

-mlong-calls -mno-long-calls

CRIS Options

-mcpu=cpu -march=cpu -mtune=cpu

-mmax-stack-frame=n -melinux-stacksize=n

-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CRX Options
-mmac -mpush-args
Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches

Chapter 3: GCC Command Options 13

-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mkernel -mone-byte-bool
DEC Alpha Options
-mno-fp-regs -msoft-float -malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time
DEC Alpha/VMS Options
-mvms-return-codes
FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=cpu
GNU/Linuxz Options
-muclibc
H8/300 Options
-mrelax -mh -ms -mn -mint32 -malign-300

HPPA Options

-march=architecture-type
-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-ld -mhp-1d
-mfixed-range=register-range
-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float
-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

1386 and z86-64 Options
-mtune=cpu-type -march=cpu-type
-mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib

Using the GNU Compiler Collection (GCC)

-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num
-mmmx -msse -msse2 -msse3 -m3dnow
-mthreads -mno-align-stringops -minline-all-stringops
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=num -msseregparm
-mstackrealign
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model
-m32 -m64 -mlarge-data-threshold=num

IA-64 Options
-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -mno-sdata
-mconstant-gp -mauto-pic -minline-float-divide-min-latency
-minline-float-divide-max-throughput
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-dwarf2-asm -mearly-stop-bits
-mfixed-range=register-range -mtls-size=tls-size
-mtune=cpu-type -mt -pthread -milp32 -mlp64
-mno-sched-br-data-spec -msched-ar-data-spec -mno-sched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-ldc -mno-sched-control-ldc -mno-sched-spec-verbose
-mno-sched-prefer-non-data-spec-insns
-mno-sched-prefer-non-control-spec-insns
-mno-sched-count-spec-in-critical-path

M32R/D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

M32C Oplions
-mcpu=cpu -msim -memregs=number
M680z0 Options

-march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40 -m68020-60 -
m68030 -m68040
-m68060 -mcpu3d2 -m5200 -m5206e -mb28x -mb307 -mb5407
-mcfvde -mbitfield -mno-bitfield -mc68000 -mc68020
-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort
-mno-short -mhard-float -m68881 -msoft-float -mpcrel
-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
M68hclx Options
-m6811 -m6812 -m68hcll -m68hcl2 -m68hcs12
-mauto-incdec -minmax -mlong-calls -mshort
-msoft-reg-count=count
MCore Options
-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields

Chapter 3: GCC Command Options

-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MIPS Options

-EL -EB -march=arch -mtune=arch
-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips64
-mipsl6 -mipsl6e -mno-mips16
-mabi=abi -mabicalls -mno-abicalls
-mshared -mno-shared -mxgot -mno-xgot -mgp32 -mgp64
-mfp32 -mfp64 -mhard-float -msoft-float
-msingle-float -mdouble-float -mdsp -mno-dsp -mdspr2 -mno-dspr2
-msmartmips -mno-smartmips
-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt
-mlong64 -mlong32 -msym32 -mno-sym32
-Gnum -membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks
-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp
-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-vr4120 -mno-fix-vr4120 -mfix-vr4130 -mno-fix-vr4130
-mfix-sbl -mno-fix-sbl
-mflush-func=func -mno-flush-func
-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions
-mvr4130-align -mno-vr4130-align
MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit
MN10300 Options
-mmult-bug -mno-mult-bug
-mam33 -mno-am33
-mam33-2 -mno-am33-2
-mreturn-pointer-on-do0
-mno-crt0 -mrelax

MT Options
-mno-crt0 -mbacc -msim
-march=cpu-type
PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -mi10
-mbcopy -mbcopy-builtin -mint32 -mno-int16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-msplit -mno-split -munix-asm -mdec-asm

PowerPC Options See RS/6000 and PowerPC Options.
RS/6000 and PowerPC Options

-mcpu=cpu-type
-mtune=cpu-type

15

16

Using the GNU Compiler Collection (GCC)

-mpower —mno-power -mpower2 —mno-power2

-mpowerpc -mpowerpc64 -mno-powerpc

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mfprnd -mno-fprnd
-mnew-mnemonics -mold-mnemonics

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mupdate -mno-update

-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd

-maix-struct-return -msvr4-struct-return

-mabi=abi-type -msecure-plt -mbss-plt

-misel -mno-isel

-misel=yes -misel=no

-mspe -mno-spe

-mspe=yes -mspe=no

-mvrsave -mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=opt -mvxworks -mwindiss -G num -pthread

S/390 and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mlong-double-64 -mlong-double-128
-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec —-mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard

Score Options

-meb -mel
-mnhwloop
-muls
—mmac
-mscoreb -mscorebu -mscore7 -mscore7d
SH Options
-ml -m2 -m2e -m3 -m3e
-m4-nofpu -mé4-single-only -mé4-single -mé
-m4a-nofpu -m4a-single-only -m4a-single -m4a -mdal
-mb-64media -mb5-64media-nofpu
-mb5-32media -m5-32media-nofpu
-mb-compact -mbS-compact-nofpu
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave

Chapter 3: GCC Command Options

-mieee -misize -mpadstruct -mspace
-mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name
-madjust-unroll -mindexed-addressing -mgettrcost=number -mpt-fixed
-minvalid-symbols
SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mimpure-text -mno-impure-text -mlittle-endian
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis -threads -pthreads -pthread
System V Options
-Qy -Qn -YP,paths -Ym,dir
TMS320C3z/Chz Options
-mcpu=cpu -mbig -msmall -mregparm -mmemparm
-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload
-mrpts=count -mrptb -mdb -mloop-unsigned
-mparallel-insns -mparallel-mpy -mpreserve-float
V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
—mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e1l
-mv850e
-mv850 -mbig-switch

VAX Options
-mg -mgnu -munix
VaWorks Options
-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now
286-64 Options See 1386 and x86-64 Options.
Xstormyl6 Options
-msim
Xtensa Options

-mconstl6 -mno-constl6

-mfused-madd -mno-fused-madd
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.
Code Generation Options
See Section 3.18 [Options for Code Generation Conventions|, page 203.

-fcall-saved-reg -fcall-used-reg
-ffixed-reg -fexceptions

17

18 Using the GNU Compiler Collection (GCC)

-fnon-call-exceptions -funwind-tables

-fasynchronous-unwind-tables

-finhibit-size-directive -finstrument-functions

-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE

-fno-jump-tables

-freg-struct-return -fshort-enums

-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check

-fstack-limit-register=reg -fstack-limit-symbol=sym

-fargument-alias -fargument-noalias

-fargument-noalias-global -fargument-noalias-anything -fleading-underscore -Ji
ftls-model=model

-ftrapv -fwrapv -fbounds-check

-fvisibility

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:
file.c C source code which must be preprocessed.
file.i C source code which should not be preprocessed.
file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

file.mi Objective-C source code which should not be preprocessed.

file.mm

file.M Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

file.mii Objective-C++ source code which should not be preprocessed.

file.h C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header.

file.cc

file.cp

file.cxx

file.cpp

file.CPP

file.c++

file.C C++ source code which must be preprocessed. Note that in ‘. cxx’, the last two

letters must both be literally ‘x’. Likewise, ¢.C’ refers to a literal capital C.

Chapter 3:

file.
file.

file.

file.
file.

file.
file.
file.

file.
file.
file.

file.
file.

file.
file.

file.

file.

file.

file.
file.

for
FOR

fpp
FPP

£90
£95

Fo0
F9b

ads

adb

s

S
SX

other

GCC Command Options 19

Objective-C++ source code which must be preprocessed.

Objective-C++ source code which should not be preprocessed.

C++ header file to be turned into a precompiled header.

Fixed form Fortran source code which should not be preprocessed.

Fixed form Fortran source code which must be preprocessed (with the tradi-
tional preprocessor).

Free form Fortran source code which should not be preprocessed.

Free form Fortran source code which must be preprocessed (with the traditional
preprocessor).

Ada source code file which contains a library unit declaration (a declaration of
a package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

Assembler code.

Assembler code which must be preprocessed.

An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language

Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

¢ c-header c-cpp-output

ct++ c++-header c++-cpp-output

objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp

ada

£95 f95-cpp-input

java

treelang

20 Using the GNU Compiler Collection (GCC)

-x none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the
compiler returns a non-success return code. If you specify ‘-pass-exit-codes’,
the gcc program will instead return with numerically highest error produced by
any phase that returned an error indication. The C, C++, and Fortran frontends
return 4, if an internal compiler error is encountered.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-¢’, ‘=8’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gce to do
nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix
f.e’, i fLe), ete., with Lo’
Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the
suffix ‘.¢’, ‘.17, etc., with ‘.g’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If ‘=0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source. suffix.gch’, and all preprocessed C source
on standard output.

-v Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

—### Like ‘-v’ except the commands are not executed and all command arguments
are quoted. This is useful for shell scripts to capture the driver-generated
command lines.

-pipe Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

Chapter 3: GCC Command Options 21

-combine

--help

If you are compiling multiple source files, this option tells the driver to pass
all the source files to the compiler at once (for those languages for which the
compiler can handle this). This will allow intermodule analysis (IMA) to be
performed by the compiler. Currently the only language for which this is sup-
ported is C. If you pass source files for multiple languages to the driver, using
this option, the driver will invoke the compiler(s) that support IMA once each,
passing each compiler all the source files appropriate for it. For those languages
that do not support IMA this option will be ignored, and the compiler will be
invoked once for each source file in that language. If you use this option in con-
junction with ‘-save-temps’, the compiler will generate multiple pre-processed
files (one for each source file), but only one (combined) ‘.o’ or ‘. s’ file.

Print (on the standard output) a description of the command line options un-
derstood by gcc. If the ‘~v’ option is also specified then ‘~-help’ will also be
passed on to the various processes invoked by gcc, so that they can display the
command line options they accept. If the ‘~Wextra’ option is also specified then
command line options which have no documentation associated with them will
also be displayed.

--target-help

--version

Print (on the standard output) a description of target specific command line
options for each tool.

Display the version number and copyrights of the invoked GCC.

%% %% This is file ‘.tex’, %% generated with the docstrip utility. %% %% The
original source files were: %% %% fileerr.dtx (with options: ‘return’) %% %%
This is a generated file. %% %% Copyright 1993 1994 1995 1996 1997 1998 1999
2000 2001 2002 2003 %% The LaTeX3 Project and any individual authors listed
elsewhere %% in this file. %% %% This file was generated from file(s) of the
Standard LaTeX ‘Tools Bundle’. %%
——— %% %% It may be distributed and/or modified under the %%
conditions of the LaTeX Project Public License, either version 1.3 %% of this li-
cense or (at your option) any later version. %% The latest version of this license
is in %% http://www.latex-project.org/lppl.txt %% and version 1.3 or later is
part of all distributions of LaTeX %% version 2003/12/01 or later. %% %%
This file may only be distributed together with a copy of the LaTeX %% ‘Tools
Bundle’. You may however distribute the LaTeX ‘Tools Bundle’ %% without
such generated files. %% %% The list of all files belonging to the LaTeX ‘Tools
Bundle’ is %% given in the file ‘manifest.txt’. %% \messageFile ignored \endin-
put %% %% End of file ‘.tex’. /home/jhakala/maemo/toolchain/arm/src/gce-
4.2 /gcc/../libiberty /at-file.texi

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, *.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’ or ‘.H’; and preprocessed C++ files use the

suffix ¢.ii’.

GCC recognizes files with these names and compiles them as C++ programs

22 Using the GNU Compiler Collection (GCC)

even if you call the compiler the same way as for compiling C programs (usually with the
name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and treats ‘.c’, ‘.h’ and ‘.1’ files as C++ source files instead of C source files unless *
is used, and automatically specifies linking against the C++ library. This program is also
useful when precompiling a C header file with a ‘.h’ extension for use in C++ compilations.
On many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 22, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 26, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, support all ISO C90 programs. In C++ mode, remove GNU exten-
sions that conflict with ISO C++.

This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢///’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-~ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘~ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected gratu-
itously. For that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.8
[Warning Options|, page 38.

The macro __STRICT_ANSI_

_ is predefined when the ‘-ansi’ option is used.

Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other
things.

Functions which would normally be built in but do not have semantics defined
by ISO C (such as alloca and ffs) are not built-in functions with ‘-ansi’ is
used. See Section 5.47 [Other built-in functions provided by GCC], page 310,
for details of the functions affected.

Chapter 3: GCC Command Options 23

-std= Determine the language standard. This option is currently only supported when
compiling C or C++. A value for this option must be provided; possible values
are

‘c89’
‘1509899:1990°
ISO C90 (same as ‘-ansi’).

‘1809899:199409’
ISO C90 as modified in amendment 1.

‘c99’

‘c9x’

‘1509899:1999’

‘1809899:199x’
ISO C99. Note that this standard is not yet fully supported;
see http://gcc.gnu.org/gcc-4.2/c99status . .html for more in-
formation. The names ‘c9x’ and ‘1509899:199x’ are deprecated.

‘gnu89’ Default, ISO C90 plus GNU extensions (including some C99 fea-
tures).

‘gnu99’

‘gnu9x’ ISO C99 plus GNU extensions. When ISO C99 is fully implemented
in GCC, this will become the default. The name ‘gnu9x’ is depre-
cated.

‘c++98’ The 1998 ISO C++ standard plus amendments.

‘gnu++98’ The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

Even when this option is not specified, you can still use some of the features of
newer standards in so far as they do not conflict with previous C standards. For
example, you may use __restrict__ even when ‘-std=c99’ is not specified.

The ‘-std’ options specifying some version of ISO C have the same effects as
‘—ansi’, except that features that were not in ISO C90 but are in the specified
version (for example, ¢//’ comments and the inline keyword in ISO C99) are
not disabled.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
these standard versions.

-fgnu89-inline
The option ‘~fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 5.34 [An Inline Func-
tion is As Fast As a Macro|, page 273. Using this option is roughly equivalent
to adding the gnu_inline function attribute to all inline functions (see Sec-
tion 5.25 [Function Attributes|, page 242).

This option is accepted by GCC versions 4.1.3 and up. In GCC versions prior to
4.3, C99 inline semantics are not supported, and thus this option is effectively
assumed to be present regardless of whether or not it is specified; the only effect

http://gcc.gnu.org/gcc-4.2/c99status.html

24

Using the GNU Compiler Collection (GCC)

of specifying it explicitly is to disable warnings about using inline functions
in C99 mode. Likewise, the option ‘~fno-gnu89-inline’ is not supported in
versions of GCC before 4.3. It will be supported only in C99 or gnu99 mode,
not in C89 or gnu89 mode.

The preprocesor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
section “Common Predefined Macros” in The C Preprocessor.

—aux-info filename

-fno-asm

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. ‘-ansi’ implies ‘-fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 5.47 [Other built-in functions provided by GCC], page 310, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions that
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘~-Wformat’
for bad calls to printf, when printf is built in, and strlen is known not to
modify global memory.

Chapter 3: GCC Command Options 25

-fhosted

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
this is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘-fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘-fno-builtin’ or ‘-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

Assert that compilation takes place in a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘~fno-freestanding’.

-ffreestanding

—-fopenmp

Assert that compilation takes place in a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to ‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v2.5
http://www.openmp.org/.

-fms-extensions

-trigraphs

Accept some non-standard constructs used in Microsoft header files.

Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 5.51 [Unnamed struct/union fields within
structs/unions], page 464, for details.

Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

-no-integrated-cpp

Performs a compilation in two passes: preprocessing and compiling. This option
allows a user supplied "ccl", "cclplus", or "cclobj" via the ‘-B’ option. The
user supplied compilation step can then add in an additional preprocessing
step after normal preprocessing but before compiling. The default is to use the
integrated cpp (internal cpp)

The semantics of this option will change if "ccl", "cclplus", and "cclobj" are
merged.

-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘~E’ switch. The preprocessor

http://www.openmp.org/

26 Using the GNU Compiler Collection (GCC)

continues to support a pre-standard mode. See the GNU CPP manual for
details.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-flax-vector-conversions
Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘-fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

—-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs;
but you can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g++ -g —frepo -0 -c firstClass.C

In this example, only ‘-frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

Chapter 3: GCC Command Options 27

-fabi-version=n
Use version n of the C++ ABI. Version 2 is the version of the C++ ABI that
first appeared in G++ 3.4. Version 1 is the version of the C++ ABI that first
appeared in G++ 3.2. Version 0 will always be the version that conforms most
closely to the C++ ABI specification. Therefore, the ABI obtained using version
0 will change as ABI bugs are fixed.

The default is version 2.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new will only return 0 if it is declared
‘throw()’, in which case the compiler will always check the return value even
without this option. In all other cases, when operator new has a non-empty
exception specification, memory exhaustion is signalled by throwing std: :bad_
alloc. See also ‘new (nothrow)’.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main () has completed, you may have an object that is being
destroyed twice because two definitions were merged.

This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

-ffriend-injection

Inject friend functions into the enclosing namespace, so that they are visible
outside the scope of the class in which they are declared. Friend functions were
documented to work this way in the old Annotated C++ Reference Manual, and
versions of G++ before 4.1 always worked that way. However, in ISO C++ a
friend function which is not declared in an enclosing scope can only be found
using argument dependent lookup. This option causes friends to be injected as
they were in earlier releases.

This option is for compatibility, and may be removed in a future release of G++.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run-
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining ‘NDEBUG’. This does not give

28 Using the GNU Compiler Collection (GCC)

user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler will still optimize based on the specifications, so throwing
an unexpected exception will result in undefined behavior.

-ffor-scope

-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘~-fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 6.5 [Template
Instantiation], page 473, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int
and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

Chapter 3: GCC Command Options 29

-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘~fpermissive’ will allow some nonconforming code to com-
pile.

-frepo Enable automatic template instantiation at link time. This option also im-
plies ‘-fno-implicit-templates’. See Section 6.5 [Template Instantiation],
page 473, for more information.

-fno-rtti

Disable generation of information about every class with virtual functions
for use by the C++ runtime type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but it will generate it as needed. The ‘dynamic_cast’ operator
can still be used for casts that do not require runtime type information, i.e.
casts to void * or to unambiguous base classes.

-fstats Kmit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development teain.

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but will only work if
your C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr
Don’t use the __cxa_get_exception_ptr runtime routine. This will cause

std: :uncaught_exception to be incorrect, but is necessary if the runtime rou-
tine is not available.

—-fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare pointers to
inline methods where the addresses of the two functions were taken in different
shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link

30 Using the GNU Compiler Collection (GCC)

times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

The behaviour of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility will have no effect.

Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 6.5 [Template
Instantiation], page 473.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By
default, G++ will use weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it will result in inferior
code and has no benefits. This option may be removed in a future release of
G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Sec-
tion 3.10 [Options That Control Optimization], page 69. Note that these func-
tions will have linkage like inline functions; they just won’t be inlined by default.

-Wabi (C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABIL. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated will be compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

The known incompatibilities at this point include:
e Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:

struct A { virtual void f(); int f1 : 1; };
struct B : public A { int £2 : 1; };

Chapter 3: GCC Command Options 31

In this case, G++ will place B: :£2 into the same byte asA: :£1; other com-
pilers will not. You can avoid this problem by explicitly padding A so that
its size is a multiple of the byte size on your platform; that will cause G++
and other compilers to layout B identically.

e Incorrect handling of tail-padding for virtual bases. G++ does not use tail

padding when laying out virtual bases. For example:

struct A { virtual void £(); char cl; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};
In this case, G++ will not place B into the tail-padding for A; other compilers
will. You can avoid this problem by explicitly padding A so that its size is
a multiple of its alignment (ignoring virtual base classes); that will cause
G++ and other compilers to layout C identically.

e Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:
union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ will make the union
too small by the number of bits in an int.

e Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {
A a;
virtual void £ ();

};

struct C : public B, public A {};

G++ will place the A base class of C at a nonzero offset; it should be placed
at offset zero. G++ mistakenly believes that the A data member of B is
already at offset zero.

e Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.

template <typename Q>
void f(typename Q::X) {}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

-Wctor-dtor-privacy (C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions.

-Wnon-virtual-dtor (C++ only)
Warn when a class appears to be polymorphic, thereby requiring a virtual
destructor, yet it declares a non-virtual one. This warning is also enabled if
-Weffc++ is specified.

32 Using the GNU Compiler Collection (GCC)

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

AOQ: j (0, i (1) {12
};
The compiler will rearrange the member initializers for ‘i’ and ‘j’ to match
the declaration order of the members, emitting a warning to that effect. This

warning is enabled by ‘-Wall’.
The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ book:

e Item 11: Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.

e [tem 12: Prefer initialization to assignment in constructors.
e Ttem 14: Make destructors virtual in base classes.
e Item 15: Have operator= return a reference to *this.

e Item 23: Don’t try to return a reference when you must return an object.

Also warn about violations of the following style guidelines from Scott Meyers’
More Effective C++ book:

e Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.

e Item 7: Never overload &&, ||, or ,.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Section 6.10 [Deprecated
Features], page 477.

-Wstrict-null-sentinel (C++ only)
Warn also about the use of an uncasted NULL as sentinel. When compiling only
with GCC this is a valid sentinel, as NULL is defined to __null. Although it is
a null pointer constant not a null pointer, it is guaranteed to of the same size
as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ only)
Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization

Chapter 3: GCC Command Options 33

of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘~Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘~Wno-non-template-friend’ which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (‘dynamic_cast’, ‘static_cast’,
‘reinterpret_cast’, and ‘const_cast’) are less vulnerable to unintended
effects and much easier to search for.

-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {

virtual void f();

};

struct B: public A {
void f(int);
I

the A class version of f is hidden in B, and code like:
Bx b;
b->f(0);

will fail to compile.

-Wno-pmf-conversions (C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ would try to preserve unsignedness, but the
standard mandates the current behavior.
struct A {

operator int ();
A& operator = (int);

};
main ()
{
A a,b;
a = b;
}

In this example, G++ will synthesize a default ‘A& operator = (const A%);’,
while cfront will use the user-defined ‘operator =’.

34 Using the GNU Compiler Collection (GCC)

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-C
and Objective-C++ programs, but you can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g —fgnu-runtime -0 -c some_class.m
In this example, ‘-fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘~Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programes:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). The ‘~fconstant-cfstrings’ option, if also present,
will override the ‘~-fconstant-string-class’ setting and cause @"..." literals
to be laid out as constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches (e.g., [receiver
message:arg]) in this translation unit ensure that the receiver is not nil.
This allows for more efficient entry points in the runtime to be used. Currently,
this option is only available in conjunction with the NeXT runtime on Mac
0OS X 10.3 and later.

-fobjc—-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ object
with a non-trivial default constructor. If so, synthesize a special - (id) .cxx_
construct instance method that will run non-trivial default constructors on
any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
so, synthesize a special - (void) .cxx_destruct method that will run all such
default destructors, in reverse order.

The - (id) .cxx_construct and/or - (void) .cxx_destruct methods
thusly generated will only operate on instance variables declared in the

Chapter 3: GCC Command Options 35

current Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods will be
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods will be invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

-fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. This option is unavailable in conjunction
with the NeXT runtime on Mac OS X 10.2 and earlier.

otry {
Qthrow expr;

}
Q@catch (AnObjCClass *exc) {

Q@throw expr;

Qthrow;

}
@catch (AnotherClass *exc) {
}
@catch (id allOthers) {
}
@finally {
Q@throw expr;
}

The @throw statement may appear anywhere in an Objective-C or Objective-
C++ program; when used inside of a @catch block, the @throw may appear
without an argument (as shown above), in which case the object caught by the
Qcatch will be rethrown.

Note that only (pointers to) Objective-C objects may be thrown and caught
using this scheme. When an object is thrown, it will be caught by the nearest
Qcatch clause capable of handling objects of that type, analogously to how
catch blocks work in C++ and Java. A @catch(id ...) clause (as shown
above) may also be provided to catch any and all Objective-C exceptions not
caught by previous @catch clauses (if any).

36

-fobjc-gc

—-freplace-

Using the GNU Compiler Collection (GCC)

The @finally clause, if present, will be executed upon exit from the imme-
diately preceding @try ... @catch section. This will happen regardless of
whether any exceptions are thrown, caught or rethrown inside the Q@try ...
Qcatch section, analogously to the behavior of the finally clause in Java.

There are several caveats to using the new exception mechanism:

e Although currently designed to be binary compatible with NS_HANDLER-
style idioms provided by the NSException class, the new exceptions can
only be used on Mac OS X 10.3 (Panther) and later systems, due to addi-
tional functionality needed in the (NeXT) Objective-C runtime.

e As mentioned above, the new exceptions do not support handling types
other than Objective-C objects. Furthermore, when used from Objective-
C++, the Objective-C exception model does not interoperate with C++
exceptions at this time. This means you cannot @throw an exception from
Objective-C and catch it in C++, or vice versa (i.e., throw ... @catch).

The ‘-fobjc-exceptions’ switch also enables the use of synchronization blocks
for thread-safe execution:
@synchronized (0bjCClass *guard) {

}

Upon entering the @synchronized block, a thread of execution shall first check
whether a lock has been placed on the corresponding guard object by another
thread. If it has, the current thread shall wait until the other thread relinquishes
its lock. Once guard becomes available, the current thread will place its own
lock on it, execute the code contained in the @synchronized block, and finally
relinquish the lock (thereby making guard available to other threads).

Unlike Java, Objective-C does not allow for entire methods to be marked
@synchronized. Note that throwing exceptions out of @synchronized blocks
is allowed, and will cause the guarding object to be unlocked properly.

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.

objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘-fzero-1link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in

Chapter 3: GCC Command Options 37

Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution.

-gen—-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-protocol
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘~Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector

Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘-fsyntax-only’ option is being
used.

-Wstrict-selector-match
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler will omit such warnings if any differences found are
confined to types which share the same size and alignment.

-Wundeclared-selector

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
Q@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

38 Using the GNU Compiler Collection (GCC)

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). The options described below can be used to control the diag-
nostic messages formatting algorithm, e.g. how many characters per line, how often source
location information should be reported. Right now, only the C++ front end can honor these
options. However it is expected, in the near future, that the remaining front ends would be
able to digest them correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported
by GCC. If n is zero, then no line-wrapping will be done; each error message
will appear on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit once source location information; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-show-option
This option instructs the diagnostic machinery to add text to each diagnos-
tic emitted, which indicates which command line option directly controls that
diagnostic, when such an option is known to the diagnostic machinery.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erro-
neous but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

The following options control the amount and kinds of warnings produced by GCC; for
further, language-specific options also refer to Section 3.5 [C++ Dialect Options|, page 26
and Section 3.6 [Objective-C and Objective-C++ Dialect Options], page 33.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

Chapter 3: GCC Command Options 39

-pedantic

-pedantic-

-w

Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files
should use these escape routes; application programs should avoid them. See
Section 5.39 [Alternate Keywords], page 302.

Some users try to use ‘-pedantic’ to check programs for strict ISO C con-

formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu89’ or ‘gnu99’, there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘-pedantic’ are given where they are required by the base standard. (It would
not make sense for such warnings to be given only for features not in the spec-
ified GNU C dialect, since by definition the GNU dialects of C include all fea-
tures the compiler supports with the given option, and there would be nothing
to warn about.)

errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts

-Wcomment

Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//° comment. This warning is
enabled by ‘-Wall’.

40

Using the GNU Compiler Collection (GCC)

-Wfatal-errors

-Wformat

This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 5.25 [Function Attributes],
page 242), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘-ffreestanding’ or ‘-fno-builtin’.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-pedantic’ is used with ‘~-Wformat’, warnings will be given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 22.

Since ‘-Wformat’ also checks for null format arguments for several functions,
‘~Wformat’ also implies ‘~Wnonnull’.

‘~Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wformat-y2k’, ‘-Wno-format-extra-args’,
‘-Wno-format-zero-length’, ‘~-Wformat-nonliteral’, ‘-Wformat-security’,
and ‘-Wformat=2’ are available, but are not included in ‘-Wall’.

-Wformat-y2k

If ‘-Wformat’ is specified, also warn about strftime formats which may yield
only a two-digit year.

-Wno-format-extra-args

If ‘-Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Where the unused arguments lie between used arguments that are specified
with ‘$” operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option will
suppress the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

-Wno-format-zero-length

If ‘“~Wformat’ is specified, do not warn about zero-length formats. The C stan-
dard specifies that zero-length formats are allowed.

Chapter 3: GCC Command Options 41

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
a va_list.

-Wformat-security

If ‘~Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%n’. (This is
currently a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘-Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently
equivalent to ‘~Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.

‘~Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables which are initialized with themselves. Note
this option can only be used with the ‘~-Wuninitialized’ option, which in turn
only works with ‘=01’ and above.

For example, GCC will warn about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:

int £()

{
int i = i;
return i;

}

-Wimplicit-int
Warn when a declaration does not specify a type. This warning is enabled by
‘~Wall’.

-Wimplicit-function-declaration

-Werror-implicit-function-declaration
Give a warning (or error) whenever a function is used before being declared.
The form ‘-Wno-error-implicit-function-declaration’ is not supported.
This warning is enabled by ‘-Wall’ (as a warning, not an error).

-Wimplicit
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.

42

-Wmain

Using the GNU Compiler Collection (GCC)

Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types. This warning is enabled by ‘-Wall’.

-Wmissing-braces

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed.

int a[2][2]
int b[2][2]

{0,1, 2, 3}
{{o0,1%} {2,3}1}

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)

Warn if a user-supplied include directory does not exist.

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about. Only the warning
for an assignment used as a truth value is supported when compiling C++; the
other warnings are only supported when compiling C.

Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y
71 : 0) <= z’, which is a different interpretation from that of ordinary math-
ematical notation.

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:

{
if (a)
if (b)
foo ();
else
bar Q;
}
In C, every else branch belongs to the innermost possible if statement, which
in this example is if (b). This is often not what the programmer expected, as
illustrated in the above example by indentation the programmer chose. When
there is the potential for this confusion, GCC will issue a warning when this flag
is specified. To eliminate the warning, add explicit braces around the innermost
if statement so there is no way the else could belong to the enclosing if. The
resulting code would look like this:

{
if (a)
{
if (b)
foo ();
else
bar ();
}
}

This warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 43

-Wsequence-point
Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards defines the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial
ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, ? : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, al[n] = b[n++] and
ali++] = i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’ for C and C++.

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void.

For C, also warn if the return type of a function has a type qualifier such
as const. Such a type qualifier has no effect, since the value returned by
a function is not an lvalue. ISO C prohibits qualified void return types on
function definitions, so such return types always receive a warning even without
this option.

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

http://gcc.gnu.org/readings.html

44 Using the GNU Compiler Collection (GCC)

This warning is enabled by ‘-Wall’.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used. This warning is enabled
by ‘-Wall’.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by ‘-Wall’.

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘-Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes|, page 261).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes|, page 261).

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes|, page 261).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used. This
warning is enabled by ‘-Wall’.

To suppress this warning cast the expression to ‘void’.

-Wunused All the above ‘~Wunused’ options combined.

In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-~Wunused’), or sepa-
rately specify ‘-Wunused-parameter’.

Chapter 3: GCC Command Options 45

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call.

These warnings are possible only in optimizing compilation, because they re-
quire data flow information that is computed only when optimizing. If you do
not specify ‘=0’, you will not get these warnings. Instead, GCC will issue a
warning about ‘-Wuninitialized’ requiring ‘-0’.

If you want to warn about code which uses the uninitialized value of the variable
in its own initializer, use the ‘-Winit-self’ option.

These warnings occur for individual uninitialized or clobbered elements of struc-
ture, union or array variables as well as for variables which are uninitialized or
clobbered as a whole. They do not occur for variables or elements declared
volatile. Because these warnings depend on optimization, the exact variables
or elements for which there are warnings will depend on the precise optimization
options and version of GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

These warnings are made optional because GCC is not smart enough to see all
the reasons why the code might be correct despite appearing to have an error.
Here is one example of how this can happen:
{
int x;
switch (y)
{
case 1: x
break;
case 2: X
break;
case 3: x
}
foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t

know this. Here is another common case:
{

int save_y;
if (change_y) save_y =y, y = new_y;

]]
> =

1]
ol

if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place which would cause a problem.

46

Using the GNU Compiler Collection (GCC)

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 5.25 [Function Attributes],
page 242.

This warning is enabled by ‘-Wall’.

~Wunknown-pragmas

Warn when a #pragma directive is encountered which is not understood by
GCC. If this command line option is used, warnings will even be issued for
unknown pragmas in system header files. This is not the case if the warnings
were only enabled by the ‘-Wall’ command line option.

-Wno-pragmas

Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘~Wunknown-pragmas’.

-Wstrict-aliasing

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code which might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to catch
the more common pitfalls. It is included in ‘-Wall’.

-Wstrict-aliasing=2

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code which might break the strict aliasing rules that the compiler is using for
optimization. This warning catches more cases than ‘-Wstrict-aliasing’, but
it will also give a warning for some ambiguous cases that are safe.

-Wstrict-overflow
-Wstrict-overflow=n

This option is only active when ‘-fstrict-overflow’ is active. It warns about
cases where the compiler optimizes based on the assumption that signed over-
flow does not occur. Note that it does not warn about all cases where the code
might overflow: it only warns about cases where the compiler implements some
optimization. Thus this warning depends on the optimization level.

An optimization which assumes that signed overflow does not occur is perfectly
safe if the values of the variables involved are such that overflow never does, in
fact, occur. Therefore this warning can easily give a false positive: a warning
about code which is not actually a problem. To help focus on important issues,
several warning levels are defined. No warnings are issued for the use of unde-
fined signed overflow when estimating how many iterations a loop will require,
in particular when determining whether a loop will be executed at all.

‘~Wstrict-overflow=1’
Warn about cases which are both questionable and easy to avoid.
For example: x + 1 > x; with ‘~fstrict-overflow’, the compiler
will simplify this to 1. This level of ‘~Wstrict-overflow’ is enabled
by ‘-Wall’; higher levels are not, and must be explicitly requested.

‘~Wstrict-overflow=2’
Also warn about other cases where a comparison is simplified to
a constant. For example: abs (x) >= 0. This can only be simpli-

Chapter 3: GCC Command Options 47

-Wall

fied when ‘~-fstrict-overflow’ is in effect, because abs (INT_MIN)
overflows to INT_MIN, which is less than zero. ‘-Wstrict-overflow’
(with no level) is the same as ‘-Wstrict-overflow=2’.

‘~Wstrict-overflow=3’
Also warn about other cases where a comparison is simplified. For
example: x + 1 > 1 will be simplified to x > 0.

‘~Wstrict-overflow=4’
Also warn about other simplifications not covered by the above
cases. For example: (x * 10) / 5 will be simplified to x * 2.

‘~Wstrict-overflow=5’
Also warn about cases where the compiler reduces the magnitude of
a constant involved in a comparison. For example: x + 2 > y will
be simplified to x + 1 >=y. This is reported only at the highest
warning level because this simplification applies to many compar-
isons, so this warning level will give a very large number of false
positives.

All of the above ‘-W options combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid
(or modify to prevent the warning), even in conjunction with macros. This
also enables some language-specific warnings described in Section 3.5 [C++ Di-
alect Options], page 26 and Section 3.6 [Objective-C and Objective-C++ Dialect
Options|, page 33.

The following ‘-W. ..’ options are not implied by ‘-Wall’. Some of them warn about
constructions that users generally do not consider questionable, but which occasionally you
might wish to check for; others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the warning.

-Wextra

(This option used to be called ‘-W. The older name is still supported, but the
newer name is more descriptive.) Print extra warning messages for these events:

e A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

foo (a)
{
if (a > 0)
return a;
}

e An expression-statement or the left-hand side of a comma expression con-
tains no side effects. To suppress the warning, cast the unused expression
to void. For example, an expression such as ‘x[i,j]’ will cause a warning,
but ‘x[(void)i,j]’ will not.

e An unsigned value is compared against zero with ‘<’ or ‘>=".

e Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

e If ‘-Wall’ or ‘~Wunused’ is also specified, warn about unused arguments.

48 Using the GNU Compiler Collection (GCC)

e A comparison between signed and unsigned values could produce an in-
correct result when the signed value is converted to unsigned. (But don’t
warn if ‘~-Wno-sign-compare’ is also specified.)

e An aggregate has an initializer which does not initialize all
members. This warning can be independently controlled by
‘~-Wmissing-field-initializers’.

e An initialized field without side effects is overridden when using designated
initializers (see Section 5.21 [Designated Initializers|, page 239). This warn-
ing can be independently controlled by ‘-Woverride-init’.

e A function parameter is declared without a type specifier in K&R-style
functions:
void foo(bar) { }

e An empty body occurs in an ‘if’ or ‘else’ statement.
e A pointer is compared against integer zero with ‘<’, ‘<=, >’ or ‘>=".
e A variable might be changed by ‘longjmp’ or ‘vfork’.

e (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

e (C++only) A non-static reference or non-static ‘const’ member appears in
a class without constructors.

e (C++ only) Ambiguous virtual bases.
(
(

¢

C++ only) Subscripting an array which has been declared ‘register’.

C++ only) Taking the address of a variable which has been declared

register’.

e (C++ only) A base class is not initialized in a derived class’ copy construc-
tor.

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘~Wall’ in conjunction with this option will not warn about unknown pragmas
in system headers—for that, ‘~-Wunknown-pragmas’ must also be used.

-Wno-poison-system-directories
Do not warn for ‘-I’ or ‘-L’ options using system directories such as
‘/usr/include’ when cross compiling. This option is intended for use in
chroot environments when such directories contain the correct headers and
libraries for the target system rather than the host.

Chapter 3: GCC Command Options 49

-Wfloat-equal

Warn if floating point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer)
to counsider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you would check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs which should be avoided.

Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but does
not in ISO C.

In traditional C, some preprocessor directives did not exist. Traditional
preprocessors would only consider a line to be a directive if the ‘#’ appeared
in column 1 on the line. Therefore ‘~Wtraditional’ warns about directives
that traditional C understands but would ignore because the ‘# does not
appear as the first character on the line. It also suggests you hide directives
like ‘#pragma’ not understood by traditional C by indenting them. Some
traditional implementations would not recognize ‘#elif’, so it suggests
avoiding it altogether.

A function-like macro that appears without arguments.

The unary plus operator.

The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

A function declared external in one block and then used after the end of
the block.

A switch statement has an operand of type long.

A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

o0

Using the GNU Compiler Collection (GCC)

e Usage of ISO string concatenation is detected.
e Initialization of automatic aggregates.

e Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

e Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

e Conversions by prototypes between fixed/floating point values and vice
versa. The absence of these prototypes when compiling with traditional C
would cause serious problems. This is a subset of the possible conversion
warnings, for the full set use ‘-Wconversion’.

e Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features will appear in your code when using libiberty’s traditional C
compatibility macros, PARAMS and VPARAMS. This warning is also bypassed
for nested functions because that feature is already a GCC extension and
thus not relevant to traditional C compatibility.

-Wdeclaration-after-statement (C only)

-Wundef

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 5.24 [Mixed Declarations], page 241.

Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-labels

Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wishadow Warn whenever a local variable shadows another local variable, parameter or

global variable or whenever a built-in function is shadowed.

-Wlarger-than-len

Warn whenever an object of larger than len bytes is defined.

-Wunsafe-loop-optimizations

Warn if the loop cannot be optimized because the compiler could
not assume anything on the bounds of the loop indices. With
‘~funsafe-loop-optimizations’ warn if the compiler made such
assumptions.

-Wpointer-arith

Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

-Wbad-function-cast (C only)

Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

Chapter 3: GCC Command Options o1

-Wc++-compat
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning;
when compiling C++, warn about the deprecated conversion from string literals
to char *. This warning, by default, is enabled for C++ programs. These
warnings will help you find at compile time code that can try to write into a
string constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it will just be a nuisance; this is why
we did not make ‘-Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-Wextra’; to get the other warnings of ‘-Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Waddress

Warn about suspicious uses of memory addresses. These include using the
address of a function in a conditional expression, such as void func(void) ;
if (func), and comparisons against the memory address of a string literal,
such as 1f (x == "abc"). Such uses typically indicate a programmer error: the
address of a function always evaluates to true, so their use in a conditional
usually indicate that the programmer forgot the parentheses in a function call;
and comparisons against string literals result in unspecified behavior and are
not portable in C, so they usually indicate that the programmer intended to
use strcmp. This warning is enabled by ‘-Wall’.

52 Using the GNU Compiler Collection (GCC)

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This will not stop
errors for incorrect use of supported attributes.

-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration which specifies the argument types.)

-Wold-style-definition (C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations (C only)
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files.

-Wmissing-field-initializers

Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code would cause such a warning, because x.h is implicitly zero:

struct s { int f, g, h; };

struct s x = { 3, 4 };
This option does not warn about designated initializers, so the following mod-
ification would not trigger a warning:

struct s { int £, g, h; };

struct s x = { .f =3, .g =4 };
This warning is included in ‘-Wextra’. To get other ‘~Wextra’ warnings without
this one, use ‘-Wextra -Wno-missing-field-initializers’.

-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken
to manually verify functions actually do not ever return before adding the
noreturn attribute, otherwise subtle code generation bugs could be introduced.
You will not get a warning for main in hosted C environments.

-Wmissing-format-attribute
Warn about function pointers which might be candidates for format attributes.
Note these are only possible candidates, not absolute ones. GCC will guess that
function pointers with format attributes that are used in assignment, initial-
ization, parameter passing or return statements should have a corresponding

Chapter 3: GCC Command Options 53

format attribute in the resulting type. Le. the left-hand side of the assignment
or initialization, the type of the parameter variable, or the return type of the
containing function respectively should also have a format attribute to avoid
the warning.

GCC will also warn about function definitions which might be candidates for
format attributes. Again, these are only possible candidates. GCC will guess
that format attributes might be appropriate for any function that calls a func-
tion like vprintf or vscanf, but this might not always be the case, and some
functions for which format attributes are appropriate may not be detected.

-Wno-multichar
Do not warn if a multicharacter constant (‘’FO0F’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=<none|id|nfc|nfkc>
In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers which have not been normalized; this option controls that warning.

There are four levels of warning that GCC supports. The default is
‘~Wnormalized=nfc’, which warns about any identifier which is not in the ISO

10646 “C” normalized form, NFC. NFC is the recommended form for most
uses.

Unfortunately, there are some characters which ISO C and ISO C++ allow in
identifiers that when turned into NFC aren’t allowable as identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘~Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

You can switch the warning off for all characters by writing
‘~Wnormalized=none’. You would only want to do this if you were
using some other normalization scheme (like “D”), because otherwise you can
easily create bugs that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical in
some fonts or display methodologies, especially once formatting has been ap-
plied. For instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N7,
will display just like a regular n which has been placed in a superscript. ISO
10646 defines the NFKC normalization scheme to convert all these into a stan-
dard form as well, and GCC will warn if your code is not in NFKC if you
use ‘-Wnormalized=nfkc’. This warning is comparable to warning about every
identifier that contains the letter O because it might be confused with the digit
0, and so is not the default, but may be useful as a local coding convention if

54 Using the GNU Compiler Collection (GCC)

the programming environment is unable to be fixed to display these characters
distinctly.

-Wno-deprecated-declarations
Do not warn about uses of functions (see Section 5.25 [Function Attributes],
page 242), variables (see Section 5.32 [Variable Attributes], page 261), and types
(see Section 5.33 [Type Attributes], page 268) marked as deprecated by using
the deprecated attribute.

-Wno-overflow
Do not warn about compile-time overflow in constant expressions.

-Woverride-init
Warn if an initialized field without side effects is overridden when using desig-
nated initializers (see Section 5.21 [Designated Initializers|, page 239).

This warning is included in ‘-Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘-Wextra -Wno-override-init’.

-Wipacked Warn if a structure is given the packed attribute, but the packed attribute has
no effect on the layout or size of the structure. Such structures may be mis-
aligned for little benefit. For instance, in this code, the variable f.x in struct
bar will be misaligned even though struct bar does not itself have the packed
attribute:

struct foo {

int x;

char a, b, ¢, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};

-Wpadded Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C only)
Warn if an extern declaration is encountered within a function.

-Wunreachable-code
Warn if the compiler detects that code will never be executed.

This option is intended to warn when the compiler detects that at least a whole
line of source code will never be executed, because some condition is never
satisfied or because it is after a procedure that never returns.

It is possible for this option to produce a warning even though there are circum-
stances under which part of the affected line can be executed, so care should
be taken when removing apparently-unreachable code.

Chapter 3: GCC Command Options 95

For instance, when a function is inlined, a warning may mean that the line is
unreachable in only one inlined copy of the function.

This option is not made part of ‘-Wall’ because in a debugging version of a
program there is often substantial code which checks correct functioning of the
program and is, hopefully, unreachable because the program does work. An-
other common use of unreachable code is to provide behavior which is selectable
at compile-time.

-Winline Warn if a function can not be inlined and it was declared as inline. Even with
this option, the compiler will not warn about failures to inline functions declared
in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘~Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ only)

Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types. (Such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor.) This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Wno-int-to-pointer-cast (C only)
Suppress warnings from casts to pointer type of an integer of a different size.

-Wno-pointer-to-int-cast (C only)
Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch
Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 212) is found in the search path but can’t be used.

-Wlong-long
Warn if ‘long long’ type is used. This is default. To inhibit the warning
messages, use ‘-Wno-long-long’. Flags ‘-Wlong-long’ and ‘-~Wno-long-long’
are taken into account only when ‘-pedantic’ flag is used.

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit
the warning messages, use ‘-Wno-variadic-macros’.

o6

Using the GNU Compiler Collection (GCC)

-Wvolatile-register-var

Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables.

-Wdisabled-optimization

Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers were unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC will refuse to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign

-Werror

-Werror=

Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by ‘-Wall’
and by ‘-pedantic’, which can be disabled with ‘~Wno-pointer-sign’.

Make all warnings into errors.

Make the specified warning into an errors. The specifier for a warning is
appended, for example ‘-Werror=switch’ turns the warnings controlled by
‘~Wswitch’ into errors. This switch takes a negative form, to be used to
negate ‘~Werror’ for specific warnings, for example ‘-Wno-error=switch’ makes
‘~Wswitch’ warnings not be errors, even when ‘-Werror’ is in effect. You can
use the ‘-fdiagnostics-show-option’ option to have each controllable warn-
ing amended with the option which controls it, to determine what to use with
this option.

Note that specifying ‘-Werror="foo automatically implies ‘-Wfoo. However,
‘~Wno-error="foo does not imply anything.

-Wstack-protector

This option is only active when ‘~fstack-protector’ is active. It warns about
functions that will not be protected against stack smashing.

-Woverlength-strings

Warn about string constants which are longer than the “minimum maximum?”
length specified in the C standard. Modern compilers generally allow string
constants which are much longer than the standard’s minimum limit, but very
portable programs should avoid using longer strings.

The limit applies after string constant concatenation, and does not count the
trailing NUL. In C89, the limit was 509 characters; in C99, it was raised to
4095. C++98 does not specify a normative minimum maximum, so we do not
diagnose overlength strings in C++.

This option is implied by ‘-pedantic’, and can be disabled with
‘-Wno-overlength-strings’.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

Chapter 3: GCC Command Options o7

-ggdb

-gstabs

Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF 2). GDB can work with this debugging informa-
tion.

On most systems that use stabs format, ‘-g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but will probably make other debuggers crash or refuse to
read the program. If you want to control for certain whether to generate the
extra information, use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, or ‘~gvms’
(see below).

GCC allows you to use ‘-g’ with ‘-0’. The shortcuts taken by optimized code
may occasionally produce surprising results: some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results
or their values were already at hand; some statements may execute in different
places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output which is not understood by DBX or SDB. On System V
Release 4 systems this option requires the GNU assembler.

-feliminate-unused-debug-symbols

Produce debugging information in stabs format (if that is supported), for only
symbols that are actually used.

-femit-class-debug-always

-gstabs+

-gcoff

Instead of emitting debugging information for a C++ class in only one object
file, emit it in all object files using the class. This option should be used
only with debuggers that are unable to handle the way GCC normally emits
debugging information for classes because using this option will increase the
size of debugging information by as much as a factor of two.

Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

58 Using the GNU Compiler Collection (GCC)

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is sup-
ported). This is the format used by DBX on IRIX 6. With this option, GCC
uses features of DWARF version 3 when they are useful; version 3 is upward
compatible with version 2, but may still cause problems for older debuggers.

-gvms Produce debugging information in VMS debug format (if that is supported).
This is the format used by DEBUG on VMS systems.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gvmslevel
Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

‘~gdwarf-2’ does not accept a concatenated debug level, because GCC used
to support an option ‘-gdwarf’ that meant to generate debug information in
version 1 of the DWARF format (which is very different from version 2), and
it would have been too confusing. That debug format is long obsolete, but the
option cannot be changed now. Instead use an additional ‘-glevel’ option to
change the debug level for DWARF2.

-feliminate-dwarf2-dups
Compress DWARF2 debugging information by eliminating duplicated infor-
mation about each symbol. This option only makes sense when generating
DWARF2 debugging information with ‘-gdwarf-2’.

-fdebug-prefix-map=old=new
When compiling files in directory ‘old’, record debugging information describ-
ing them as in ‘new’ instead.

-p Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Chapter 3: GCC Command Options 99

—Pg

-Q

Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report

Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report

Makes the compiler print some statistics about permanent memory allocation
when it finishes.

-fprofile-arcs

——coverage

Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. When the compiled program exits it saves
this data to a file called ‘auxname.gcda’ for each source file. The data may be
used for profile-directed optimizations (‘-~fbranch-probabilities’), or for test
coverage analysis (‘-ftest-coverage’). Each object file’'s auxname is generated
from the name of the output file, if explicitly specified and it is not the final
executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’
for output file specified as ‘~o dir/fo0.0’). See Section 9.5 [Cross-profiling],
page 495.

This option is used to compile and link code instrumented for coverage analysis.
The option is a synonym for ‘~fprofile-arcs’ ‘~ftest-coverage’ (when com-
piling) and ‘-1gcov’ (when linking). See the documentation for those options
for more details.

e Compile the source files with ‘-fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘~-ftest-coverage’ option. You do not need to profile every source file in
a program.

e Link your object files with ‘~1gcov’ or ‘~fprofile-arcs’ (the latter implies
the former).

e Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also fork calls
are detected and correctly handled (double counting will not happen).

e For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘~fbranch-probabilities’ (see Section 3.10 [Options that Control
Optimization], page 69).

60

Using the GNU Compiler Collection (GCC)

e For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘-fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

-ftest-coverage

—-dletters

Produce a notes file that the gcov code-coverage utility (see Chapter 9 [gcov—a
Test Coverage Program]|, page 489) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘-fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data will match the source files more closely, if
you do not optimize.

—-fdump-rtl-pass

Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the RTL-based passes of the compiler. The file names
for most of the dumps are made by appending a pass number and a word to
the dumpname. dumpname is generated from the name of the output file, if
explicitly specified and it is not an executable, otherwise it is the basename of
the source file.

Most debug dumps can be enabled either passing a letter to the ‘~d’ option, or
with a long ‘-fdump-rtl1’ switch; here are the possible letters for use in letters
and pass, and their meanings:

-dA Annotate the assembler output with miscellaneous debugging in-
formation.

-dB

—-fdump-rtl-bbro
Dump after block reordering, to ‘file.148r.bbro’.

-dc

—fdump-rtl-combine
Dump after instruction combination, to the file
‘file.129r.combine’.

-dC

-fdump-rtl-cel

-fdump-rtl-ce2
‘-dC’ and ‘-fdump-rtl-cel’ enable dumping after the first if con-
version, to the file ‘file.117r.cel’. ‘-dC’ and ‘~fdump-rtl-ce2
enable dumping after the second if conversion, to the file
‘file.130r.ce2’.

Chapter 3: GCC Command Options 61

-dd

-fdump-rtl-btl

-fdump-rtl-dbr
‘-dd’ and ‘-fdump-rtl-btl’ enable dumping after branch target
load optimization, to ‘file.31.btl’. ‘-dd’ and ‘-fdump-rtl-dbr’
enable dumping after delayed branch scheduling, to ‘file.36.dbr’ .

-dD Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

-dE
-fdump-rtl-ce3
Dump after the third if conversion, to ‘file.146r.ce3’.

-df

-fdump-rtl-cfg

—fdump-rtl-life
‘~df’ and ‘~fdump-rtl-cfg’ enable dumping after control and data
flow analysis, to ‘file.116r.cfg’. ‘-df’ and ‘-fdump-rtl-cfg’
enable dumping dump after life analysis, to ‘file.128r.lifel’ and
‘file.13br.life2’.

_dg
-fdump-rtl-greg
Dump after global register allocation, to ‘file.139r.greg’.

-dG

-fdump-rtl-gcse

—fdump-rtl-bypass
‘-dG" and ‘-fdump-rtl-gcse’ enable dumping after GCSE,
to ‘file.114r.gcse’. ‘-dG’ and ‘-fdump-rtl-bypass’ enable
dumping after jump bypassing and control flow optimizations, to
‘file.115r.bypass’.

-dh
-fdump-rtl-eh
Dump after finalization of EH handling code, to ‘file.02.eh’.

-di
-fdump-rtl-sibling
Dump after sibling call optimizations, to ‘file.106r.sibling’.

_dJ
—fdump-rtl-jump
Dump after the first jump optimization, to ‘file.112r. jump’.

-dk

-fdump-rtl-stack
Dump after conversion from registers to stack, to
‘file.152r.stack’.

62

Using the GNU Compiler Collection (GCC)

-dl
—fdump-rtl-lreg
Dump after local register allocation, to ‘file.138r.lreg .

-dL

—fdump-rtl-loop2
‘-dL’ and ‘-fdump-rtl-loop2’ enable dumping after the loop op-
timization pass, to ‘file.119r.loop2’, ‘file.120r.loop2_init’,
‘file.121r.loop2_invariant’, and ‘file.125r.loop2_done’.

-dm
-fdump-rtl-sms
Dump after modulo scheduling, to ‘file.136r.sms’.

-dM

-fdump-rtl-mach
Dump after performing the machine dependent reorganization pass,
to ‘file.155r .mach’.

-dn
-fdump-rtl-rnreg
Dump after register renumbering, to ‘file.147r.rnreg’.

-dN
—-fdump-rtl-regmove
Dump after the register move pass, to ‘file.132r.regmove’.

-do
—fdump-rtl-postreload
Dump after post-reload optimizations, to ‘file.24.postreload’.

-dr
-fdump-rtl-expand
Dump after RTL generation, to ‘file.104r.expand’.

-dR
-fdump-rtl-sched2
Dump after the second scheduling pass, to ‘file.150r.sched?2’.

-ds

-fdump-rtl-cse
Dump after CSE (including the jump optimization that sometimes
follows CSE), to ‘file.113r.cse’.

-ds
-fdump-rtl-sched
Dump after the first scheduling pass, to ‘file.21.sched’.

-dt

-fdump-rtl-cse2
Dump after the second CSE pass (including the jump optimization
that sometimes follows CSE), to ‘file.127r.cse2’.

Chapter 3: GCC Command Options 63

-dT

-fdump-

-dv

-fdump-
-fdump-

-dw

-fdump-

-dz

-fdump-

-dz

-fdump-

-da

-fdump-

-dP

-dv

-dx

_dy
-fdump-noaddr

rtl-tracer
Dump after running tracer, to ‘file.118r.tracer’.

rtl-vpt

rtl-vartrack
‘-dV’ and ‘-fdump-rtl-vpt’ enable dumping after the
value profile transformations, to ‘file.10.vpt’. ‘~dV’ and
‘~fdump-rtl-vartrack’ enable dumping after variable tracking,
to ‘file.154r.vartrack’.

rtl-flow2
Dump after the second flow pass, to ‘file.142r.flow?2’.

rtl-peephole2
Dump after the peephole pass, to ‘file.145r.peephole2’.

rtl-web
Dump after live range splitting, to ‘file.126r.web’.

rtl-all
Produce all the dumps listed above.

Produce a core dump whenever an error occurs.

Print statistics on memory usage, at the end of the run, to standard
error.

Annotate the assembler output with a comment indicating which
pattern and alternative was used. The length of each instruction is
also printed.

Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.

For each of the other indicated dump files (either with ‘-d’ or
‘~fdump-rtl-pass’), dump a representation of the control flow
graph suitable for viewing with VCG to ‘file.pass.vcg’.

Just generate RTL for a function instead of compiling it. Usually
used with ‘r’ (‘-fdump-rtl-expand’).

Dump debugging information during parsing, to standard error.

When doing debugging dumps (see ‘-d’ option above), suppress address out-
put. This makes it more feasible to use diff on debugging dumps for compiler
invocations with different compiler binaries and/or different text / bss / data
/ heap / stack / dso start locations.

64 Using the GNU Compiler Collection (GCC)

—fdump-unnumbered
When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers, line number note and address output. This makes it more feasible to
use diff on debugging dumps for compiler invocations with different options, in
particular with and without ‘-g’.

-fdump-translation-unit (C++ only)

-fdump-translation-unit-options (C++ only)
Dump a representation of the tree structure for the entire translation unit to a
file. The file name is made by appending ‘.tu’ to the source file name. If the
‘—options’ form is used, options controls the details of the dump as described
for the ‘~fdump-tree’ options.

-fdump-class-hierarchy (C++ only)

-fdump-class-hierarchy-options (C++ only)
Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name.
If the ‘-options’ form is used, options controls the details of the dump as
described for the ‘-fdump-tree’ options.

-fdump-ipa-switch
Control the dumping at various stages of inter-procedural analysis language
tree to a file. The file name is generated by appending a switch specific suffix
to the source file name. The following dumps are possible:

‘all’ Enables all inter-procedural analysis dumps; currently the only pro-
duced dump is the ‘cgraph’ dump.

‘cgraph’ Dumps information about call-graph optimization, unused function
removal, and inlining decisions.

-fdump-tree-switch

-fdump-tree-switch-options
Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch specific suffix
to the source file name. If the ‘~options’ form is used, options is a list of
‘-’ geparated options that control the details of the dump. Not all options are
applicable to all dumps, those which are not meaningful will be ignored. The
following options are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

‘slim’ Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path. When dumping
pretty-printed trees, this option inhibits dumping the bodies of con-
trol structures.

raw Print a raw representation of the tree. By default, trees are pretty-
printed into a C-like representation.

Chapter 3:

GCC Command Options

‘details’

‘stats’

‘blocks’
‘vops’
‘lineno’
‘uid’

‘all’

65

Enable more detailed dumps (not honored by every dump option).

Enable dumping various statistics about the pass (not honored by
every dump option).

Enable showing basic block boundaries (disabled in raw dumps).
Enable showing virtual operands for every statement.

Enable showing line numbers for statements.

Enable showing the unique ID (DECL_UID) for each variable.

Turn on all options, except ‘raw’, ‘slim’ and ‘lineno’.

The following tree dumps are possible:

‘original’

‘optimized’

‘4nlined’

‘gimple’

9

‘cfg

veg

(Ch7

ssa
‘salias’
‘alias’

‘)

ccp

‘storeccp’

pre

Dump before any tree based optimization, to ‘file.original’.

Dump after all tree based optimization, to ‘file.optimized’.
Dump after function inlining, to ‘file.inlined’.

Dump each function before and after the gimplification pass to a
file. The file name is made by appending ‘.gimple’ to the source
file name.

Dump the control flow graph of each function to a file. The file
name is made by appending ‘.cfg’ to the source file name.

Dump the control flow graph of each function to a file in VCG
format. The file name is made by appending *.vcg’ to the source
file name. Note that if the file contains more than one function, the
generated file cannot be used directly by VCG. You will need to
cut and paste each function’s graph into its own separate file first.

Dump each function after copying loop headers. The file name is
made by appending ‘.ch’ to the source file name.

Dump SSA related information to a file. The file name is made by
appending ‘.ssa’ to the source file name.

Dump structure aliasing variable information to a file. This file
name is made by appending ‘.salias’ to the source file name.

Dump aliasing information for each function. The file name is made
by appending ‘.alias’ to the source file name.

Dump each function after CCP. The file name is made by append-
ing ‘.ccp’ to the source file name.

Dump each function after STORE-CCP. The file name is made by
appending ‘.storeccp’ to the source file name.

Dump trees after partial redundancy elimination. The file name is
made by appending ‘.pre’ to the source file name.

66

‘fre’

‘copyprop’

Using the GNU Compiler Collection (GCC)
Dump trees after full redundancy elimination. The file name is
made by appending ‘.fre’ to the source file name.

Dump trees after copy propagation. The file name is made by
appending ‘.copyprop’ to the source file name.

‘store_copyprop’

‘dce

‘mudflap’

sra

‘sink’

‘dom’

‘dse’

‘phiopt’

‘forwprop’

Dump trees after store copy-propagation. The file name is made
by appending ‘.store_copyprop’ to the source file name.

Dump each function after dead code elimination. The file name is
made by appending ‘.dce’ to the source file name.

Dump each function after adding mudflap instrumentation. The
file name is made by appending ‘.mudflap’ to the source file name.

Dump each function after performing scalar replacement of aggre-
gates. The file name is made by appending ‘.sra’ to the source file
name.

Dump each function after performing code sinking. The file name
is made by appending ‘.sink’ to the source file name.

Dump each function after applying dominator tree optimizations.
The file name is made by appending ‘.dom’ to the source file name.

Dump each function after applying dead store elimination. The file
name is made by appending ‘.dse’ to the source file name.

Dump each function after optimizing PHI nodes into straightline
code. The file name is made by appending ‘.phiopt’ to the source
file name.

Dump each function after forward propagating single use variables.
The file name is made by appending ‘. forwprop’ to the source file
name.

‘copyrename’

nrv

‘vect’

vIp

‘all’

Dump each function after applying the copy rename optimization.
The file name is made by appending ‘.copyrename’ to the source
file name.

Dump each function after applying the named return value opti-
mization on generic trees. The file name is made by appending
‘.nrv’ to the source file name.

Dump each function after applying vectorization of loops. The file
name is made by appending ‘.vect’ to the source file name.

Dump each function after Value Range Propagation (VRP). The
file name is made by appending ‘.vrp’ to the source file name.

Enable all the available tree dumps with the flags provided in this
option.

Chapter 3: GCC Command Options 67

-ftree-vectorizer-verbose=n

This option controls the amount of debugging output the vectorizer prints.
This information is written to standard error, unless ‘-fdump-tree-all’ or
‘~fdump-tree-vect’ is specified, in which case it is output to the usual dump
listing file, ‘.vect’. For n=0 no diagnostic information is reported. If n=1 the
vectorizer reports each loop that got vectorized, and the total number of loops
that got vectorized. If n=2 the vectorizer also reports non-vectorized loops that
passed the first analysis phase (vect_analyze_loop_form) - i.e. countable, inner-
most, single-bb, single-entry/exit loops. This is the same verbosity level that
‘~fdump-tree-vect-stats’ uses. Higher verbosity levels mean either more
information dumped for each reported loop, or same amount of information
reported for more loops: If n=3, alignment related information is added to the
reports. If n=4, data-references related information (e.g. memory dependences,
memory access-patterns) is added to the reports. If n=5, the vectorizer reports
also non-vectorized inner-most loops that did not pass the first analysis phase
(i.e. may not be countable, or may have complicated control-flow). If n=6, the
vectorizer reports also non-vectorized nested loops. For n=7, all the information
the vectorizer generates during its analysis and transformation is reported. This
is the same verbosity level that ‘~fdump-tree-vect-details’ uses.

-frandom-seed=string
This option provides a seed that GCC uses when it would otherwise use random
numbers. It is used to generate certain symbol names that have to be different
in every compiled file. Tt is also used to place unique stamps in coverage data
files and the object files that produce them. You can use the ‘-frandom-seed’
option to produce reproducibly identical object files.

The string should be different for every file you compile.

-fsched-verbose=n
On targets that use instruction scheduling, this option controls the amount of
debugging output the scheduler prints. This information is written to standard
error, unless ‘-dS’ or ‘-dR’ is specified, in which case it is output to the usual
dump listing file, ‘.sched’ or ‘.sched2’ respectively. However for n greater
than nine, the output is always printed to standard error.

For n greater than zero, ‘-fsched-verbose’ outputs the same information as
‘-dRS’. For n greater than one, it also output basic block probabilities, de-
tailed ready list information and unit/insn info. For n greater than two, it
includes RTL at abort point, control-flow and regions info. And for n over four,
‘~fsched-verbose’ also includes dependence info.

-save-temps
Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘-c -save-temps’ would produce files ‘foo.1i’ and ‘foo.s’; as well
as ‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the
compiler now normally uses an integrated preprocessor.

7

When used in combination with the ‘-x’ command line option, ‘~save-temps’

is sensible enough to avoid over writing an input source file with the same

68

—-time

Using the GNU Compiler Collection (GCC)

extension as an intermediate file. The corresponding intermediate file may be
obtained by renaming the source file before using ‘~save-temps’.

Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done). The output looks like this:

ccl 0.12 0.01

as 0.00 0.01
The first number on each line is the “user time”, that is time spent executing
the program itself. The second number is “system time”, time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.

-fvar-tracking

Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).

It is enabled by default when compiling with optimization (‘-0s’, ‘-0°, ‘-02’,
...), debugging information (‘-g’) and the debug info format supports it.

-print-file-name=1library

Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory

Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-1ib

Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@ instead of the ‘=’, without spaces between multiple
switches. This is supposed to ease shell-processing.

-print-prog-name=program

Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name

Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘1ibgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name®

-print-search-dirs

Print the name of the configured installation directory and a list of program
and library directories gcc will search-—and don’t do anything else.

This is useful when gcc prints the error message ‘installation problem,
cannot exec cppO: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to

Chapter 3: GCC Command Options 69

find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ‘/’. See Section 3.19
[Environment Variables], page 210.

-print-sysroot-headers-suffix
Print the suffix added to the target sysroot when searching for headers, or
give an error if the compiler is not configured with such a suffix—and don’t do
anything else.

—dumpmachine
Print the compiler’s target machine (for example, ‘1686-pc-1linux-gnu’)—and
don’t do anything else.

—dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

-dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files|, page 114.

-feliminate-unused-debug-types

Normally, when producing DWARF2 output, GCC will emit debugging infor-
mation for all types declared in a compilation unit, regardless of whether or not
they are actually used in that compilation unit. Sometimes this is useful, such
as if, in the debugger, you want to cast a value to a type that is not actually
used in your program (but is declared). More often, however, this results in
a significant amount of wasted space. With this option, GCC will avoid pro-
ducing debug symbol output for types that are nowhere used in the source file
being compiled.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

The compiler performs optimization based on the knowledge it has of the program. Op-
timization levels ‘-0’ and above, in particular, enable wunit-at-a-time mode, which allows
the compiler to consider information gained from later functions in the file when compiling
a function. Compiling multiple files at once to a single output file in unit-at-a-time mode
allows the compiler to use information gained from all of the files when compiling each of
them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed.

70

-01

-02

Using the GNU Compiler Collection (GCC)

Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

With ‘-0, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

‘=0’ turns on the following optimization flags:

-fdefer-pop
-fdelayed-branch
-fguess-branch-probability
-fcprop-registers
-fif-conversion
-fif-conversion2
-ftree-ccp

-ftree-dce
-ftree-dominator-opts
-ftree-dse

-ftree-ter

-ftree-l1rs

-ftree-sra
-ftree-copyrename
-ftree-fre

-ftree-ch
-funit-at-a-time
-fmerge-constants

‘-0’ also turns on ‘-fomit-frame-pointer’ on machines where doing so does
not interfere with debugging.

Optimize even more. GCC performs nearly all supported optimizations that
do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specify ‘-02’. As compared to ‘-0’, this
option increases both compilation time and the performance of the generated
code.

‘-02’ turns on all optimization flags specified by ‘-0’. It also turns on the
following optimization flags:

-fthread-jumps

-fcrossjumping
-foptimize-sibling-calls
-fcse-follow-jumps -fcse-skip-blocks
-fgcse -fgese-1m
-fexpensive-optimizations
-frerun-cse-after-loop
-fcaller-saves

-fpeephole2

-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec
-fregmove

-fstrict-aliasing -fstrict-overflow
-fdelete-null-pointer-checks
-freorder-blocks -freorder-functions
-falign-functions -falign-jumps
-falign-loops -falign-labels
-ftree-vrp

-ftree-pre

Chapter 3: GCC Command Options 71

Please note the warning under ‘~fgcse’ about invoking ‘-~02’ on programs that
use computed gotos.

‘=02’ doesn’t turn on ‘~ftree-vrp’ for the Ada compiler. This option must be
explicitly specified on the command line to be enabled for the Ada compiler.

-03 Optimize yet more. ‘-03’ turns on all optimizations specified by *‘-02’
and also turns on the ‘-finline-functions’, ‘-~funswitch-loops’ and
‘~-fgcse-after-reload’ options.

-00 Do not optimize. This is the default.

-Os Optimize for size. ‘-0s’ enables all ‘-02’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

‘~0s’ disables the following optimization flags:
-falign-functions -falign-jumps -falign-loops
-falign-labels -freorder-blocks -freorder-blocks-and-partition
-fprefetch-loop-arrays -ftree-vect-loop-version
If you use multiple ‘-0’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. In the table
below, only one of the forms is listed—the one you typically will use. You can figure out
the other form by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-0’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-0’, member
functions defined inside class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

Disabled at levels ‘-0°, ‘-02’, ‘-=03’, ‘-0s’.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load. This option is
now a nop and will be removed in 4.3.

-fforce-addr
Force memory address constants to be copied into registers before doing arith-
metic on them.

72 Using the GNU Compiler Collection (GCC)

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
section “Register Usage” in GNU Compiler Collection (GCC) Internals.

Enabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to
keep the compiler from expanding any functions inline. Note that if you are
not optimizing, no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically de-
cides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

Enabled at level ‘-03’.

-finline-functions—-called-once
Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.

Enabled if ‘-funit-at-a-time’ is enabled.

-fearly-inlining
Inline functions marked by always_inline and functions whose body
seems smaller than the function call overhead early before doing
‘~fprofile-generate’ instrumentation and real inlining pass. Doing so makes
profiling significantly cheaper and usually inlining faster on programs having
large chains of nested wrapper functions.

Enabled by default.

-finline-limit=n
By default, GCC limits the size of functions that can be inlined. This flag allows
the control of this limit for functions that are explicitly marked as inline (i.e.,
marked with the inline keyword or defined within the class definition in c++).
n is the size of functions that can be inlined in number of pseudo instructions
(not counting parameter handling). The default value of n is 600. Increasing

Chapter 3: GCC Command Options 73

this value can result in more inlined code at the cost of compilation time and
memory consumption. Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower programs). This option
is particularly useful for programs that use inlining heavily such as those based
on recursive templates with C++.

Inlining is actually controlled by a number of parameters, which may be spec-
ified individually by using ‘--param name=value’. The ‘-finline-limit=n’
option sets some of these parameters as follows:
max-inline-insns-single
is set to n/2.
max-inline-insns-auto
is set to n/2.
min-inline-insns
is set to 130 or n/4, whichever is smaller.
max-inline-insns-rtl
is set to n.

See below for a documentation of the individual parameters controlling inlining.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way does it represent a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fkeep-inline-functions
In C, emit static functions that are declared inline into the object file, even
if the function has been inlined into all of its callers. This switch does not affect
functions using the extern inline extension in GNU C. In C++, emit any and
all inline functions into the object file.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned
on, use the ‘~fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating point con-
stants) across compilation units.
This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.

Enabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.
-fmerge-all-constants
Attempt to merge identical constants and identical variables.
This option implies ‘-fmerge-constants’. In addition to ‘~fmerge-constants’

this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating point types. Languages like C or C++ require

74 Using the GNU Compiler Collection (GCC)

each non-automatic variable to have distinct location, so using this option will
result in non-conforming behavior.

-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass.
This pass looks at innermost loops and reorders their instructions by overlap-
ping different iterations.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC, TA-
64 and S/390.

The default is ‘-fbranch-count-reg’.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

The default is ‘-ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on
variables going to the data section. E.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.

The default is ‘-fzero-initialized-in-bss’.

-fbounds-check
For front-ends that support it, generate additional code to check that indices
used to access arrays are within the declared range. This is currently only
supported by the Java and Fortran front-ends, where this option defaults to
true and false respectively.

-fmudflap -fmudflapth -fmudflapir

For front-ends that support it (C and C++), instrument all risky pointer/array
dereferencing operations, some standard library string/heap functions, and
some other associated constructs with range/validity tests. Modules so in-
strumented should be immune to buffer overflows, invalid heap use, and some
other classes of C/C++ programming errors. The instrumentation relies on a
separate runtime library (‘libmudflap’), which will be linked into a program
if ‘-fmudflap’ is given at link time. Run-time behavior of the instrumented
program is controlled by the MUDFLAP_QPTIONS environment variable. See env
MUDFLAP_QPTIONS=-help a.out for its options.

Use ‘-fmudflapth’ instead of ‘~fmudflap’ to compile and to link if your pro-
gram is multi-threaded. Use ‘-fmudflapir’, in addition to ‘-fmudflap’ or

Chapter 3:

GCC Command Options 75

‘~fmudflapth’, if instrumentation should ignore pointer reads. This produces
less instrumentation (and therefore faster execution) and still provides some
protection against outright memory corrupting writes, but allows erroneously
read data to propagate within a program.

-fthread-jumps

Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point immedi-
ately following it, depending on whether the condition is known to be true or
false.

Enabled at levels ‘=02, ‘~-=03’, ‘-0s’.

-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when
CSE encounters an if statement with an else clause, CSE will follow the jump
when the condition tested is false.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fcse-skip-blocks

This is similar to ‘~fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-frerun-cse-after-loop

-fgcse

-fgcse—1m

-fgcse—-sm

Re-run common subexpression elimination after loop optimizations has been
performed.

Enabled at levels ‘=02, ‘~-=03’, ‘-0s’.

Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension,
you may get better runtime performance if you disable the global common
subexpression elimination pass by adding ‘-fno-gcse’ to the command line.

Enabled at levels ‘=02, ‘~-=03’, ‘-0s’.

When ‘-fgcse-1m’ is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

Enabled by default when gcse is enabled.

When ‘-fgcse-sm’ is enabled, a store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops.

76 Using the GNU Compiler Collection (GCC)

When used in conjunction with ‘~fgcse-1m’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

Not enabled at any optimization level.

-fgcse-las
When ‘-fgcse-las’ is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).

Not enabled at any optimization level.

-fgcse-after-reload
When ‘-fgcse-after-reload’ is enabled, a redundant load elimination pass
is performed after reload. The purpose of this pass is to cleanup redundant
spilling.

-funsafe-loop-optimizations
If given, the loop optimizer will assume that loop indices do not overflow, and
that the loops with nontrivial exit condition are not infinite. This enables a
wider range of loop optimizations even if the loop optimizer itself cannot prove
that these assumptions are valid. Using ‘-Wunsafe-loop-optimizations’, the
compiler will warn you if it finds this kind of loop.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent
code and save code size. The resulting code may or may not perform better
than without cross-jumping.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by if-conversion2.

Enabled at levels ‘-0’, *-02’, ‘-03’, ‘-0s’.

-fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels ‘-0’, ‘-02’, ‘=03, ‘-0s’.

-fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks for null
pointers. The compiler assumes that dereferencing a null pointer would have
halted the program. If a pointer is checked after it has already been derefer-
enced, it cannot be null.

In some environments, this assumption is not true, and programs can safely
dereference null pointers. Use ‘-fno-delete-null-pointer-checks’ to disable
this optimization for programs which depend on that behavior.

Enabled at levels ‘=02, ‘-=03’, ‘-0s’.

Chapter 3: GCC Command Options 7

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-foptimize-register-move

—-fregmove
Attempt to reassign register numbers in move instructions and as operands of
other simple instructions in order to maximize the amount of register tying.
This is especially helpful on machines with two-operand instructions.

Note ‘-fregmove’ and ‘-foptimize-register-move’ are the same optimiza-
tion.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

Enabled at levels ‘-0’, ‘-02°, ‘-03’, ‘-0s’.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fschedule-insns2
Similar to ‘~fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by
default when scheduling before register allocation, i.e. with ‘-fschedule-insns’
or at ‘=02’ or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e. with
‘~fschedule-insns’ or at ‘-02’ or higher.

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘=02’ or higher.

78 Using the GNU Compiler Collection (GCC)

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘=02’ or higher.

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue of
stalled insns into the ready list, during the second scheduling pass.

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) will be examined for a dependency
on a stalled insn that is candidate for premature removal from the queue of
stalled insns. Has an effect only during the second scheduling pass, and only if
‘~fsched-stalled-insns’ is used and its value is not zero.

-fsched2-use-superblocks
When scheduling after register allocation, do use superblock scheduling algo-
rithm. Superblock scheduling allows motion across basic block boundaries re-
sulting on faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with
‘~fschedule-insns2’ or at ‘-02’ or higher.

-fsched2-use-traces
Use ‘~fsched2-use-superblocks’ algorithm when scheduling after register al-
location and additionally perform code duplication in order to increase the size
of superblocks using tracer pass. See ‘~ftracer’ for details on trace formation.

This mode should produce faster but significantly longer programs. Also with-
out ‘-fbranch-probabilities’ the traces constructed may not match the re-
ality and hurt the performance. This only makes sense when scheduling after
register allocation, i.e. with ‘~-fschedule-insns2’ or at ‘02’ or higher.

-fsee Eliminates redundant extension instructions and move the non redundant ones
to optimal placement using LCM.

-freschedule-modulo-scheduled-loops
The modulo scheduling comes before the traditional scheduling, if a loop was
modulo scheduled we may want to prevent the later scheduling passes from
changing its schedule, we use this option to control that.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

Enabled at levels ‘=02, ‘-=03’, ‘-0s’.

Chapter 3: GCC Command Options 79

-ftree-pre
Perform Partial Redundancy Elimination (PRE) on trees. This flag is enabled
by default at ‘=02’ and ‘-03’.

-ftree-fre
Perform Full Redundancy Elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on all
paths leading to the redundant computation. This analysis faster than PRE,
though it exposes fewer redundancies. This flag is enabled by default at ‘-0’
and higher.

—-ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at ‘-0’ and higher.

-ftree-store-copy-prop
Perform copy propagation of memory loads and stores. This pass eliminates
unnecessary copy operations in memory references (structures, global variables,
arrays, etc). This flag is enabled by default at ‘~-02” and higher.

-ftree-salias
Perform structural alias analysis on trees. This flag is enabled by default at
‘-0’ and higher.

-fipa-pta
Perform interprocedural pointer analysis.

-ftree-sink
Perform forward store motion on trees. This flag is enabled by default at ‘-0’
and higher.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at ‘-0’ and
higher.

-ftree-store-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
operates on both local scalar variables and memory stores and loads (global
variables, structures, arrays, etc). This flag is enabled by default at ‘-02’ and
higher.

-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default
at ‘=0 and higher.

-ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redun-
dancy elimination, range propagation and expression simplification) based on a
dominator tree traversal. This also performs jump threading (to reduce jumps
to jumps). This flag is enabled by default at ‘-0’ and higher.

80 Using the GNU Compiler Collection (GCC)

-ftree-ch
Perform loop header copying on trees. This is beneficial since it increases ef-
fectiveness of code motion optimizations. It also saves one jump. This flag is
enabled by default at ‘=0’ and higher. It is not enabled for ‘-0s’, since it usually
increases code size.

-ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default at ‘-0’ and
higher.

-ftree-loop-linear
Perform linear loop transformations on tree. This flag can improve cache per-
formance and allow further loop optimizations to take place.

-ftree-loop-im
Perform loop invariant motion on trees. This pass moves only invariants that
would be hard to handle at RTL level (function calls, operations that expand
to nontrivial sequences of insns). With ‘-funswitch-loops’ it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion.

-ftree-loop-ivcanon
Create a canonical counter for number of iterations in the loop for that deter-
mining number of iterations requires complicated analysis. Later optimizations
then may determine the number easily. Useful especially in connection with
unrolling.

-fivopts Perform induction variable optimizations (strength reduction, induction vari-
able merging and induction variable elimination) on trees.

-ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure refer-
ences with scalars to prevent committing structures to memory too early. This
flag is enabled by default at ‘-0’ and higher.

-ftree-copyrename
Perform copy renaming on trees. This pass attempts to rename compiler tem-
poraries to other variables at copy locations, usually resulting in variable names
which more closely resemble the original variables. This flag is enabled by de-
fault at ‘-0’ and higher.

-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Sin-
gle use/single def temporaries are replaced at their use location with their defin-
ing expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This
is enabled by default at ‘-0’ and higher.

-ftree-1rs
Perform live range splitting during the SSA->normal phase. Distinct live ranges
of a variable are split into unique variables, allowing for better optimization
later. This is enabled by default at ‘-0’ and higher.

Chapter 3: GCC Command Options 81

-ftree-vectorize
Perform loop vectorization on trees.

-ftree-vect-loop-version
Perform loop versioning when doing loop vectorization on trees. When a loop
appears to be vectorizable except that data alignment or data dependence can-
not be determined at compile time then vectorized and non-vectorized versions
of the loop are generated along with runtime checks for alignment or depen-
dence to control which version is executed. This option is enabled by default
except at level ‘=08’ where it is disabled.

-ftree-vrp
Perform Value Range Propagation on trees. This is similar to the constant prop-
agation pass, but instead of values, ranges of values are propagated. This allows
the optimizers to remove unnecessary range checks like array bound checks and
null pointer checks. This is enabled by default at ‘=02’ and higher. Null pointer
check elimination is only done if ‘-fdelete-null-pointer-checks’ is enabled.

-ftracer Perform tail duplication to enlarge superblock size. This transformation sim-
plifies the control flow of the function allowing other optimizations to do better
job.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘~frerun-cse-after-loop’.
This option makes code larger, and may or may not make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘~funroll-loops’,

-fsplit-ivs-in-unroller
Enables expressing of values of induction variables in later iterations of the
unrolled loop using the value in the first iteration. This breaks long dependency
chains, thus improving efficiency of the scheduling passes.

Combination of ‘-fweb’ and CSE is often sufficient to obtain the same effect.
However in cases the loop body is more complicated than a single basic block,
this is not reliable. It also does not work at all on some of the architectures
due to restrictions in the CSE pass.

This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler will create multiple copies of some local variables
when unrolling a loop which can result in superior code.

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

This option may generate better or worse code; results are highly dependent on
the structure of loops within the source code.

82 Using the GNU Compiler Collection (GCC)

Disabled at level ‘-0s’.

-fno-peephole

-fno-peephole?2
Disable any machine-specific peephole optimizations. The difference between
‘~fno-peephole’ and ‘-fno-peephole?2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.
‘~-fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-027,
03", ‘-0s’.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.
GCC will use heuristics to guess branch probabilities if they are not
provided by profiling feedback (‘-fprofile-arcs’). These heuristics
are based on the control flow graph. If some branch probabilities are
specified by ‘__builtin_expect’, then the heuristics will be used to guess
branch probabilities for the rest of the control flow graph, taking the
‘__builtin_expect’ info into account. The interactions between the heuristics
and ‘__builtin_expect’ can be complex, and in some cases, it may be useful
to disable the heuristics so that the effects of ‘__builtin_expect’ are easier
to understand.

The default is ‘~fguess-branch-probability’ at levels ‘07, ‘-02’, *-03’, ‘~0s’.

-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

Enabled at levels ‘-02’, *-03’.

-freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order to
reduce number of taken branches, partitions hot and cold basic blocks into
separate sections of the assembly and .o files, to improve paging and cache
locality performance.

This optimization is automatically turned off in the presence of exception han-
dling, for linkonce sections, for functions with a user-defined section attribute
and on any architecture that does not support named sections.

-freorder-functions
Reorder functions in the object file in order to improve code locality. This is im-
plemented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is
done by the linker so object file format must support named sections and linker
must place them in a reasonable way.

Also profile feedback must be available in to make this option effective. See
‘~fprofile-arcs’ for details.
Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to the
language being compiled. For C (and C++), this activates optimizations based

Chapter 3: GCC Command Options 83

on the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.

Pay special attention to code like this:

union a_union {
int i;

double d;

};

int £() {
a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. FEven with
‘~fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above will work as expected.
However, this code might not:

int £() {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.1i;
return *ip;
}
Every language that wishes to perform language-specific alias analysis should
define a function that computes, given an tree node, an alias set for the node.
Nodes in different alias sets are not allowed to alias. For an example, see the C

front-end function c_get_alias_set.
Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fstrict-overflow

Allow the compiler to assume strict signed overflow rules, depending on the lan-
guage being compiled. For C (and C++) this means that overflow when doing
arithmetic with signed numbers is undefined, which means that the compiler
may assume that it will not happen. This permits various optimizations. For
example, the compiler will assume that an expression like i + 10 > i will always
be true for signed i. This assumption is only valid if signed overflow is unde-
fined, as the expression is false if 1 + 10 overflows when using twos complement
arithmetic. When this option is in effect any attempt to determine whether
an operation on signed numbers will overflow must be written carefully to not
actually involve overflow.

See also the ‘-fwrapv’ option. Using ‘~fwrapv’ means that signed overflow is
fully defined: it wraps. When ‘-fwrapv’ is used, there is no difference between
‘~-fstrict-overflow’ and ‘-fno-strict-overflow’. With ‘~fwrapv’ certain
types of overflow are permitted. For example, if the compiler gets an overflow
when doing arithmetic on constants, the overflowed value can still be used with
‘~fwrapv’, but not otherwise.

The ‘-fstrict-overflow’ option is enabled at levels ‘-02’, ‘-03’, ‘-0s’.

84 Using the GNU Compiler Collection (GCC)

-falign-arrays
Set the minimum alignment for array variables to be the largest power of two
less than or equal to their total storage size, or the biggest alignment used on
the machine, whichever is smaller. This option may be helpful when compiling
legacy code that uses type punning on arrays that does not strictly conform to
the C standard.

-falign-functions

-falign-functions=n
Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the
next 32-byte boundary, but ‘-falign-functions=24" would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.

‘~fno-align-functions’ and ‘~falign-functions=1’ are equivalent and mean
that functions will not be aligned.

Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘-02’, *-03’.

-falign-labels

-falign-labels=n
Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘-~falign-functions’. This option can easily make code slower, because
it must insert dummy operations for when the branch target is reached in the
usual flow of the code.

‘-fno-align-labels’ and ‘-falign-labels=1" are equivalent and mean that
labels will not be aligned.

If ‘-falign-loops’ or ‘~falign-jumps’ are applicable and are greater than this
value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’, meaning no alignment.

Enabled at levels ‘-02’, *-03’.

-falign-loops

-falign-loops=n
Align loops to a power-of-two boundary, skipping up to n bytes like
‘~falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.

‘-fno-align-loops’ and ‘-falign-loops=1’" are equivalent and mean that
loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘-02’, ‘~-03’.

Chapter 3: GCC Command Options 85

-falign-jumps
-falign-jumps=n

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘~falign-functions’. In this case, no dummy operations need be executed.
‘~fno-align-jumps’ and ‘-falign-jumps=1’" are equivalent and mean that
loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘=02, ‘~-03’.

-funit-at-a-time

Parse the whole compilation unit before starting to produce code. This allows
some extra optimizations to take place but consumes more memory (in general).
There are some compatibility issues with unit-at-a-time mode:

e enabling unit-at-a-time mode may change the order in which functions,
variables, and top-level asm statements are emitted, and will likely break
code relying on some particular ordering. The majority of such top-level
asm statements, though, can be replaced by section attributes. The
‘fno-toplevel-reorder’ option may be used to keep the ordering used
in the input file, at the cost of some optimizations.

e unit-at-a-time mode removes unreferenced static variables and functions.
This may result in undefined references when an asm statement refers di-
rectly to variables or functions that are otherwise unused. In that case
either the variable/function shall be listed as an operand of the asm state-
ment operand or, in the case of top-level asm statements the attribute used
shall be used on the declaration.

e Static functions now can use non-standard passing conventions that may
break asm statements calling functions directly. Again, attribute used will
prevent this behavior.

As a temporary workaround, ‘-~fno-unit-at-a-time’ can be used, but this
scheme may not be supported by future releases of GCC.

Enabled at levels ‘-0’, *-02’, ‘-03’, ‘-0s’.

-fno-toplevel-reorder

-fweb

Do not reorder top-level functions, variables, and asm statements. Qutput them
in the same order that they appear in the input file. When this option is used,
unreferenced static variables will not be removed. This option is intended to
support existing code which relies on a particular ordering. For new code, it is
better to use attributes.

Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables will no longer stay in a
“home register”.

Enabled by default with ‘-funroll-loops’.

86 Using the GNU Compiler Collection (GCC)

-fwhole-program

Assume that the current compilation unit represents whole program being com-
piled. All public functions and variables with the exception of main and those
merged by attribute externally_visible become static functions and in a af-
fect gets more aggressively optimized by interprocedural optimizers. While this
option is equivalent to proper use of static keyword for programs consisting
of single file, in combination with option ‘--combine’ this flag can be used to
compile most of smaller scale C programs since the functions and variables be-
come local for the whole combined compilation unit, not for the single source
file itself.

-fno-cprop-registers
After register allocation and post-register allocation instruction splitting, we
perform a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.

Disabled at levels ‘-0’, ‘*-02’, ‘-03’, ‘-0s’.

-fprofile-generate
Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use ‘-fprofile-generate’ both when compiling and when linking your
program.

The following options are enabled: -fprofile-arcs, -fprofile-values, -
fvpt.

-fprofile-use
Enable profile feedback directed optimizations, and optimizations generally
profitable only with profile feedback available.

The following options are enabled: -fbranch-probabilities, -fvpt,
-funroll-loops, -fpeel-loops, -ftracer

The following options control compiler behavior regarding floating point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘~ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

-ffast-math
Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’,
‘~fno-trapping-math’, ‘~ffinite-math-only’, ‘~fno-rounding-math’,
‘-fno-signaling-nans’ and ‘fcx-limited-range’.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

Chapter 3: GCC Command Options 87

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

-fno-math-errno

Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘-fmath-errno’.

On Darwin systems, the math library never sets errno. There is therefore
no reason for the compiler to consider the possibility that it might, and
‘~fno-math-errno’ is the default.

-funsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~-fno-unsafe-math-optimizations’.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications.

The default is ‘~fno-finite-math-only’.

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inex-
act result and invalid operation. This option implies ‘-fno-signaling-nans’.
Setting this option may allow faster code if one relies on “non-stop” IEEE
arithmetic, for example.
This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~ftrapping-math’.
—-frounding-math

Disable transformations and optimizations that assume default floating point
rounding behavior. This is round-to-zero for all floating point to integer con-

88

Using the GNU Compiler Collection (GCC)

versions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynami-
cally, or that may be executed with a non-default rounding mode. This option
disables constant folding of floating point expressions at compile-time (which
may be affected by rounding mode) and arithmetic transformations that are
unsafe in the presence of sign-dependent rounding modes.

The default is ‘~fno-rounding-math’.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command line option will be used to specify the default state for FENV_ACCESS.

-frtl-abstract-sequences

It is a size optimization method. This option is to find identical sequences of
code, which can be turned into pseudo-procedures and then replace all occur-
rences with calls to the newly created subroutine. It is kind of an opposite of
‘~finline-functions’. This optimization runs at RTL level.

-fsignaling-nans

Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ‘-ftrapping-math’.

This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘-fno-signaling-nans’.

This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

-fsingle-precision-constant

Treat floating point constant as single precision constant instead of implicitly
converting it to double precision constant.

-fcx-limited-range
-fno-cx-limited-range

When enabled, this option states that a range reduction step is not needed
when performing complex division. The default is ‘~fno-cx-limited-range’,
but is enabled by ‘-ffast-math’.

This option controls the default setting of the ISO C99 CX_LIMITED_RANGE
pragma. Nevertheless, the option applies to all languages.

The following options control optimizations that may improve performance, but are not

enabled by any ‘-0’ options. This section includes experimental options that may produce
broken code.

-fbranch-probabilities

After running a program compiled with ‘~fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gccl, page 56), you can compile it a sec-
ond time using ‘-fbranch-probabilities’, to improve optimizations based

Chapter 3: GCC Command Options 89

on the number of times each branch was taken. When the program com-
piled with ‘~fprofile-arcs’ exits it saves arc execution counts to a file called
‘sourcename.gcda’ for each source file The information in this data file is very
dependent on the structure of the generated code, so you must use the same
source code and the same optimization options for both compilations.

With ‘-fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is mostly to take, the ‘REG_BR_PROB’ values are used to
exactly determine which path is taken more often.

-fprofile-values

-fvpt

If combined with ‘~-fprofile-arcs’, it adds code so that some data about
values of expressions in the program is gathered.

With ‘~fbranch-probabilities’, it reads back the data gathered from profil-
ing values of expressions and adds ‘REG_VALUE_PROFILE’ notes to instructions
for their later usage in optimizations.

Enabled with ‘-fprofile-generate’ and ‘~fprofile-use’.

If combined with ‘-fprofile-arcs’, it instructs the compiler to add a code to
gather information about values of expressions.

With ‘~fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operation using the knowledge about the value of the
denominator.

-frename-registers

-ftracer

Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization will most benefit processors
with lots of registers. Depending on the debug information format adopted by
the target, however, it can make debugging impossible, since variables will no
longer stay in a “home register”.

Enabled by default with ‘~funroll-loops’.
Perform tail duplication to enlarge superblock size. This transformation sim-

plifies the control flow of the function allowing other optimizations to do better
job.

Enabled with ‘~fprofile-use’.

-funroll-loops

Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘~frerun-cse-after-loop’,
‘~fweb’ and ‘~frename-registers’. It also turns on complete loop peeling (i.e.
complete removal of loops with small constant number of iterations). This
option makes code larger, and may or may not make it run faster.

Enabled with ‘~fprofile-use’.

90 Using the GNU Compiler Collection (GCC)

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘-~funroll-loops’.

-fpeel-loops
Peels the loops for that there is enough information that they do not roll much
(from profile feedback). It also turns on complete loop peeling (i.e. complete
removal of loops with small constant number of iterations).

Enabled with ‘~fprofile-use’.

-fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled at
level ‘-01’

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

-ffunction-sections

-fdata-sections
Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format and SPARC processors running Solaris 2 have linkers with
such optimizations. AIX may have these optimizations in the future.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and
executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging
if you specify both this option and ‘-g’.

—-fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue
threading. The use of target registers can typically be exposed only during
reload, thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.

-fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue
threading.

-fbtr-bb-exclusive
When performing branch target register load optimization, don’t reuse branch
target registers in within any basic block.

-fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing attacks.
This is done by adding a guard variable to functions with vulnerable objects.

Chapter 3: GCC Command Options 91

This includes functions that call alloca, and functions with buffers larger than
8 bytes. The guards are initialized when a function is entered and then checked
when the function exits. If a guard check fails, an error message is printed and
the program exits.

-fstack-protector-all
Like ‘-fstack-protector’ except that all functions are protected.

-fsection-anchors
Try to reduce the number of symbolic address calculations by using shared
“anchor” symbols to address nearby objects. This transformation can help to
reduce the number of GOT entries and GOT accesses on some targets.

For example, the implementation of the following function foo:

static int a, b, c;

int foo (void) { return a + b + ¢c; }
would usually calculate the addresses of all three variables, but if you compile it
with ‘-fsection-anchors’, it will access the variables from a common anchor
point instead. The effect is similar to the following pseudocode (which isn’t
valid C):

int foo (void)

¢ register int *xr = &x;

return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];

}
Not all targets support this option.

-fremove-local-statics
Converts function-local static variables to automatic variables when it is safe
to do so. This transformation can reduce the number of instructions executed
due to automatic variables being cheaper to read/write than static variables.

--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC will not inline functions that contain more
that a certain number of instructions. You can control some of these constants
on the command-line using the ‘--param’ option.

The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.

In each case, the value is an integer. The allowable choices for name are given
in the following table:

salias-max-implicit-fields
The maximum number of fields in a variable without direct struc-
ture accesses for which structure aliasing will consider trying to
track each field. The default is b

salias-max-array-elements
The maximum number of elements an array can have and its ele-
ments still be tracked individually by structure aliasing. The de-
fault is 4

Using the GNU Compiler Collection (GCC)

sra-max-structure-size
The maximum structure size, in bytes, at which the scalar replace-
ment of aggregates (SRA) optimization will perform block copies.
The default value, 0, implies that GCC will select the most appro-
priate size itself.

sra-field-structure-ratio
The threshold ratio (as a percentage) between instantiated fields
and the complete structure size. We say that if the ratio of the
number of bytes in instantiated fields to the number of bytes in the
complete structure exceeds this parameter, then block copies are
not used. The default is 75.

max-crossjump-edges
The maximum number of incoming edges to consider for crossjump-
ing. The algorithm used by ‘-fcrossjumping’ is O(N?) in the
number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable size.

min-crossjump-insns
The minimum number of instructions which must be matched at
the end of two blocks before crossjumping will be performed on
them. This value is ignored in the case where all instructions in
the block being crossjumped from are matched. The default value
is b.

max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.

max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that
jumps to a computed goto. To avoid O(N?) behavior in a number
of passes, GCC factors computed gotos early in the compilation
process, and unfactors them as late as possible. Only computed
jumps at the end of a basic blocks with no more than max-goto-
duplication-insns are unfactored. The default value is 8.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions is searched, the time savings from filling the delay
slot will be minimal so stop searching. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable run time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register

Chapter 3: GCC Command Options 93

information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time. This param-
eter should be removed when the delay slot code is rewritten to
maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization will not be done.

max-gcse-passes
The maximum number of passes of GCSE to run. The default is 1.

max-pending-list-length
The maximum number of pending dependencies scheduling will al-
low before flushing the current state and starting over. Large func-
tions with few branches or calls can create excessively large lists
which needlessly consume memory and resources.

max-inline-insns-single
Several parameters control the tree inliner used in gce. This num-
ber sets the maximum number of instructions (counted in GCC’s
internal representation) in a single function that the tree inliner
will consider for inlining. This only affects functions declared in-
line and methods implemented in a class declaration (C++). The
default value is 450.

max-inline-insns-auto
When you use ‘~finline-functions’ (included in ‘-03’), a lot of
functions that would otherwise not be considered for inlining by
the compiler will be investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied. The default value is 90.

large-function-insns

The limit specifying really large functions. For functions
larger than this limit after inlining inlining is constrained by
‘--param large-function-growth’. This parameter is useful

primarily to avoid extreme compilation time caused by non-linear
algorithms used by the backend. This parameter is ignored when
‘~funit-at-a-time’ is not used. The default value is 2700.

large-function-growth
Specifies maximal growth of large function caused by inlining in per-
cents. This parameter is ignored when ‘~funit-at-a-time’ is not
used. The default value is 100 which limits large function growth
to 2.0 times the original size.

large-unit-insns
The limit specifying large translation unit. Growth caused by

inlining of units larger than this limit is limited by ‘--param

Using the GNU Compiler Collection (GCC)

inline-unit-growth’. For small units this might be too tight
(consider unit consisting of function A that is inline and B that
just calls A three time. If B is small relative to A, the growth
of unit is 300\% and yet such inlining is very sane. For very
large wunits consisting of small inlininable functions however
the overall unit growth limit is needed to avoid exponential
explosion of code size. Thus for smaller units, the size is increased
to ‘--param large-unit-insns’ before applying ‘--param
inline-unit-growth’. The default is 10000
inline-unit-growth

Specifies maximal overall growth of the compilation unit caused by
inlining. This parameter is ignored when ‘-funit-at-a-time’ is
not used. The default value is 50 which limits unit growth to 1.5
times the original size.

max-inline-insns-recursive

max-inline-insns-recursive-auto
Specifies maximum number of instructions out-of-line copy of self
recursive inline function can grow into by performing recursive in-
lining.
For functions declared inline ‘--param max-inline-insns-recursive’l]
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘~-param max-inline-insns-recursive-auto’}]
is used. The default value is 450.

max-inline-recursive-depth

max-inline-recursive-depth-auto
Specifies maximum recursion depth used by the recursive inlining.
For functions declared inline ‘--param max-inline-recursive-depth’]]
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘--param max-inline-recursive-depth-auto’l]
is used. The default value is 450.

min-inline-recursive—-probability
Recursive inlining is profitable only for function having deep re-
cursion in average and can hurt for function having little recursion
depth by increasing the prologue size or complexity of function
body to other optimizers.
When profile feedback is available (see ‘~fprofile-generate’) the
actual recursion depth can be guessed from probability that func-
tion will recurse via given call expression. This parameter lim-
its inlining only to call expression whose probability exceeds given
threshold (in percents). The default value is 10.

inline-call-cost
Specify cost of call instruction relative to simple arithmetics oper-
ations (having cost of 1). Increasing this cost disqualifies inlining

Chapter 3: GCC Command Options 95

of non-leaf functions and at the same time increases size of leaf
function that is believed to reduce function size by being inlined.
In effect it increases amount of inlining for code having large ab-
straction penalty (many functions that just pass the arguments to
other functions) and decrease inlining for code with low abstraction
penalty. The default value is 16.

max-unrolled-insns
The maximum number of instructions that a loop should have if
that loop is unrolled, and if the loop is unrolled, it determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop should have if that loop is unrolled, and
if the loop is unrolled, it determines how many times the loop code
is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop should have if
that loop is peeled, and if the loop is peeled, it determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

iv-consider-all-candidates-bound
Bound on number of candidates for induction variables below that
all candidates are considered for each use in induction variable op-
timizations. Ounly the most relevant candidates are considered if
there are more candidates, to avoid quadratic time complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain
more induction variable uses.

96

Using the GNU Compiler Collection (GCC)

iv-always-prune-cand-set-bound
If number of candidates in the set is smaller than this value, we
always try to remove unnecessary ivs from the set during its opti-
mization when a new iv is added to the set.

scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

vect-max-version-checks
The maximum number of runtime checks that can be performed
when doing loop versioning in the vectorizer. See option ftree-vect-
loop-version for more information.

max-iterations-to-track
The maximum number of iterations of a loop the brute force algo-
rithm for analysis of # of iterations of the loop tries to evaluate.

hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in
program given basic block needs to have to be considered hot.

hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block
in function given basic block needs to have to be considered hot

max-predicted-iterations
The maximum number of loop iterations we predict statically. This
is useful in cases where function contain single loop with known
bound and other loop with unknown. We predict the known num-
ber of iterations correctly, while the unknown number of iterations
average to roughly 10. This means that the loop without bounds
would appear artificially cold relative to the other one.

tracer-dynamic-coverage

tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.
The ‘tracer-dynamic-coverage-feedback’ is used only when pro-
file feedback is available. The real profiles (as opposed to statically
estimated ones) are much less balanced allowing the threshold to
be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is rather hokey argument, as most of the duplicates will
be eliminated later in cross jumping, so it may be set to much
higher values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

Chapter 3: GCC Command Options 97

tracer-min-branch-ratio

tracer-min-branch-ratio-feedback
Stop forward growth if the best edge do have probability lower than
this threshold.

Similarly to ‘tracer-dynamic-coverage’ two values are present,
one for compilation for profile feedback and one for compilation
without. The value for compilation with profile feedback needs to
be more conservative (higher) in order to make tracer effective.

max-cse-path-length
Maximum number of basic blocks on path that cse considers. The
default is 10.

max-cse-insns
The maximum instructions CSE process before flushing. The de-
fault is 1000.

global-var-threshold
Counts the number of function calls (n) and the number of call-
clobbered variables (v). If nxv is larger than this limit, a single
artificial variable will be created to represent all the call-clobbered
variables at function call sites. This artificial variable will then be
made to alias every call-clobbered variable. (done as int * size_t
on the host machine; beware overflow).

max-aliased-vops
Maximum number of virtual operands allowed to represent aliases
before triggering the alias grouping heuristic. Alias grouping re-
duces compile times and memory consumption needed for aliasing
at the expense of precision loss in alias information.

ggc-min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the no-
tion of "RAM" is the smallest of actual RAM and RLIMIT_DATA or
RLIMIT_AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter
and ‘ggc-min-heapsize’ to zero causes a full collection to occur
at every opportunity. This is extremely slow, but can be useful for
debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins
bothering to collect garbage. The first collection occurs after the
heap expands by ‘ggc-min-expand’% beyond ‘ggc-min-heapsize’.

98

Using the GNU Compiler Collection (GCC)

Again, tuning this may improve compilation speed, and has no
effect on code generation.

The default is the smaller of RAM/8, RLIMIT_RSS, or a limit
which tries to ensure that RLIMIT_DATA or RLIMIT_AS are not
exceeded, but with a lower bound of 4096 (four megabytes) and
an upper bound of 131072 (128 megabytes). If GCC is not able
to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ‘ggc-min-expand’ to zero
causes a full collection to occur at every opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-
timization, making the compile time increase with probably slightly
better performance. The default value is 100.

max-cselib-memory-locations
The maximum number of memory locations cselib should take into
account. Increasing values mean more aggressive optimization,
making the compile time increase with probably slightly better per-
formance. The default value is 500.

max-flow-memory-locations
Similar as ‘max-cselib-memory-locations’ but for dataflow live-
ness. The default value is 100.

reorder-blocks-duplicate

reorder-blocks-duplicate-feedback
Used by basic block reordering pass to decide whether to use un-
conditional branch or duplicate the code on its destination. Code
is duplicated when its estimated size is smaller than this value mul-
tiplied by the estimated size of unconditional jump in the hot spots
of the program.

The ‘reorder-block-duplicate-feedback’ is used only when pro-
file feedback is available and may be set to higher values than
‘reorder-block-duplicate’ since information about the hot spots
is more accurate.

max-sched-ready-insns
The maximum number of instructions ready to be issued the sched-
uler should consider at any given time during the first scheduling
pass. Increasing values mean more thorough searches, making the
compilation time increase with probably little benefit. The default
value is 100.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.

Chapter 3: GCC Command Options 99

max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.

min-spec-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling. The default value is 40.

max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
0 - disable region extension, N - do at most N iterations. The default
value is 0.

max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for spec-
ulative motion. The default value is 3.

sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so
that speculative insn will be scheduled. The default value is 40.

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register. The default is 10000.

integer-share-1limit
Small integer constants can use a shared data structure, reducing
the compiler’s memory usage and increasing its speed. This sets the
maximum value of a shared integer constant’s. The default value

is 256.

min-virtual-mappings
Specifies the minimum number of virtual mappings in the incre-
mental SSA updater that should be registered to trigger the virtual
mappings heuristic defined by virtual-mappings-ratio. The default
value is 100.

virtual-mappings-ratio
If the number of virtual mappings is virtual-mappings-ratio bigger
than the number of virtual symbols to be updated, then the incre-
mental SSA updater switches to a full update for those symbols.
The default ratio is 3.

ssp-buffer-size
The minimum size of buffers (i.e. arrays) that will receive stack
smashing protection when ‘-fstack-protection’ is used.

max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to
be duplicated when threading jumps.

100 Using the GNU Compiler Collection (GCC)

max-fields-for-field-sensitive
Maximum number of fields in a structure we will treat in a field
sensitive manner during pointer analysis.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options
make sense only together with ‘~E’ because they cause the preprocessor output to be un-
suitable for actual compilation.

You can use ‘~Wp,option’ to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor,
and ‘-Wp’ forcibly bypasses this phase. The preprocessor’s direct interface is
undocumented and subject to change, so whenever possible you should avoid
using ‘-Wp’ and let the driver handle the options instead.

-Xpreprocessor option
Pass option as an option to the preprocessor. You can use this to supply system-
specific preprocessor options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘~Xpreprocessor’ twice, once for the option and once for the argument.

-D name Predefine name as a macro, with definition 1.

-D name=definition
The contents of definition are tokenized and processed as if they appeared dur-
ing translation phase three in a ‘#define’ directive. In particular, the definition
will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, ‘-D’name (args...)=definition’’ works.

‘=D’ and ‘-U’ options are processed in the order they are given on the command
line. All ‘-~imacros file’ and ‘-include file’ options are processed after all
‘~D’ and ‘-U’ options.

-U name Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

-undef Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Chapter 3: GCC Command Options 101

-1 dir

-0 file

-Wall

-Wcomment

-Wcomments

Add the directory dir to the list of directories to be searched for header files.
Directories named by ‘-I’ are searched before the standard system include di-
rectories. If the directory dir is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and the
special treatment of system headers are not defeated . If dir begins with =, then
the = will be replaced by the sysroot prefix; see ‘~-sysroot’ and ‘-isysroot’.

Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option
argument, so you must use ‘-0’ to specify the output file.

Turns on all optional warnings which are desirable for normal code. At present
this is ‘-Wcomment’, ‘-Wtrigraphs’, ‘-Wmultichar’ and a warning about integer
promotion causing a change of sign in #if expressions. Note that many of the
preprocessor’s warnings are on by default and have no options to control them.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. (Both forms have
the same effect.)

-Wtrigraphs

Most trigraphs in comments cannot affect the meaning of the program. How-
ever, a trigraph that would form an escaped newline (‘??7/” at the end of a line)
can, by changing where the comment begins or ends. Therefore, only trigraphs
that would form escaped newlines produce warnings inside a comment.

This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option
is still enabled unless trigraphs are enabled. To get trigraph conversion
without warnings, but get the other ‘-Wall’ warnings, use ‘~trigraphs -Wall
-Wno-trigraphs’.

-Wtraditional

—-Wimport
-Wundef

Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and problematic constructs which should be avoided.

Warn the first time ‘#import’ is used.

Warn whenever an identifier which is not a macro is encountered in an ‘#if’
directive, outside of ‘defined’. Such identifiers are replaced with zero.

-Wunused-macros

Warn about macros defined in the main file that are unused. A macro is used if
it is expanded or tested for existence at least once. The preprocessor will also
warn if the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks,
then CPP will report it as unused. To avoid the warning in such a case, you
might improve the scope of the macro’s definition by, for example, moving it

102

Using the GNU Compiler Collection (GCC)

into the first skipped block. Alternatively, you could provide a dummy use with
something like:

#if defined the_macro_causing_the_warning
#endif

-Wendif-labels

-Werror

Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually
happens in code of the form
#if FOO

#éise FOO0

#endif FOO
The second and third FOO should be in comments, but often are not in older
programs. This warning is on by default.

Make all warnings into hard errors. Source code which triggers warnings will
be rejected.

-Wsystem-headers

-w

-pedantic

-pedantic-

Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible for
the system library, you may want to see them.

Suppress all warnings, including those which GNU CPP issues by default.

Issue all the mandatory diagnostics listed in the C standard. Some of them are
left out by default, since they trigger frequently on harmless code.

errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
‘-pedantic’ but treats as warnings.

Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and
the names of all the included files, including those coming from ‘-include’ or
‘~imacros’ command line options.

Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of
the basename of the source file with any suffix replaced with object file suffix.
If there are many included files then the rule is split into several lines using
‘\"-newline. The rule has no commands.

This option does not suppress the preprocessor’s debug output, such as ‘~dM’.
To avoid mixing such debug output with the dependency rules you should ex-
plicitly specify the dependency output file with ‘-MF’, or use an environment
variable like DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables],
page 210). Debug output will still be sent to the regular output stream as
normal.

Passing ‘-M’ to the driver implies ‘-E’, and suppresses warnings with an implicit

—w.

Chapter 3:

-MF file

-MT target

-MQ target

GCC Command Options 103

Like ‘-M’ but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from such
a header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’
dependency output. This is a slight change in semantics from GCC versions
3.0 and earlier.

When used with ‘=M’ or ‘-MM’, specifies a file to write the dependencies to. If
no ‘-MF’ switch is given the preprocessor sends the rules to the same place it
would have sent preprocessed output.

When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default
dependency output file.

In conjunction with an option such as ‘-M’ requesting dependency generation,
‘-MG’ assumes missing header files are generated files and adds them to the
dependency list without raising an error. The dependency filename is taken
directly from the #include directive without prepending any path. ‘-MG’ also
suppresses preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.

This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without updating the
‘Makefile’ to match.

This is typical output:
test.o: test.c test.h

test.h:

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, including any path, deletes any file
suffix such as ‘.c’, and appends the platform’s usual object suffix. The result
is the target.

An ‘-MT’ option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to ‘-MT’, or
use multiple ‘-MT’ options.
For example, ‘-MT ’$(objpfx)foo.0’’ might give

$(objpfx)foo.0: foo.c

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ *$(objpfx)foo.0’’ gives
$$ (objpfx)foo.o: foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

‘-MD’ is equivalent to ‘-M -MF file’, except that ‘-E’ is not implied. The driver
determines file based on whether an ‘-0’ option is given. If it is, the driver uses

104

-MMD

-fpch-deps

Using the GNU Compiler Collection (GCC)

its argument but with a suffix of ‘.d’, otherwise it take the basename of the
input file and applies a ‘.d’ suffix.

If ‘=MD’ is used in conjunction with ‘-E’, any ‘-0’ switch is understood to specify
the dependency output file (see [-MF], page 103), but if used without ‘-E’, each
‘-0’ is understood to specify a target object file.

Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output
file as a side-effect of the compilation process.

Like ‘=MD’ except mention only user header files, not system header files.

When using precompiled headers (see Section 3.20 [Precompiled Headers],
page 212), this flag will cause the dependency-output flags to also list the
files from the precompiled header’s dependencies. If not specified only the
precompiled header would be listed and not the files that were used to create
it because those files are not consulted when a precompiled header is used.

-fpch-preprocess

=X C

-X Cc++

This option allows use of a precompiled header (see Section 3.20 [Precompiled
Headers], page 212) together with ‘-E’. It inserts a special #pragma, #pragma
GCC pch_preprocess "<filename>" in the output to mark the place where the
precompiled header was found, and its filename. When ‘-fpreprocessed’ is in
use, GCC recognizes this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is only
really suitable as input to GCC. It is switched on by ‘~-save-temps’.

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename may
be absolute or it may be relative to GCC’s current directory.

-x objective-c
-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has noth-
ing to do with standards conformance or extensions; it merely selects which
base syntax to expect. If you give none of these options, cpp will deduce the
language from the extension of the source file: ‘.c’, ‘.cc’, *.m’, or ‘.8". Some
other common extensions for C++ and assembly are also recognized. If cpp does
not recognize the extension, it will treat the file as C; this is the most generic

mode.

Note: Previous versions of cpp accepted a ‘~lang’ option which selected both
the language and the standards conformance level. This option has been re-
moved, because it conflicts with the ‘=1’ option.

-std=standard

-ansi

Specify the standard to which the code should conform. Currently CPP knows
about C and C++ standards; others may be added in the future.

standard may be one of:

Chapter 3: GCC Command Options 105

-nostdinc

1509899:1990
c89 The ISO C standard from 1990. ‘c89’ is the customary shorthand
for this version of the standard.

The ‘~ansi’ option is equivalent to ‘~std=c89’.

1s09899:199409
The 1990 C standard, as amended in 1994.

1509899:1999

c99

1s09899:199x

c9x The revised ISO C standard, published in December 1999. Before
publication, this was known as C9X.

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99

gnu9x The 1999 C standard plus GNU extensions.

c++98 The 1998 ISO C++ standard plus amendments.

gnu++98 The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

Split the include path. Any directories specified with ‘I’ options before *-I-’
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with ‘=1’
options after the ‘-I-’, those directories are searched for all ‘#include’ direc-
tives.

In addition, ‘-I-’ inhibits the use of the directory of the current file direc-
tory as the first search directory for #include "file". This option has been
deprecated.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I’ options (and the directory of the current file,
if appropriate) are searched.

-nostdinc++

Do not search for header files in the C++-specific standard directories, but do
still search the other standard directories. (This option is used when building
the C++ library.)

—-include file

Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple ‘-include’ options are given, the files are included in the order they
appear on the command line.

106 Using the GNU Compiler Collection (GCC)

-imacros file
Exactly like ‘-include’, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

All files specified by ‘-imacros’ are processed before all files specified by
‘~include’.

-idirafter dir
Search dir for header files, but do it after all directories specified with ‘-I’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘~-sysroot’ and ‘-isysroot’.

-iprefix prefix
Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final /.

-iwithprefix dir

-iwithprefixbefore dir
Append dir to the prefix specified previously with ‘-iprefix’, and add the
resulting directory to the include search path. ‘-iwithprefixbefore’ puts it
in the same place ‘I’ would; ‘~iwithprefix’ puts it where ‘-idirafter’ would.

—-isysroot dir
This option is like the ‘~-sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.
-imultilib dir
Use dir as a subdirectory of the directory containing target-specific C++ headers.
-isystem dir
Search dir for header files, after all directories specified by ‘-I' but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘--sysroot’
and ‘-isysroot’.

-iquote dir
Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-1’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘~isysroot’.

-fdollars-in-identifiers
Accept ‘$’ in identifiers.

-fextended-identifiers
Accept universal character names in identifiers. This option is experimental; in

a future version of GCC, it will be enabled by default for C99 and C++.

—-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-

Chapter 3: GCC Command Options 107

line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘-C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.

‘~fpreprocessed’ is implicit if the input file has one of the extensions ‘.1i’,

“.ii’ or ‘.mi’. These are the extensions that GCC uses for preprocessed files
created by ‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-fexec-charset=charset
Set the execution character set, used for string and character constants. The
default is UTF-8. charset can be any encoding supported by the system’s iconv
library routine.

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character con-
stants. The default is UTF-32 or UTF-16, whichever corresponds to the width
of wchar_t. As with ‘~fexec-charset’, charset can be any encoding supported
by the system’s iconv library routine; however, you will have problems with
encodings that do not fit exactly in wchar_t.

-finput-charset=charset
Set the input character set, used for translation from the character set of the
input file to the source character set used by GCC. If the locale does not specify,
or GCC cannot get this information from the locale, the default is UTF-8. This
can be overridden by either the locale or this command line option. Currently
the command line option takes precedence if there’s a conflict. charset can be
any encoding supported by the system’s iconv library routine.

—-fworking-directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it’s present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

108

Using the GNU Compiler Collection (GCC)

—-A predicate=answer

Make an assertion with the predicate predicate and answer answer. This form is
preferred to the older form ‘-A predicate (answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer

—-dCHARS

-CC

Cancel an assertion with the predicate predicate and answer answer.

CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the compiler
proper, or reserved for future versions of GCC, and so are silently ignored. If
you specify characters whose behavior conflicts, the result is undefined.

M Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.
‘D’ Like ‘M except in two respects: it does not include the predefined

macros, and it outputs both the ‘#define’ directives and the result
of preprocessing. Both kinds of output go to the standard output

file.

‘N Like ‘D’, but emit only the macro names, not their expansions.

‘T Output ‘#include’ directives in addition to the result of prepro-
cessing.

Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#.

Do not discard comments, including during macro expansion. This is like ‘~C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line.

The ‘-CC’ option is generally used to support lint comments.

Chapter 3: GCC Command Options 109

-traditional-cpp
Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO
C preprocessors.

-trigraphs
Process trigraph sequences. These are three-character sequences, all starting
with ‘777, that are defined by ISO C to stand for single characters. For example,
‘??/’ stands for ‘\’, so ???/n’’ is a character constant for a newline. By default,
GCC ignores trigraphs, but in standard-conforming modes it converts them. See
the ‘-std’ and ‘-ansi’ options.

The nine trigraphs and their replacements are

Trigraph: ?7(?7) 7T 77> 77= 77/ 777 77! 77-
Replacement: [] { } # \ - | ~
-remap Enable special code to work around file systems which only permit very short

file names, such as MS-DOS.

--help

--target-help
Print text describing all the command line options instead of preprocessing
anything.

-v Verbose mode. Print out GNU CPP’s version number at the beginning of
execution, and report the final form of the include path.

-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ‘#include’ stack it is. Precom-
piled header files are also printed, even if they are found to be invalid; an invalid
precompiled header file is printed with ‘.. .x’ and a valid one with *...!" .

-version

--version
Print out GNU CPP’s version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.

3.12 Passing Options to the Assembler
You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option
Pass option as an option to the assembler. You can use this to supply system-
specific assembler options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘-Xassembler’ twice, once for the option and once for the argument.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

110 Using the GNU Compiler Collection (GCC)

object-file-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 3.2 [Overall Options], page 18.

-llibrary

-1 library
Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)

It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.0 -1z bar.o’ searches library ‘z’ after file ‘foo.o’ but before
‘par.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify with ‘-L’.

Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-1’ option and specifying a file
name is that ‘-1’ surrounds library with ‘1ib’ and ‘.a’ and searches several
directories.

-lobjc You need this special case of the ‘=1’ option in order to link an Objective-C or
Objective-C++ program.

-nostartfiles
Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs
Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup files are used normally,
unless ‘-nostartfiles’ is used. The compiler may generate calls to memcmp,
memset, memcpy and memmove. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other mechanism
when this option is specified.

Chapter 3: GCC Command Options 111

-nostdlib

-pie

-rdynamic

=S

-static

-shared

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker. The
compiler may generate calls to memcmp, memset, memcpy and memmove. These
entries are usually resolved by entries in libc. These entry points should be
supplied through some other mechanism when this option is specified.

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines that GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of ‘1libgcc.a’.) In most cases, you need ‘libgcc.a’
even when you want to avoid other standard libraries. In other words, when you
specify ‘-nostdlib’ or ‘-nodefaultlibs’ you should usually specify ‘-1gcc’ as
well. This ensures that you have no unresolved references to internal GCC
library subroutines. (For example, ‘__main’, used to ensure C++ constructors
will be called; see section “collect2” in GNU Compiler Collection (GCC) In-
ternals.)

Produce a position independent executable on targets which support it. For
predictable results, you must also specify the same set of options that were
used to generate code (‘-fpie’, ‘~fPIE’, or model suboptions) when you specify
this option.

Pass the flag ‘~export-dynamic’ to the ELF linker, on targets that support
it. This instructs the linker to add all symbols, not only used ones, to the
dynamic symbol table. This option is needed for some uses of dlopen or to
allow obtaining backtraces from within a program.

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options that were used to generate code
(‘-fpic’, ‘-fPIC’, or model suboptions) when you specify this option.!

-shared-libgcc
-static-libgcc

On systems that provide ‘1ibgcc’ as a shared library, these options force the
use of either the shared or static version respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.

1 On some systems, ‘gcc —-shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.

112

-symbolic

Using the GNU Compiler Collection (GCC)

There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘libgcc’.

Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’
whenever you build a shared library or a main executable, because C++ and
Java programs typically use exceptions, so this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may find
that they will not always be linked with the shared ‘1ibgcc’. If GCC finds, at
its configuration time, that you have a non-GNU linker or a GNU linker that
does not support option ‘-—eh-frame-hdr’, it will link the shared version of
‘libgcc’ into shared libraries by default. Otherwise, it will take advantage of
the linker and optimize away the linking with the shared version of ‘libgcc’,
linking with the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation costs at
library load time.

However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ or GCJ driver, as appropriate for the
languages used in the program, or using the option ‘-shared-libgcc’, such
that it is linked with the shared ‘libgcc’.

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-X1linker
-z -Xlinker defs’). Only a few systems support this option.

-Xlinker option

-Wl,option

-u symbol

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to
pass ‘-assert definitions’, you must write ‘~-Xlinker -assert -Xlinker
definitions’. It does not work to write ‘~-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what

the linker expects.

Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

Chapter 3: GCC Command Options 113

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the

compiler:

-Idir

Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘-isystem’ for that). If you
use more than one ‘-1’ option, the directories are scanned in left-to-right order;
the standard system directories come after.

If a standard system include directory, or a directory specified with ‘-isystem’,
is also specified with ‘=I’, the ‘-I’ option will be ignored. The directory will
still be searched but as a system directory at its normal position in the system
include chain. This is to ensure that GCC’s procedure to fix buggy system
headers and the ordering for the include_next directive are not inadvertently
changed. If you really need to change the search order for system directories,
use the ‘-nostdinc’ and/or ‘~isystem’ options.

-iquotedir

-Ldir

-Bprefix

Add the directory dir to the head of the list of directories to be searched for
header files only for the case of ‘#include "file"’; they are not searched for
‘#include <file>’, otherwise just like ‘-I’.

Add directory dir to the list of directories to be searched for ‘-1’

This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘ccl’,
‘as’ and ‘1d’. Tt tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options], page 121).

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if
any. If that name is not found, or if ‘-B’ was not specified, the driver tries two
standard prefixes, which are ‘/usr/1ib/gcc/’ and ‘/usr/local/lib/gcc/’. If
neither of those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your PATH environment
variable.

The compiler will check to see if the path provided by the ‘-B’ refers to a
directory, and if necessary it will add a directory separator character at the end
of the path.

‘-B’ prefixes that effectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to includes files in the preprocessor, because the
compiler translates these options into ‘-isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.

The run-time support file ‘1ibgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are

114

Using the GNU Compiler Collection (GCC)

tried, and that is all. The file is left out of the link if it is not found by those
means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables],
page 210.

As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N
is a number in the range 0 to 9, then it will be replaced by ‘[dir/]include’.
This is to help with boot-strapping the compiler.

-specs=file

Process file after the compiler reads in the standard ‘specs’ file, in order
to override the defaults that the ‘gcc’ driver program uses when determin-
ing what switches to pass to ‘ccl’, ‘cclplus’, ‘as’, ‘1d’, etc. More than one
‘-specs=file’ can be specified on the command line, and they are processed
in order, from left to right.

--sysroot=dir

-I-

Use dir as the logical root directory for headers and libraries. For example, if
the compiler would normally search for headers in ‘/usr/include’ and libraries
in ‘/usr/1ib’, it will instead search ‘dir/usr/include’ and ‘dir/usr/1lib’.

If you use both this option and the ‘-isysroot’ option, then the ‘--sysroot’

option will apply to libraries, but the ‘-isysroot’ option will apply to header
files.

The GNU linker (beginning with version 2.16) has the necessary support for
this option. If your linker does not support this option, the header file aspect
of ‘~-sysroot’ will still work, but the library aspect will not.

3 4

This option has been deprecated. Please use ‘-iquote’ instead for ‘-I’ direc-
tories before the ‘-I-’ and remove the ‘-I-’. Any directories you specify with
‘-1’ options before the ‘-~I-’ option are searched only for the case of ‘#include
"file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘-=I’ options after the ‘~I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-1’ direc-
tories are used this way.)

In addition, the ‘-I-> option inhibits the use of the current directory (where
the current input file came from) as the first search directory for ‘#include
"file"’. There is no way to override this effect of ‘-I-". With ‘-I.’ you
can specify searching the directory which was current when the compiler was
invoked. That is not exactly the same as what the preprocessor does by default,
but it is often satisfactory.

‘~I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-" and ‘-nostdinc’ are independent.

3.15 Specifying subprocesses and the switches to pass to

them

gec is a driver program. It performs its job by invoking a sequence of other programs to do
the work of compiling, assembling and linking. GCC interprets its command-line parameters

Chapter 3: GCC Command Options 115

and uses these to deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled by spec sirings. In
most cases there is one spec string for each program that GCC can invoke, but a few
programs have multiple spec strings to control their behavior. The spec strings built into
GCC can be overridden by using the ‘-specs=" command-line switch to specify a spec file.

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the
first non-whitespace character on the line and it can be one of the following:

hcommand Issues a command to the spec file processor. The commands that can appear
here are:

%include <file>
Search for file and insert its text at the current point in the specs
file.

%hinclude_noerr <file>
Just like ‘%include’, but do not generate an error message if the
include file cannot be found.

hrename old_name new_name
Rename the spec string old_name to new_name.

*[spec_name] :

This tells the compiler to create, override or delete the named spec string. All
lines after this directive up to the next directive or blank line are considered
to be the text for the spec string. If this results in an empty string then the
spec will be deleted. (Or, if the spec did not exist, then nothing will happened.)
Otherwise, if the spec does not currently exist a new spec will be created. If the
spec does exist then its contents will be overridden by the text of this directive,
unless the first character of that text is the ‘4’ character, in which case the text
will be appended to the spec.

[suffix]:

Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the
next directive or blank line are considered to make up the spec string for the
indicated suffix. When the compiler encounters an input file with the named
suffix, it will processes the spec string in order to work out how to compile that
file. For example:

JZZ:

z-compile -input %i
This says that any input file whose name ends in ‘.ZZ’ should be passed to the
program ‘z-compile’, which should be invoked with the command-line switch
‘~input’ and with the result of performing the ‘%i’ substitution. (See below.)

As an alternative to providing a spec string, the text that follows a suffix di-
rective can be one of the following:

@language
This says that the suffix is an alias for a known language. This is
similar to using the ‘-x’ command-line switch to GCC to specify a
language explicitly. For example:

116 Using the GNU Compiler Collection (GCC)

\ZZ:
Qc++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:

name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive will
add an entry to the end of the list of suffixes, but since the list is searched from
the end backwards, it is effectively possible to override earlier entries using this
technique.

GCC has the following spec strings built into it. Spec files can override these strings or
create their own. Note that individual targets can also add their own spec strings to this
list.

asm Options to pass to the assembler

asm_final Options to pass to the assembler post-processor

cpp Options to pass to the C preprocessor

ccl Options to pass to the C compiler

cclplus Options to pass to the C++ compiler

endfile Object files to include at the end of the link

link Options to pass to the linker

1lib Libraries to include on the command line to the linker
libgcc Decides which GCC support library to pass to the linker
linker Sets the name of the linker

predefines Defines to be passed to the C preprocessor
signed_char Defines to pass to CPP to say whether char is signed
by default
startfile Object files to include at the start of the link
Here is a small example of a spec file:

Jrename 1lib old_lib

*1ib:
--start-group -lgcc -lc -levall --end-group %(old_lib)
This example renames the spec called ‘1ib’ to ‘o1d_1ib’ and then overrides the previous
definition of ‘1ib’ with a new one. The new definition adds in some extra command-line
options before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding pro-
gram. In addition, the spec strings can contain ‘% -prefixed sequences to substitute variable
text or to conditionally insert text into the command line. Using these constructs it is
possible to generate quite complex command lines.

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not
generated automatically around the results of expanding these sequences. Therefore you
can concatenate them together or combine them with constant text in a single argument.

W Substitute one ‘%’ into the program name or argument.
i Substitute the name of the input file being processed.
b Substitute the basename of the input file being processed. This is the substring

up to (and not including) the last period and not including the directory.
%B This is the same as ‘)%b’, but include the file suffix (text after the last period).

Chapter 3: GCC Command Options 117

hd

hgsuffix

Yusuffix

Wsuffix

hjsuffix

% suffix
Ymsuffix

%.SUFFIX

Yw

%o

%0

Marks the argument containing or following the ‘%d’ as a temporary file name,
so that that file will be deleted if GCC exits successfully. Unlike ‘%g’, this
contributes no text to the argument.

Substitute a file name that has suffix suffix and is chosen once per compilation,
and mark the argument in the same way as ‘%id’. To reduce exposure to denial-
of-service attacks, the file name is now chosen in a way that is hard to predict
even when previously chosen file names are known. For example, ‘%g.s ...
hg.o ... %g.s’ might turn into ‘ccUVUUAU.s ccXYAXZ12.0 ccUVUUAU.s’. suffix
matches the regexp ‘[.A-Za-z]*’ or the special string ‘%0’, which is treated
exactly as if ‘%0’ had been preprocessed. Previously, ‘%g’ was simply substituted
with a file name chosen once per compilation, without regard to any appended
suffix (which was therefore treated just like ordinary text), making such attacks
more likely to succeed.

Like ‘%g’, but generates a new temporary file name even if ‘fusuffix’ was
already seen.

Substitutes the last file name generated with ‘4busuffix’, generating a new one
if there is no such last file name. In the absence of any ‘%usuffix’, this is
just like ‘%gsuffix’, except they don’t share the same suffix space, so ‘%g.s
... WU.s ... %g.s ... %U.s’ would involve the generation of two distinct file
names, one for each ‘Yg.s’ and another for each ‘4U.s’. Previously, ‘4U" was
simply substituted with a file name chosen for the previous ‘%u’, without regard
to any appended suffix.

Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and
if save-temps is off; otherwise, substitute the name of a temporary file, just like
‘%u’. This temporary file is not meant for communication between processes,
but rather as a junk disposal mechanism.

Like ‘%g’, except if ‘-pipe’ is in effect. In that case ‘%|’ substitutes a single
dash and ‘%m’ substitutes nothing at all. These are the two most common
ways to instruct a program that it should read from standard input or write
to standard output. If you need something more elaborate you can use an
“%{pipe:X}’ construct: see for example ‘f/lang-specs.h’.

Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is
subsequently output with *%*’. SUFFIX is terminated by the next space or %.

Marks the argument containing or following the ‘“%w’ as the designated output
file of this compilation. This puts the argument into the sequence of arguments
that ‘%o’ will substitute later.

Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%0’ as well or the results are
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose
names have no recognized suffix are not compiled at all, but they are included
among the output files, so they will be linked.

Substitutes the suffix for object files. Note that this is handled specially when
it immediately follows ‘%g, %u, or %U’, because of the need for those to form

118 Using the GNU Compiler Collection (GCC)
complete file names. The handling is such that ‘%0’ is treated exactly as if it
had already been substituted, except that ‘%g, %u, and %U’ do not currently
support additional suffix characters following ‘%0’ as they would following, for
example, ‘.0,

hp Substitutes the standard macro predefinitions for the current target machine.
Use this when running cpp.

%P Like ‘%p’, but puts ‘__’ before and after the name of each predefined macro,
except for macros that start with ‘__" or with ‘_L’, where L is an uppercase
letter. This is for ISO C.

A Substitute any of ‘-iprefix’ (made from GCC_EXEC_PREFIX), ‘-isysroot’
(made from TARGET_SYSTEM_ROOT), ‘-isystem’ (made from COMPILER_PATH
and ‘-B’ options) and ‘-imultilib’ as necessary.

%s Current argument is the name of a library or startup file of some sort. Search
for that file in a standard list of directories and substitute the full name found.

%hestr Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

%(name) Substitute the contents of spec string name at this point.

%[name] Like ‘% (...)" but put ‘__" around ‘-D’ arguments.

%x{option}

Accumulate an option for ‘}%X’.

%X Output the accumulated linker options specified by ‘-=W1’ or a ‘%x’ spec string.

WY Output the accumulated assembler options specified by ‘-Wa’.

hZ Output the accumulated preprocessor options specified by ‘-Wp’.

%ha Process the asm spec. This is used to compute the switches to be passed to the
assembler.

%A Process the asm_final spec. This is a spec string for passing switches to an
assermbler post-processor, if such a program is needed.

YAl Process the 1ink spec. This is the spec for computing the command line passed
to the linker. Typically it will make use of the ‘4L %G %S %D and %E’ sequences.

%D Dump out a ‘-L’ option for each directory that GCC believes might contain
startup files. If the target supports multilibs then the current multilib directory
will be prepended to each of these paths.

%L Process the 1ib spec. This is a spec string for deciding which libraries should
be included on the command line to the linker.

%G Process the libgcc spec. This is a spec string for deciding which GCC support
library should be included on the command line to the linker.

%S Process the startfile spec. This is a spec for deciding which object files

should be the first ones passed to the linker. Typically this might be a file
named ‘crt0.0’.

Chapter 3: GCC Command Options 119

hE

%C

hl

h2

yAS

%<8

Process the endfile spec. This is a spec string that specifies the last object
files that will be passed to the linker.

Process the cpp spec. This is used to construct the arguments to be passed to
the C preprocessor.

Process the ccl spec. This is used to construct the options to be passed to the
actual C compiler (‘ccl’).

Process the cclplus spec. This is used to construct the options to be passed
to the actual C++ compiler (‘cciplus’).

Substitute the variable part of a matched option. See below. Note that each
comma in the substituted string is replaced by a single space.

Remove all occurrences of =S from the command line. Note—this command is
position dependent. ‘%’ commands in the spec string before this one will see -8,
‘% commands in the spec string after this one will not.

%:function (args)

Call the named function function, passing it args. args is first processed as a
nested spec string, then split into an argument vector in the usual fashion. The
function returns a string which is processed as if it had appeared literally as
part of the current spec.

The following built-in spec functions are provided:

if-exists
The if-exists spec function takes one argument, an absolute
pathname to a file. If the file exists, if-exists returns the path-
name. Here is a small example of its usage:
*startfile:
crt0,0%s %:if-exists(crtil0%s) crtbegin%0%s
if-exists-else
The if-exists-else spec function is similar to the if-exists spec
function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, if-exists-else
returns the pathname. If it does not exist, it returns the second
argument. This way, if-exists-else can be used to select one
file or another, based on the existence of the first. Here is a small
example of its usage:
*startfile:
crt0%0%s %:if-exists(crti%0%s) \
%:if-exists-else(crtbeginTy0%s crtbegini0s)
replace-outfile
The replace-outfile spec function takes two arguments. It looks
for the first argument in the outfiles array and replaces it with the
second argument. Here is a small example of its usage:
%{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}

print-asm-header
The print-asm-header function takes no arguments and simply
prints a banner like:

120

h{s}

m{s}

Hh{S*}

%{S*&T*}

%{S:X}
%{18:X}
%{S*:X}

%{.S:X}
%{!.8:X}
%{SIP:X}

Using the GNU Compiler Collection (GCC)

Assember options

Use "-Wa,0OPTION" to pass "OPTION" to the assembler.

It is used to separate compiler options from assembler options in
the ‘--target-help’ output.

Substitutes the -S switch, if that switch was given to GCC. If that switch was
not specified, this substitutes nothing. Note that the leading dash is omitted
when specifying this option, and it is automatically inserted if the substitution
is performed. Thus the spec string ‘4{foo}’ would match the command-line
option ‘-foo’ and would output the command line option ‘~foo’.

Like %{S} but mark last argument supplied within as a file to be deleted on
failure.

Substitutes all the switches specified to GCC whose names start with -S, but
which also take an argument. This is used for switches like ‘-o’, ‘-D’, ‘-I’,
etc. GCC considers ‘-o foo’ as being one switch whose names starts with ‘o’.
%{0*} would substitute this text, including the space. Thus two arguments
would be generated.

Like %{S*}, but preserve order of S and T options (the order of S and T in
the spec is not significant). There can be any number of ampersand-separated
variables; for each the wild card is optional. Useful for CPP as ‘% {D*&Ux&Ax*}’.

Substitutes X, if the ‘=S’ switch was given to GCC.
Substitutes X, if the ‘=S’ switch was not given to GCC.

Substitutes X if one or more switches whose names start with -8 are specified to
GCC. Normally X is substituted only once, no matter how many such switches
appeared. However, if %* appears somewhere in X, then X will be substituted
once for each matching switch, with the %* replaced by the part of that switch
that matched the *.

Substitutes X, if processing a file with suffix S.
Substitutes X, if not processing a file with suffix S.

Substitutes X if either -S or -P was given to GCC. This may be combined with
‘17 ¢’ and * sequences as well, although they have a stronger binding than
the ‘1’. If %* appears in X, all of the alternatives must be starred, and only the

first matching alternative is substituted.

For example, a spec string like this:
%{.c:-foo} %{!.c:-bar} %{.cld:-baz} %{!.cld:-boggle}

will output the following command-line options from the following input
command-line options:

fred.c -foo -baz
jim.d -bar -boggle
-d fred.c -foo -baz -boggle

-d jim.d -bar -baz -boggle

Chapter 3: GCC Command Options 121

%{S:X; T:Y; :D}
If S was given to GCC, substitutes X; else if T was given to GCC, substitutes
Y; else substitutes D. There can be as many clauses as you need. This may be
combined with ., !, |, and * as needed.

The conditional text X in a %{S:X} or similar construct may contain other nested ‘%’
constructs or spaces, or even newlines. They are processed as usual, as described above.
Trailing white space in X is ignored. White space may also appear anywhere on the left side
of the colon in these constructs, except between . or * and the corresponding word.

The ‘-0°, ‘-f’, ‘-m’, and ‘-W’ switches are handled specifically in these constructs. If
another value of ‘-0’ or the negated form of a ‘-f’, ‘-m’, or ‘W switch is found later in
the command line, the earlier switch value is ignored, except with {S*} where 8 is just one
letter, which passes all matching options.

The character ‘|’ at the beginning of the predicate text is used to indicate that a command
should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches
take arguments. But this cannot be done in a consistent fashion. GCC cannot even decide
which input files have been specified without knowing which switches take arguments, and
it must know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘=1’ are to be treated as compiler
output files, and passed to the linker in their proper position among the other output files.

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called ‘gcc’, or ‘<machine>-gcc’ when
cross-compiling, or ‘<machine>-gcc-<version>’ to run a version other than the one that
was installed last. Sometimes this is inconvenient, so GCC provides options that will switch
to another cross-compiler or version.

-b machine
The argument machine specifies the target machine for compilation.

The value to use for machine is the same as was specified as the machine type
when configuring GCC as a cross-compiler. For example, if a cross-compiler was
configured with ‘configure arm-elf’, meaning to compile for an arm processor
with elf binaries, then you would specify ‘-b arm-elf’ to run that cross com-
piler. Because there are other options beginning with ‘-b’, the configuration
must contain a hyphen.

-V version
The argument version specifies which version of GCC to run. This is useful
when multiple versions are installed. For example, version might be ‘4.0,
meaning to run GCC version 4.0.

The ‘-V’ and ‘-b’ options work by running the ‘<machine>-gcc-<version>’ executable,
so there’s no real reason to use them if you can just run that directly.

122 Using the GNU Compiler Collection (GCC)

3.17 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’” which chooses among different installed com-
pilers for completely different target machines, such as VAX vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting
with ‘-m’, to choose among various hardware models or configurations—for example, 68010
vs 68020, floating coprocessor or none. A single installed version of the compiler can compile
for any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

3.17.1 ARC Options

These options are defined for ARC implementations:
-EL Compile code for little endian mode. This is the default.
-EB Compile code for big endian mode.

-mmangle-cpu
Prepend the name of the c¢pu to all public symbol names. In multiple-processor
systems, there are many ARC variants with different instruction and register
set characteristics. This flag prevents code compiled for one cpu to be linked
with code compiled for another. No facility exists for handling variants that
are “almost identical”. This is an all or nothing option.

-mcpu=cpu
Compile code for ARC variant cpu. Which variants are supported depend on
the configuration. All variants support ‘-mcpu=base’, this is the default.

-mtext=text-section

-mdata=data-section

-mrodata=readonly-data-section
Put functions, data, and readonly data in text-section, data-section, and
readonly-data-section respectively by default. This can be overridden with the
section attribute. See Section 5.32 [Variable Attributes|, page 261.

3.17.2 ARM Options
These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

-mabi=name
Generate code for the specified ABL. Permissible values are: ‘apcs-gnu’,
‘atpcs’, ‘aapcs’, ‘aapcs-linux’ and ‘iwmmxt’.

-mapcs—frame
Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execu-
tion of the code. Specifying ‘-fomit-frame-pointer’ with this option will
cause the stack frames not to be generated for leaf functions. The default is
‘-mno-apcs-frame’.

-mapcs This is a synonym for ‘-mapcs-frame’.

Chapter 3: GCC Command Options 123

-mthumb-interwork
Generate code which supports calling between the ARM and Thumb instruction
sets. Without this option the two instruction sets cannot be reliably used inside
one program. The default is ‘-mno-thumb-interwork’, since slightly larger code
is generated when ‘-mthumb-interwork’ is specified.

-mno-sched-prolog
Prevent the reordering of instructions in the function prolog, or the merging of
those instruction with the instructions in the function’s body. This means that
all functions will start with a recognizable set of instructions (or in fact one of
a choice from a small set of different function prologues), and this information
can be used to locate the start if functions inside an executable piece of code.
The default is ‘-msched-prolog’.

-mhard-float
Generate output containing floating point instructions. This is the default.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all ARM targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mfloat-abi=name
Specifies which ABI to use for floating point values. Permissible values are:
‘soft’, ‘softfp’ and ‘hard’.

‘soft’ and ‘hard’ are equivalent to ‘-msoft-float’ and ‘-mhard-float’ re-
spectively. ‘softfp’ allows the generation of floating point instructions, but
still uses the soft-float calling conventions.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default
for all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor.

-mwords-little-endian
This option only applies when generating code for big-endian processors. Gen-
erate code for a little-endian word order but a big-endian byte order. That is,
a byte order of the form ‘32107654’. Note: this option should only be used if
you require compatibility with code for big-endian ARM processors generated
by versions of the compiler prior to 2.8.

124 Using the GNU Compiler Collection (GCC)

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to
determine what kind of instructions it can emit when generating assembly
code. Permissible names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘armé’, ‘arm60’,
‘arm600’, ‘arm610’, ‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’,
‘arm7dmi’, ‘arm70’, ‘arm700’, ‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’,
‘arm7500’, ‘arm7500fe’, ‘arm7tdmi’, ‘arm7tdmi-s’, ‘arm8’, ‘strongarm’,
‘strongarml110’, ‘strongarml1100’, ‘arm8’, ‘arm810’, ‘arm9’, ‘arm9e’,
‘arm920’, ‘arm920t’, ‘arm922t’, ‘arm946e-s’, ‘arm966e-s’, ‘arm968e-g’,
‘arm926ej-s’, ‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’, ‘arm1020t’, ‘arm1026ej-s’,
‘arm10e’, ‘arm1020e’, ‘arm1022e’, ‘arm1136j-s’, ‘arm1136jf-s’, ‘mpcore’,
‘mpcorenovfp’, ‘armll76jz-s’, ‘arml176jzf-s’, ‘mpcore’, ‘mpcorenovfp’
‘arm1156t2-s’, ‘cortex-a8’, ‘cortex-rd’, ‘cortex-m3’, ‘xscale’, ‘iwmmxt’,
‘ep9312’, ‘marvell-f’.

-mtune=name
This option is very similar to the ‘-mcpu=’ option, except that instead of speci-
fying the actual target processor type, and hence restricting which instructions
can be used, it specifies that GCC should tune the performance of the code as
if the target were of the type specified in this option, but still choosing the in-
structions that it will generate based on the cpu specified by a ‘-mcpu=" option.
For some ARM implementations better performance can be obtained by using
this option.

-march=name
This specifies the name of the target ARM architecture. GCC uses this name
to determine what kind of instructions it can emit when generating assembly
code. This option can be used in conjunction with or instead of the ‘-mcpu=’
option. Permissible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’,
‘armv4t’, ‘armvb’, ‘armvbt’, ‘armvbte’, ‘armvé’, ‘armv6j’, ‘armvét2’, ‘armvéz’,
‘armv6zk’, ‘armv7’, ‘armv7-a’, ‘armv7-r’, ‘armv7-m’, ‘iwmmxt’, ‘ep9312’.

-mfpu=name

-mfpe=number

-mfp=number
This specifies what floating point hardware (or hardware emulation) is available
on the target. Permissible names are: ‘fpa’, ‘fpe2’, ‘fpe3’, ‘maverick’, ‘vfp’.
‘-mfp’ and ‘-mfpe’ are synonyms for ‘-mfpu’=‘fpe’number, for compatibility
with older versions of GCC.

If ‘-msoft-float’ is specified this specifies the format of floating point values.

-mmarvell-div
Generate hardware integer division instructions supported by some Marvell
cores.

-mstructure-size-boundary=n
The size of all structures and unions will be rounded up to a multiple of the
number of bits set by this option. Permissible values are 8, 32 and 64. The
default value varies for different toolchains. For the COFF targeted toolchain

Chapter 3: GCC Command Options 125

the default value is 8. A value of 64 is only allowed if the underlying ABI
supports it.

Specifying the larger number can produce faster, more efficient code, but can
also increase the size of the program. Different values are potentially incompati-
ble. Code compiled with one value cannot necessarily expect to work with code
or libraries compiled with another value, if they exchange information using
structures or unions.

-mabort-on-noreturn
Generate a call to the function abort at the end of a noreturn function. It
will be executed if the function tries to return.

-mlong-calls

-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function will lie outside of the 64 megabyte
addressing range of the offset based version of subroutine call instruction.

Even if this switch is enabled, not all function calls will be turned into long calls.
The heuristic is that static functions, functions which have the ‘short-call’
attribute, functions that are inside the scope of a ‘#pragma no_long_calls’
directive and functions whose definitions have already been compiled within
the current compilation unit, will not be turned into long calls. The exception
to this rule is that weak function definitions, functions with the ‘long-call’
attribute or the ‘section’ attribute, and functions that are within the scope of
a ‘#pragma long_calls’ directive, will always be turned into long calls.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behavior, as will placing the function calls within the scope of
a ‘#pragma long_calls_off’ directive. Note these switches have no effect on
how the compiler generates code to handle function calls via function pointers.

-mnop-fun-dllimport
Disable support for the d1limport attribute.

-msingle-pic-base
Treat the register used for PIC addressing as read-ounly, rather than loading
it in the prologue for each function. The run-time system is responsible for
initializing this register with an appropriate value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless
stack-checking is enabled, when R9 is used.

-mcirrus-fix-invalid-insns
Insert NOPs into the instruction stream to in order to work around problems
with invalid Maverick instruction combinations. This option is only valid if the
‘-mcpu=ep9312’ option has been used to enable generation of instructions for
the Cirrus Maverick floating point co-processor. This option is not enabled by
default, since the problem is only present in older Maverick implementations.

126 Using the GNU Compiler Collection (GCC)

The default can be re-enabled by use of the ‘-mno-cirrus-fix-invalid-insns’
switch.

-mpoke-function-name
Write the name of each function into the text section, directly preceding the
function prologue. The generated code is similar to this:
t0
.ascii "arm_poke_function_name", 0
.align
t1
.word O0xff000000 + (t1 - tO)
arm_poke_function_name

mov ip, sp
stmfd sp!, {fp, ip, 1lr, pc}
sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at
fp + 0. If the trace function then looks at location pc - 12 and the top 8 bits
are set, then we know that there is a function name embedded immediately
preceding this location and has length ((pc[-3]) & 0x££000000).

-mthumb Generate code for the 16-bit Thumb instruction set. The default is to use the
32-bit ARM instruction set.

-mtpcs—frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all non-leaf functions. (A leaf function is one that does not call any
other functions.) The default is ‘-mno-tpcs-frame’.

-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM instruc-
tion set header which switches to Thumb mode before executing the rest of the
function. This allows these functions to be called from non-interworking code.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute cor-
rectly regardless of whether the target code has been compiled for interworking
or not. There is a small overhead in the cost of executing a function pointer if
this option is enabled.

-mtp=name
Specify the access model for the thread local storage pointer. The valid models
are ‘soft’, which generates calls to __aeabi_read_tp, ‘cpl5’, which fetches the
thread pointer from cp15 directly (supported in the arm6k architecture), and
‘auto’, which uses the best available method for the selected processor. The
default setting is ‘auto’.

-mlow-irqg-latency
Avoid instructions with high interrupt latency when generating code. This can
increase code size and reduce performance. The option is off by default.

Chapter 3: GCC Command Options 127

3.17.3 AVR Options
These options are defined for AVR implementations:

—-mmcu=mcu
Specify ATMEL AVR instruction set or MCU type.

Instruction set avrl is for the minimal AVR core, not supported by the C com-
piler, only for assembler programs (MCU types: at90s1200, attiny10, attiny11,
attiny12, attinyl5, attiny28).

Instruction set avr2 (default) is for the classic AVR core with up to 8K pro-
gram memory space (MCU types: at90s2313, at90s2323, attiny22, at90s2333,
at90s2343, at90s4414, at90s4433, at90s4434, at90s8515, at90c8534, at90s8535).

Instruction set avr3 is for the classic AVR core with up to 128K program mem-
ory space (MCU types: atmegal03, atmega603, at43usb320, at76¢711).

Instruction set avr4d is for the enhanced AVR, core with up to 8K program
memory space (MCU types: atmega8, atmega83, atmega85).

Instruction set avrb is for the enhanced AVR core with up to 128K program
memory space (MCU types: atmegal6, atmegal6l, atmegal63, atmega32, at-
megad23, atmegab4, atmegal28, at43usb355, at94k).

-msize Output instruction sizes to the asm file.

-minit-stack=N
Specify the initial stack address, which may be a symbol or numeric value,
‘__stack’ is the default.

-mno-interrupts
Generated code is not compatible with hardware interrupts. Code size will be
smaller.

-mcall-prologues
Functions prologues/epilogues expanded as call to appropriate subroutines.
Code size will be smaller.

-mno-tablejump
Do not generate tablejump insns which sometimes increase code size.

-mtiny-stack
Change only the low 8 bits of the stack pointer.

-mint8 Assume int to be 8 bit integer. This affects the sizes of all types: A char will
be 1 byte, an int will be 1 byte, an long will be 2 bytes and long long will be 4
bytes. Please note that this option does not comply to the C standards, but it
will provide you with smaller code size.

3.17.4 Blackfin Options

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘~-fomit-frame-pointer’ removes
the frame pointer for all functions which might make debugging harder.

128 Using the GNU Compiler Collection (GCC)

-mspecld-anomaly
When enabled, the compiler will ensure that the generated code does not contain
speculative loads after jump instructions. This option is enabled by default.

-mno-specld-anomaly
Don’t generate extra code to prevent speculative loads from occurring.

-mcsync-anomaly
When enabled, the compiler will ensure that the generated code does not con-
tain CSYNC or SSYNC instructions too soon after conditional branches. This
option is enabled by default.

-mno-csync-anomaly
Don’t generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.

-mlow-64k
When enabled, the compiler is free to take advantage of the knowledge that the
entire program fits into the low 64k of memory.

-mno-low-64k
Assume that the program is arbitrarily large. This is the default.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This al-
lows for execute in place and shared libraries in an environment without virtual
memory management. This option implies ‘~fPIC’.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used.
This is the default.

-mshared-library-id=n
Specified the identification number of the ID based shared library being com-
piled. Specifying a value of 0 will generate more compact code, specifying other
values will force the allocation of that number to the current library but is no
more space or time efficient than omitting this option.

-mlong-calls

-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this regis-
ter. This switch is needed if the target function will lie outside of the 24 bit
addressing range of the offset based version of subroutine call instruction.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behavior. Note these switches have no effect on how the
compiler generates code to handle function calls via function pointers.

3.17.5 CRIS Options
These options are defined specifically for the CRIS ports.

Chapter 3: GCC Command Options 129

-march=architecture-type

-mcpu=architecture-type
Generate code for the specified architecture. The choices for architecture-
type are ‘v3’, ‘v8” and ‘v1i0’ for respectively ETRAX 4, ETRAX 100, and
ETRAX 100 LX. Default is ‘v0’ except for cris-axis-linux-gnu, where the de-
fault is ‘v10’.

-mtune=architecture-type
Tune to architecture-type everything applicable about the generated code,
except for the ABI and the set of available instructions. The choices for
architecture-type are the same as for ‘-march=architecture-type’.

-mmax-stack-frame=n
Warn when the stack frame of a function exceeds n bytes.

-melinux-stacksize=n
Ounly available with the ‘cris-axis-aout’ target. Arranges for indications in
the program to the kernel loader that the stack of the program should be set
to n bytes.

-metrax4d

-metrax100
The options ‘-metrax4’ and ‘-metrax100’ are synonyms for
‘-march=v8’ respectively.

‘ ¢

-march=v3’ and

-mmul-bug-workaround

-mno-mul-bug-workaround
Work around a bug in the muls and mulu instructions for CPU models where
it applies. This option is active by default.

-mpdebug Enable CRIS-specific verbose debug-related information in the assembly code.
This option also has the effect to turn off the ‘#NO_APP’ formatted-code indicator
to the assembler at the beginning of the assembly file.

-mcc-init
Do not use condition-code results from previous instruction; always emit com-
pare and test instructions before use of condition codes.

-mno-side-effects
Do not emit instructions with side-effects in addressing modes other than post-
increment.

-mstack-align

-mno-stack-align

-mdata-align

-mno-data-align

-mconst-align

-mno-const-align
These options (no-options) arranges (eliminate arrangements) for the stack-
frame, individual data and constants to be aligned for the maximum single
data access size for the chosen CPU model. The default is to arrange for 32-
bit alignment. ABI details such as structure layout are not affected by these
options.

130 Using the GNU Compiler Collection (GCC)

-m32-bit

-m16-bit

-m8-bit Similar to the stack- data- and const-align options above, these options arrange
for stack-frame, writable data and constants to all be 32-bit, 16-bit or 8-bit
aligned. The default is 32-bit alignment.

-mno-prologue-epilogue

-mprologue-epilogue
With ‘-mno-prologue-epilogue’, the normal function prologue and epilogue
that sets up the stack-frame are omitted and no return instructions or return
sequences are generated in the code. Use this option only together with visual
inspection of the compiled code: no warnings or errors are generated when
call-saved registers must be saved, or storage for local variable needs to be
allocated.

-mno-gotplt

-mgotplt With ‘~fpic’ and ‘~fPIC’, don’t generate (do generate) instruction sequences
that load addresses for functions from the PLT part of the GOT rather than
(traditional on other architectures) calls to the PLT. The default is ‘-mgotplt’.

-maout Legacy no-op option only recognized with the cris-axis-aout target.

-melf Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-
gnu targets.

-melinux Only recognized with the cris-axis-aout target, where it selects a GNU/linux-
like multilib, include files and instruction set for ‘-march=v8’.

-mlinux Legacy no-op option only recognized with the cris-axis-linux-gnu target.

-sim This option, recognized for the cris-axis-aout and cris-axis-elf arranges to link
with input-output functions from a simulator library. Code, initialized data
and zero-initialized data are allocated consecutively.

-sim?2 Like ‘-sim’, but pass linker options to locate initialized data at 0x40000000 and
zero-initialized data at 0x80000000.

3.17.6 CRX Options

These options are defined specifically for the CRX ports.

-mmac Enable the use of multiply-accumulate instructions. Disabled by default.

-mpush-args
Push instructions will be used to pass outgoing arguments when functions are
called. Enabled by default.

3.17.7 Darwin Options

These options are defined for all architectures running the Darwin operating systeimn.

FSF GCC on Darwin does not create “fat” object files; it will create an object file for
the single architecture that it was built to target. Apple’s GCC on Darwin does create
“fat” files if multiple ‘-arch’ options are used; it does so by running the compiler or linker
multiple times and joining the results together with ‘1ipo’.

Chapter 3: GCC Command Options 131

The subtype of the file created (like ‘ppc7400’ or ‘ppc970’ or ‘i686’) is determined
by the flags that specify the ISA that GCC is targetting, like ‘-mcpu’ or ‘-march’. The
‘~force_cpusubtype_ALL’ option can be used to override this.

The Darwin tools vary in their behavior when presented with an ISA mismatch. The
assembler, ‘as’, will only permit instructions to be used that are valid for the subtype of
the file it is generating, so you cannot put 64-bit instructions in an ‘ppc750’ object file.
The linker for shared libraries, ‘/usr/bin/libtool’, will fail and print an error if asked
to create a shared library with a less restrictive subtype than its input files (for instance,
trying to put a ‘ppc970’ object file in a ‘ppc7400’ library). The linker for executables, ‘1d’,

will quietly give the executable the most restrictive subtype of any of its input files.

-Fdir Add the framework directory dir to the head of the list of directories to be
searched for header files. These directories are interleaved with those specified
by ‘-I’ options and are scanned in a left-to-right order.

A framework directory is a directory with frameworks in it. A framework is a
directory with a ‘"Headers"’ and/or ‘"PrivateHeaders"’ directory contained
directly in it that ends in *".framework"’. The name of a framework is the
name of this directory excluding the ‘" .framework"’. Headers associated with
the framework are found in one of those two directories, with ‘"Headers"’
being searched first. A subframework is a framework directory that is in a
framework’s ‘"Frameworks"’ directory. Includes of subframework headers can
only appear in a header of a framework that contains the subframework,
or in a sibling subframework header. Two subframeworks are siblings if
they occur in the same framework. A subframework should not have the
same name as a framework, a warning will be issued if this is violated.
Currently a subframework cannot have subframeworks, in the future, the
mechanism may be extended to support this. The standard frameworks can be
found in ‘"/System/Library/Frameworks"’ and ‘"/Library/Frameworks"’.
An example include looks like #include <Framework/header.h>, where
‘Framework’ denotes the name of the framework and header.h is found in the
‘“"PrivateHeaders"’ or ‘"Headers'"’ directory.

-gused Emit debugging information for symbols that are used. For STABS debugging
format, this enables ‘~feliminate-unused-debug-symbols’. This is by default
ON.

-gfull Emit debugging information for all symbols and types.

-mmacosx-version-min=version
The earliest version of MacOS X that this executable will run on is version.
Typical values of version include 10.1, 10.2, and 10.3.9.

The default for this option is to make choices that seem to be most useful.

-mkernel Enable kernel development mode. The ‘-mkernel’ option sets
‘-static’, ‘~fno-common’, ‘-fno-cxa-atexit’, ‘~-fno-exceptions’,
‘~fno-non-call-exceptions’, ‘~-fapple-kext’, ‘-fno-weak’ and ‘~fno-rtti’
where applicable. This mode also sets ‘-mno-altivec’, ‘-msoft-float’,

‘-fno-builtin’ and ‘-mlong-branch’ for PowerPC targets.

132 Using the GNU Compiler Collection (GCC)

-mone-byte-bool
Override the defaults for ‘bool’ so that ‘sizeof(bool)==1’. By default
‘sizeof (bool)’ is ‘4’ when compiling for Darwin/PowerPC and ‘1’ when
compiling for Darwin/x86, so this option has no effect on x86.

Warning: The ‘-mone-byte-bool’ switch causes GCC to generate code that
is not binary compatible with code generated without that switch. Using this
switch may require recompiling all other modules in a program, including sys-
tem libraries. Use this switch to conform to a non-default data model.

-mfix-and-continue

-ffix-and-continue

-findirect-data
Generate code suitable for fast turn around development. Needed to enable gdb
to dynamically load .o files into already running programs. ‘-findirect-data’
and ‘-ffix-and-continue’ are provided for backwards compatibility.

—all_load
Loads all members of static archive libraries. See man 1d(1) for more informa-
tion.

-arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be
fatal.

-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all
undefined references when the file is loaded or launched.

-bundle Produce a Mach-o bundle format file. See man 1d(1) for more information.

-bundle_loader executable
This option specifies the executable that will be loading the build output file
being linked. See man 1d(1) for more information.

-dynamiclib
When passed this option, GCC will produce a dynamic library instead of an
executable when linking, using the Darwin ‘1libtool’ command.

-force_cpusubtype_ALL
This causes GCC’s output file to have the ALL subtype, instead of one con-
trolled by the ‘-mcpu’ or ‘-march’ option.

Chapter 3: GCC Command Options

-allowable_client client_name
-client_name
-compatibility_version
-current_version
-dead_strip
—dependency-file
-dylib_file
—-dylinker_install_name
—-dynamic
-exported_symbols_list
-filelist
-flat_namespace
-force_flat_namespace
-headerpad_max_install_names
-image_base

-init

-install_name
-keep_private_externs
-multi_module
-multiply_defined
-multiply_defined_unused
-noall_load
-no_dead_strip_inits_and_terms
-nofixprebinding
-nomultidefs

-noprebind
-noseglinkedit
-pagezero_size

-prebind
-prebind_all_twolevel_modules
-private_bundle
-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload

-segladdr

-sectcreate
-sectobjectsymbols
-sectorder

-segaddr
-segs_read_only_addr
-segs_read_write_addr
-seg_addr_table
-seg_addr_table_filename
-seglinkedit

-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module

-static

-sub_library
-sub_umbrella

-twolevel namespace

133

134

Using the GNU Compiler Collection (GCC)

3.17.8 DEC Alpha Options
These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

-mfp-reg

Use (do not use) the hardware floating-point instructions for floating-point op-
erations. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ will be
used to perform floating-point operations. Unless they are replaced by routines
that emulate the floating-point operations, or compiled in such a way as to call
such emulations routines, these routines will issue floating-point operations. If
you are compiling for an Alpha without floating-point operations, you must
ensure that the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required
to have floating-point registers.

-mno-fp-regs

-mieee

Generate code that uses (does not use) the floating-point register set.
‘-mno-fp-regs’ implies ‘-msoft-float’. If the floating-point register set is
not used, floating point operands are passed in integer registers as if they were
integers and floating-point results are passed in $0 instead of $£0. This is a
non-standard calling sequence, so any function with a floating-point argument
or return value called by code compiled with ‘-mno-fp-regs’ must also be
compiled with that option.

A typical use of this option is building a kernel that does not use, and hence
need not save and restore, any floating-point registers.

The Alpha architecture implements floating-point hardware optimized for max-
imum performance. It is mostly compliant with the IEEE floating point stan-
dard. However, for full compliance, software assistance is required. This option
generates code fully IEEE compliant code except that the inexact-flag is not
maintained (see below). If this option is turned on, the preprocessor macro
_IEEE_FP is defined during compilation. The resulting code is less efficient but
is able to correctly support denormalized numbers and exceptional IEEE values
such as not-a-number and plus/minus infinity. Other Alpha compilers call this
option ‘-ieee_with_no_inexact’.

-mieee-with-inexact

This is like ‘-mieee’ except the generated code also maintains the IEEE inexact-
flag. Turning on this option causes the generated code to implement fully-
compliant IEEE math. In addition to _TEEE_FP, _IEEE_FP_EXACT is defined as
a preprocessor macro. On some Alpha implementations the resulting code may
execute significantly slower than the code generated by default. Since there is
very little code that depends on the inexact-flag, you should normally not spec-
ify this option. Other Alpha compilers call this option ‘-~ieee_with_inexact’.

Chapter 3: GCC Command Options 135

-mfp-trap-mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha
compilers call this option ‘~fptm trap-mode’. The trap mode can be set to one
of four values:

‘sui’

This is the default (normal) setting. The only traps that are en-
abled are the ones that cannot be disabled in software (e.g., division
by zero trap).

In addition to the traps enabled by ‘n’, underflow traps are enabled
as well.

Like ‘u’, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).

Like ‘su’, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option ‘-fprm
rounding-mode’. The rounding-mode can be one of:

Normal TEEE rounding mode. Floating point numbers are rounded
towards the nearest machine number or towards the even machine
number in case of a tie.

Round towards minus infinity.

Chopped rounding mode. Floating point numbers are rounded to-
wards zero.

Dynamic rounding mode. A field in the floating point control reg-
ister (fpcr, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies
the fpcr, ‘d’ corresponds to round towards plus infinity.

-mtrap-precision=trap-precision
In the Alpha architecture, floating point traps are imprecise. This means with-
out software assistance it is impossible to recover from a floating trap and
program execution normally needs to be terminated. GCC can generate code
that can assist operating system trap handlers in determining the exact loca-
tion that caused a floating point trap. Depending on the requirements of an
application, different levels of precisions can be selected:

Program precision. This option is the default and means a trap
handler can only identify which program caused a floating point
exception.

Function precision. The trap handler can determine the function
that caused a floating point exception.

Instruction precision. The trap handler can determine the exact
instruction that caused a floating point exception.

136 Using the GNU Compiler Collection (GCC)

Other Alpha compilers provide the equivalent options called ‘-scope_safe’ and
‘~-resumption_safe’.

-mieee-conformant
This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify ‘-mtrap-precision=i’ and either
‘-mfp-trap-mode=su’ or ‘-mfp-trap-mode=sui’. Its only effect is to emit the
line ‘.eflag 48’ in the function prologue of the generated assembly file. Under
DEC Unix, this has the effect that IEEE-conformant math library routines
will be linked in.

-mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to see if it can construct
it from smaller constants in two or three instructions. If it cannot, it will output
the constant as a literal and generate code to load it from the data segment at
runtime.

Use this option to require GCC to construct all integer constants using code,
even if it takes more instructions (the maximum is six).

You would typically use this option to build a shared library dynamic loader.
Itself a shared library, it must relocate itself in memory before it can find the
variables and constants in its own data segment.

-malpha-as
-mgas Select whether to generate code to be assembled by the vendor-supplied assem-
bler (‘-malpha-as’) or by the GNU assembler ‘-mgas’.

-mbwx

-mno-bwx

-mcix

-mno-cix

-mfix

-mno-fix

-mmax

-mno-max Indicate whether GCC should generate code to use the optional BWX, CIX, FIX
and MAX instruction sets. The default is to use the instruction sets supported
by the CPU type specified via ‘-mcpu=’ option or that of the CPU on which
GCC was built if none was specified.

-mfloat-vax

-mfloat-ieee
Generate code that uses (does not use) VAX F and G floating point arithmetic
instead of IEEE single and double precision.

-mexplicit-relocs

-mno-explicit-relocs
Older Alpha assemblers provided no way to generate symbol relocations except
via assembler macros. Use of these macros does not allow optimal instruction
scheduling. GNU binutils as of version 2.12 supports a new syntax that al-
lows the compiler to explicitly mark which relocations should apply to which

Chapter 3: GCC Command Options 137

instructions. This option is mostly useful for debugging, as GCC detects the
capabilities of the assembler when it is built and sets the default accordingly.

-msmall-data

-mlarge-data
When ‘“-mexplicit-relocs’ is in effect, static data is accessed via gp-relative
relocations. When ‘-msmall-data’ is used, objects 8 bytes long or smaller are
placed in a small data area (the .sdata and .sbss sections) and are accessed
via 16-bit relocations off of the $gp register. This limits the size of the small
data area to 64KB, but allows the variables to be directly accessed via a single
instruction.

The default is ‘-mlarge-data’. With this option the data area is limited to just
below 2GB. Programs that require more than 2GB of data must use malloc or
mmap to allocate the data in the heap instead of in the program’s data segment.

When generating code for shared libraries, ‘~fpic’ implies ‘-msmall-data’ and
‘~fPIC’ implies ‘-mlarge-data’.

-msmall-text

-mlarge-text
When ‘-msmall-text’ is used, the compiler assumes that the code of the entire
program (or shared library) fits in 4MB, and is thus reachable with a branch in-
struction. When ‘-msmall-data’ is used, the compiler can assume that all local
symbols share the same $gp value, and thus reduce the number of instructions
required for a function call from 4 to 1.

The default is ‘-mlarge-text’.

-mcpu=cpu_type
Set the instruction set and instruction scheduling parameters for machine type
cpu_type. You can specify either the ‘EV’ style name or the corresponding chip
number. GCC supports scheduling parameters for the EV4, EV5 and EV6
family of processors and will choose the default values for the instruction set
from the processor you specify. If you do not specify a processor type, GCC
will default to the processor on which the compiler was built.

Supported values for cpu_type are
‘evd’

‘ev4b’
‘21064’ Schedules as an EV4 and has no instruction set extensions.

‘evb’
‘21164’ Schedules as an EV5 and has no instruction set extensions.

‘evb6’
‘21164a’ Schedules as an EV5 and supports the BWX extension.

‘pcab6’
‘21164pc’
‘21164PC’ Schedules as an EV5 and supports the BWX and MAX extensions.

138

Using the GNU Compiler Collection (GCC)

‘ev6’

‘21264’ Schedules as an EV6 and supports the BWX, FIX, and MAX ex-
tensions.

‘evB7’

‘21264a’ Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX
extensions.

-mtune=cpu_type

Set only the instruction scheduling parameters for machine type cpu_type. The
instruction set is not changed.

-mmemory-latency=time

Sets the latency the scheduler should assume for typical memory references
as seen by the application. This number is highly dependent on the memory
access patterns used by the application and the size of the external cache on
the machine.

Valid options for time are

‘number’ A decimal number representing clock cycles.

cL17

£L27

LL37

‘main’ The compiler contains estimates of the number of clock cycles for
“typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also

called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.

3.17.9 DEC Alpha/VMS Options
These ‘-m’ options are defined for the DEC Alpha/VMS implementations:

-mvms-return-codes

Return VMS condition codes from main. The default is to return POSIX style
condition (e.g. error) codes.

3.17.10 FRV Options
-mgpr-32

Only use the first 32 general purpose registers.
-mgpr-64

Use all 64 general purpose registers.
-mfpr-32

Use only the first 32 floating point registers.
-mfpr-64

Use all 64 floating point registers
-mhard-float

Use hardware instructions for floating point operations.

Chapter 3: GCC Command Options 139

-msoft-float
Use library routines for floating point operations.

-malloc-cc
Dynamically allocate condition code registers.

-mfixed-cc
Do not try to dynamically allocate condition code registers, only use iccO and
fccO.

-mdword
Change ABI to use double word insns.

-mno-dword
Do not use double word instructions.

-mdouble
Use floating point double instructions.

-mno-double
Do not use floating point double instructions.

-mmedia
Use media instructions.

-mno-media
Do not use media instructions.

-mmuladd
Use multiply and add/subtract instructions.

-mno-muladd
Do not use multiply and add/subtract instructions.

-mfdpic
Select the FDPIC ABI, that uses function descriptors to represent pointers to
functions. Without any PIC/PIE-related options, it implies ‘~fPIE’. With
‘~fpic’ or ‘-fpie’, it assumes GOT entries and small data are within a 12-bit
range from the GOT base address; with ‘-fPIC’ or ‘-fPIE’, GO'T offsets are
computed with 32 bits.

-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known
to bind locally. It has no effect without ‘-mfdpic’. It’s enabled by default if
optimizing for speed and compiling for shared libraries (i.e., ‘~fPIC’ or ‘-fpic’),
or when an optimization option such as ‘-03’ or above is present in the command
line.

-mTLS

Assume a large TLS segment when generating thread-local code.

-mtls

Do not assume a large TLS segment when generating thread-local code.

140 Using the GNU Compiler Collection (GCC)

-mgprel-ro

Enable the use of GPREL relocations in the FDPIC ABI for data that is known to
be in read-only sections. It’s enabled by default, except for ‘~fpic’ or ‘-fpie’:
even though it may help make the global offset table smaller, it trades 1 in-
struction for 4. With ‘-fPIC’ or ‘-fPIE’, it trades 3 instructions for 4, one of
which may be shared by multiple symbols, and it avoids the need for a GOT
entry for the referenced symbol, so it’s more likely to be a win. If it is not,
‘-mno-gprel-ro’ can be used to disable it.

-multilib-library-pic
Link with the (library, not FD) pic libraries. It’s implied by ‘-mlibrary-pic’,
as well as by ‘=fPIC’ and ‘-fpic’ without ‘-mfdpic’. You should never have to
use it explicitly.

-mlinked-fp
Follow the EABI requirement of always creating a frame pointer whenever a
stack frame is allocated. This option is enabled by default and can be disabled
with ‘-mno-linked-fp’.

-mlong-calls
Use indirect addressing to call functions outside the current compilation unit.
This allows the functions to be placed anywhere within the 32-bit address space.

-malign-labels
Try to align labels to an 8-byte boundary by inserting nops into the previous
packet. This option only has an effect when VLIW packing is enabled. It
doesn’t create new packets; it merely adds nops to existing ones.

-mlibrary-pic
Generate position-independent EABI code.

-macc-4
Use only the first four media accumulator registers.
-macc-8
Use all eight media accumulator registers.
-mpack
Pack VLIW instructions.
-mno-pack

Do not pack VLIW instructions.

-mno-eflags
Do not mark ABI switches in e_flags.
-mcond-move
Enable the use of conditional-move instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in

a future version.

-mno-cond-move
Disable the use of conditional-move instructions.

Chapter 3: GCC Command Options 141

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mscc
Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

—~mno-scc

Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mcond-exec
Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-cond-exec
Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mvliw-branch
Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mmulti-cond-exec
Enable optimization of && and || in conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-multi-cond-exec
Disable optimization of && and || in conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mnested-cond-exec
Enable nested conditional execution optimizations (default).
This switch is mainly for debugging the compiler and will likely be removed in

a future version.

-mno-nested-cond-exec
Disable nested conditional execution optimizations.

142 Using the GNU Compiler Collection (GCC)

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-moptimize-membar
This switch removes redundant membar instructions from the compiler generated
code. It is enabled by default.

-mno-optimize-membar
This switch disables the automatic removal of redundant membar instructions
from the generated code.

-mtomcat-stats
Cause gas to print out tomcat statistics.

-mcpu=cpu
Select the processor type for which to generate code. Possible values are ‘frv’,
‘fr550’, ‘tomcat’, ‘fr500°, ‘fr450’, ‘fr405’, ‘fr400’, ‘fr300’ and ‘simple’.

3.17.11 GNU/Linux Options
These ‘-m’ options are defined for GNU/Linux targets:

-mglibc Use the GNU C library instead of uClibc. This is the default except on
‘x—*-1linux-*uclibc*’ targets.

-muclibc Use uClibc instead of the GNU C library. This is the default on
“¢—x-1linux-*uclibc*’ targets.

3.17.12 H8/300 Options
These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’. See section “1d and the H8/300” in Using Id, for a fuller

description.
-mh Generate code for the H8/300H.
-ms Generate code for the HS8S.
-mn Generate code for the H8S and H8/300H in the normal mode. This switch must

be used either with ‘-mh’ or ‘-ms’.
-ms2600 Generate code for the H8S/2600. This switch must be used with ‘-ms’.
-mint32 Make int data 32 bits by default.

-malign-300
On the H8/300H and HS8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and HS8S is to align longs and floats on 4 byte
boundaries. ‘-malign-300’ causes them to be aligned on 2 byte boundaries.
This option has no effect on the H8/300.

Chapter 3: GCC Command Options 143

3.17.13 HPPA Options
These ‘-m’ options are defined for the HPPA family of computers:

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type
are ‘1.0° for PA 1.0, ‘1.1’ for PA 1.1, and ‘2.0’ for PA 2.0 processors. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered ar-
chitectures will run on higher numbered architectures, but not the other way
around.

-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0
Synonyms for ‘-march=1.0", ‘-march=1.1", and ‘-march=2.0’ respectively.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modi-
fying the return pointer for the function call to be the target of the conditional
jump.

-mdisable-fpregs
Prevent floating point registers from being used in any manner. This is nec-
essary for compiling kernels which perform lazy context switching of floating
point registers. If you use this option and attempt to perform floating point
operations, the compiler will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC
to generate faster indirect calls and use unscaled index address modes.

Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows
GCC to emit code which performs faster indirect calls.

This option will not work in the presence of shared libraries or nested functions.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

144 Using the GNU Compiler Collection (GCC)

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the
HP-UX 10 linker. This is equivalent to the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type. The
choices for cpu-type are ‘700’ ‘7100’, ‘7100LC’, ‘72007, ‘7300° and ‘8000°. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
scheduling option for your machine. The default scheduling is ‘8000’.

-mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all HPPA targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded target ‘hppal.1l-*-pro’
does provide software floating point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-msio Generate the predefine, _SI0, for server I0. The default is ‘-mwsio’. This gen-
erates the predefines, __hp9000s700, __hp9000s700__ and _WSIO, for worksta-
tion TIO. These options are available under HP-UX and HI-UX.

PR—

-mgnu-1d Use GNU Id specific options. This passes ‘-shared’ to ld when building a shared
library. It is the default when GCC is configured, explicitly or implicitly, with
the GNU linker. This option does not have any affect on which Id is called, it
only changes what parameters are passed to that 1d. The Id that is called is
determined by the ‘--with-1d’ configure option, GCC’s program search path,
and finally by the user’s PATH. The linker used by GCC can be printed using
‘which ‘gcc -print-prog-name=1d¢’. This option is only available on the 64
bit HP-UX GCC, i.e. configured with ‘hppa*64*—*-hpuxx*’.

-mhp-1d Use HP 1d specific options. This passes ‘-b’ to 1d when building a shared library
and passes ‘+Accept TypeMismatch’ to ld on all links. It is the default when
GCC is configured, explicitly or implicitly, with the HP linker. This option does
not have any affect on which 1d is called, it only changes what parameters are
passed to that Id. The ld that is called is determined by the ‘~-with-1d’ con-
figure option, GCC’s program search path, and finally by the user’s PATH. The

Chapter 3: GCC Command Options 145

linker used by GCC can be printed using ‘which ‘gcc -print-prog-name=1d°¢’.
This option is only available on the 64 bit HP-UX GCC, i.e. configured with
‘hppa*64*—*-hpux*’.

-mlong-calls

Generate code that uses long call sequences. This ensures that a call is always
able to reach linker generated stubs. The default is to generate long calls
only when the distance from the call site to the beginning of the function or
translation unit, as the case may be, exceeds a predefined limit set by the
branch type being used. The limits for normal calls are 7,600,000 and 240,000
bytes, respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are always
limited at 240,000 bytes.

Distances are measured from the beginning of functions when using
the ‘-ffunction-sections’ option, or when using the ‘-mgas’ and
‘-mno-portable-runtime’ options together under HP-UX with the SOM
linker.

It is normally not desirable to use this option as it will degrade performance.
However, it may be useful in large applications, particularly when partial linking
is used to build the application.

The types of long calls used depends on the capabilities of the assembler and
linker, and the type of code being generated. The impact on systems that
support long absolute calls, and long pic symbol-difference or pc-relative calls
should be relatively small. However, an indirect call is used on 32-bit ELF
systems in pic code and it is quite long.

-munix=unix-std

-nolibdld

Generate compiler predefines and select a startfile for the specified UNIX stan-
dard. The choices for unix-std are ‘93’, ‘95’ and ‘98’. ‘93’ is supported on all
HP-UX versions. ‘95’ is available on HP-UX 10.10 and later. ‘98’ is available
on HP-UX 11.11 and later. The default values are ‘93’ for HP-UX 10.00, ‘95’
for HP-UX 10.10 though to 11.00, and ‘98’ for HP-UX 11.11 and later.

‘-munix=93’ provides the same predefines as GCC 3.3 and 3.4. ‘-munix=95’
provides additional predefines for XOPEN_UNIX and _XOPEN_SOURCE_EXTENDED,
and the startfile ‘unix95.0’. ‘-munix=98’ provides additional predefines for
_XOPEN_UNIX, _XOPEN_SOURCE_EXTENDED, _INCLUDE__STDC_A1_SOURCE and _
INCLUDE_XOPEN_SOURCE_500, and the startfile ‘unix98.0’.

It is émportant to note that this option changes the interfaces for various library
routines. It also affects the operational behavior of the C library. Thus, extreme
care is needed in using this option.

Library code that is intended to operate with more than one UNIX standard
must test, set and restore the variable __xpg4_extended_mask as appropriate.
Most GNU software doesn’t provide this capability.

Suppress the generation of link options to search libdld.sl when the ‘-static’
option is specified on HP-UX 10 and later.

146 Using the GNU Compiler Collection (GCC)

-static The HP-UX implementation of setlocale in libc has a dependency on libdld.sl.
There isn’t an archive version of libdld.sl. Thus, when the ‘-static’ option is
specified, special link options are needed to resolve this dependency.

On HP-UX 10 and later, the GCC driver adds the necessary options to link
with libdld.sl when the ‘-static’ option is specified. This causes the resulting
binary to be dynamic. On the 64-bit port, the linkers generate dynamic binaries
by default in any case. The ‘-nolibdld’ option can be used to prevent the GCC
driver from adding these link options.

-threads Add support for multithreading with the dce thread library under HP-UX. This
option sets flags for both the preprocessor and linker.

3.17.14 Intel 386 and AMD x86-64 Options
These ‘-m’ options are defined for the 1386 and x86-64 family of computers:

-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. The choices for cpu-type are:

generic Produce code optimized for the most common IA32/AMD64/EM64T]

processors. If you know the CPU on which your code will run,
then you should use the corresponding ‘-mtune’ option instead of
‘-mtune=generic’. But, if you do not know exactly what CPU
users of your application will have, then you should use this
option.

As new processors are deployed in the marketplace, the behavior
of this option will change. Therefore, if you upgrade to a newer
version of GCC, the code generated option will change to reflect
the processors that were most common when that version of GCC
was released.

3 ¢

There is no ‘-march=generic’ option because ‘-march’ indicates
the instruction set the compiler can use, and there is no generic
instruction set applicable to all processors. In contrast, ‘-mtune’
indicates the processor (or, in this case, collection of processors) for
which the code is optimized.

native This selects the CPU to tune for at compilation time by
determining the processor type of the compiling machine. Using
‘-mtune=native’ will produce code optimized for the local machine
under the constraints of the selected instruction set. Using
‘-march=native’ will enable all instruction subsets supported by
the local machine (hence the result might not run on different

machines).
1386 Original Intel’s i386 CPU.
1486 Intel’s 1486 CPU. (No scheduling is implemented for this chip.)

1586, pentium
Intel Pentium CPU with no MMX support.

Chapter 3: GCC Command Options 147

pentium-mmae
Intel PentiumMMX CPU based on Pentium core with MMX in-
struction set support.

pentiumpro
Intel PentiumPro CPU.

1686 Same as generic, but when used as march option, PentiumPro
instruction set will be used, so the code will run on all 1686 family
chips.

pentium? Intel Pentium?2 CPU based on PentiumPro core with MMX instruc-
tion set support.

pentiums3, pentium3m
Intel Pentium3 CPU based on PentiumPro core with MMX and
SSE instruction set support.

pentium-m
Low power version of Intel Pentium3 CPU with MMX, SSE and
SSE2 instruction set support. Used by Centrino notebooks.

pentium4, pentium4m
Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set
support.

prescott Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2
and SSE3 instruction set support.

nocona Improved version of Intel Pentium4 CPU with 64-bit extensions,
MMX, SSE, SSE2 and SSE3 instruction set support.
k6 AMD K6 CPU with MMX instruction set support.

k6-2, k6-3 Improved versions of AMD K6 CPU with MMX and 3dNOW! in-
struction set support.

athlon, athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and
SSE prefetch instructions support.

athlon-4, athlon-xp, athlon-mp
Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced
3dANOW! and full SSE instruction set support.

k8, opteron, athlon6/, athlon-fr
AMD K8 core based CPUs with x86-64 instruction set support.
(This supersets MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW!
and 64-bit instruction set extensions.)

winchip-c6
IDT Winchip C6 CPU, dealt in same way as 1486 with additional
MMX instruction set support.

winchip2 IDT Winchip2 CPU, dealt in same way as i486 with additional
MMX and 3dNOW! instruction set support.

148 Using the GNU Compiler Collection (GCC)

c3 Via C3 CPU with MMX and 3dNOW! instruction set support. (No
scheduling is implemented for this chip.)
c3-2 Via C3-2 CPU with MMX and SSE instruction set support. (No

scheduling is implemented for this chip.)

While picking a specific cpu-type will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not run on
the 1386 without the ‘-march=cpu-type’ option being used.

-march=cpu-type
Generate instructions for the machine type cpu-type. The choices for cpu-type
are the same as for ‘-mtune’. Moreover, specifying ‘-march=cpu-type’ implies
‘~mtune=cpu-type’.

-mcpu=cpu-type
A deprecated synonym for ‘-mtune’.

-m386

-m486

-mpentium

-mpentiumpro
These options are synonyms for ‘-mtune=i386’, ‘-mtune=i486’,
‘-mtune=pentium’, and ‘-mtune=pentiumpro’ respectively. These synonyms
are deprecated.

-mfpmath=unit
Generate floating point arithmetics for selected unit unit. The choices for unit
are:

‘387’ Use the standard 387 floating point coprocessor present majority of
chips and emulated otherwise. Code compiled with this option will
run almost everywhere. The temporary results are computed in
80bit precision instead of precision specified by the type resulting
in slightly different results compared to most of other chips. See
‘~ffloat-store’ for more detailed description.

This is the default choice for 1386 compiler.

sse Use scalar floating point instructions present in the SSE instruction
set. This instruction set is supported by Pentium3 and newer chips,
in the AMD line by Athlon-4, Athlon-xp and Athlon-mp chips. The
earlier version of SSE instruction set supports only single precision
arithmetics, thus the double and extended precision arithmetics is
still done using 387. Later version, present only in Pentium4 and
the future AMD x86-64 chips supports double precision arithmetics
too.

For the 1386 compiler, you need to use ‘-march=cpu-type’, ‘-msse’
or ‘-msse2’ switches to enable SSE extensions and make this option
effective. For the x86-64 compiler, these extensions are enabled by
default.

Chapter 3: GCC Command Options 149

The resulting code should be considerably faster in the majority
of cases and avoid the numerical instability problems of 387 code,
but may break some existing code that expects temporaries to be
80bit.

This is the default choice for the x86-64 compiler.

‘sse, 387’ Attempt to utilize both instruction sets at once. This effectively
double the amount of available registers and on chips with sepa-
rate execution units for 387 and SSE the execution resources too.
Use this option with care, as it is still experimental, because the
GCC register allocator does not model separate functional units
well resulting in instable performance.

-masm=dialect
Output asm instructions using selected dialect. Supported choices are ‘intel’
or ‘att’ (the default one). Darwin does not support ‘intel’.

-mieee-fp

-mno-ieee-fp
Control whether or not the compiler uses IEEE floating point comparisons.
These handle correctly the case where the result of a comparison is unordered.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

On machines where a function returns floating point results in the 80387 register
stack, some floating point opcodes may be emitted even if ‘-msoft-float’ is
used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and
double in an FPU register, even if there is no FPU. The idea is that the
operating system should emulate an FPU.

The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt instructions for the
387. Specify this option to avoid generating those instructions. This option
is the default on FreeBSD, OpenBSD and NetBSD. This option is overridden
when ‘-march’ indicates that the target cpu will always have an FPU and so the
instruction will not need emulation. As of revision 2.6.1, these instructions are
not generated unless you also use the ‘-funsafe-math-optimizations’ switch.

150

Using the GNU Compiler Collection (GCC)

-malign-double
-mno-align-double

Control whether GCC aligns double, long double, and long long variables on
a two word boundary or a one word boundary. Aligning double variables on a
two word boundary will produce code that runs somewhat faster on a ‘Pentium’
at the expense of more memory.

On x86-64, ‘-malign-double’ is enabled by default.

Warning: if you use the ‘-malign-double’ switch, structures containing the

above types will be aligned differently than the published application binary
interface specifications for the 386 and will not be binary compatible with struc-
tures in code compiled without that switch.

-m96bit-long-double
-m128bit-long-double

These switches control the size of long double type. The i386 application
binary interface specifies the size to be 96 bits, so ‘-m96bit-long-double’ is
the default in 32 bit mode.

Modern architectures (Pentium and newer) would prefer long double to be
aligned to an 8 or 16 byte boundary. In arrays or structures conforming to the
ABI, this would not be possible. So specifying a ‘-m128bit-long-double’ will
align long double to a 16 byte boundary by padding the long double with an
additional 32 bit zero.

In the x86-64 compiler, ‘-m128bit-long-double’ is the default choice as its
ABI specifies that long double is to be aligned on 16 byte boundary.

Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a long double.

Warning: if you override the default value for your target ABI, the structures
and arrays containing long double variables will change their size as well as
function calling convention for function taking long double will be modified.
Hence they will not be binary compatible with arrays or structures in code
compiled without that switch.

-mmlarge-data-threshold=number

When ‘-mcmodel=medium’ is specified, the data greater than threshold are
placed in large data section. This value must be the same across all object
linked into the binary and defaults to 65535.

-msvr3-shlib
-mno-svr3-shlib

-mrtd

Control whether GCC places uninitialized local variables into the bss or data
segments. ‘-msvr3-shlib’ places them into bss. These options are meaningful
only on System V Release 3.

Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the ret num instruction, which pops their
arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.

Chapter 3: GCC Command Options 151

You can specify that an individual function is called with this calling sequence
with the function attribute ‘stdcall’. You can also override the ‘-mrtd’ option
by using the function attribute ‘cdecl’. See Section 5.25 [Function Attributes],
page 242.

Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a specific function by using the function attribute
‘regparm’. See Section 5.25 [Function Attributes], page 242.

Warning: if you use this switch, and num is nonzero, then you must build all
modules with the same value, including any libraries. This includes the system
libraries and startup modules.

-msseregparm
Use SSE register passing conventions for float and double arguments and return
values. You can control this behavior for a specific function by using the func-
tion attribute ‘sseregparm’. See Section 5.25 [Function Attributes], page 242.

Warning: if you use this switch then you must build all modules with the same
value, including any libraries. This includes the system libraries and startup
modules.

-mstackrealign

Realign the stack at entry. On the Intel x86, the ‘-mstackrealign’ option will
generate an alternate prologue and epilogue that realigns the runtime stack.
This supports mixing legacy codes that keep a 4-byte aligned stack with modern
codes that keep a 16-byte stack for SSE compatibility. The alternate prologue
and epilogue are slower and bigger than the regular ones, and the alternate pro-
logue requires an extra scratch register; this lowers the number of registers avail-
able if used in conjunction with the regparm attribute. The ‘-mstackrealign’
option is incompatible with the nested function prologue; this is considered a
hard error. See also the attribute force_align_arg_pointer, applicable to
individual functions.

-mpreferred-stack-boundary=num
Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.
If ‘-mpreferred-stack-boundary’ is not specified, the default is 4 (16 bytes or
128 bits).

On Pentium and PentiumPro, double and long double values should be
aligned to an 8 byte boundary (see ‘-malign-double’) or suffer significant run

152 Using the GNU Compiler Collection (GCC)

time performance penalties. On Pentium ITI, the Streaming SIMD Extension
(SSE) data type __m128 may not work properly if it is not 16 byte aligned.

To ensure proper alignment of this values on the stack, the stack boundary must
be as aligned as that required by any value stored on the stack. Further, every
function must be generated such that it keeps the stack aligned. Thus calling
a function compiled with a higher preferred stack boundary from a function
compiled with a lower preferred stack boundary will most likely misalign the
stack. It is recommended that libraries that use callbacks always use the default
setting.

This extra alignment does consume extra stack space, and generally increases
code size. Code that is sensitive to stack space usage, such as embedded systems
and operating system kernels, may want to reduce the preferred alignment to
‘-mpreferred-stack-boundary=2’.

—mmmx
—mno-mmx

-msse
—mno-sse

-msse2

-mno-sse2

-msse3

-mno-sse3

-m3dnow

-mno-3dnow
These switches enable or disable the use of instructions in the MMX, SSE, SSE2
or 3DNow! extended instruction sets. These extensions are also available as
built-in functions: see Section 5.48.6 [X86 Built-in Functions|, page 411, for
details of the functions enabled and disabled by these switches.

To have SSE/SSE2 instructions generated automatically from floating-point
code (as opposed to 387 instructions), see ‘-mfpmath=sse’.

These options will enable GCC to use these extended instructions in generated
code, even without ‘-mfpmath=sse’. Applications which perform runtime CPU
detection must compile separate files for each supported architecture, using the
appropriate flags. In particular, the file containing the CPU detection code
should be compiled without these options.

-mpush-args

-mno-push-args
Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.

-maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments will
be computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage

Chapter 3: GCC Command Options 153

when preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies ‘-mno-push-args’.

-mthreads
Support thread-safe exception handling on ‘Mingw32’. Code that relies on
thread-safe exception handling must compile and link all code with the
‘-mthreads’ option. When compiling, ‘-mthreads’ defines ‘-D_MT’; when
linking, it links in a special thread helper library ‘-1mingwthrd’ which cleans
up per thread exception handling data.

-mno-align-stringops
Do not align destination of inlined string operations. This switch reduces code
size and improves performance in case the destination is already aligned, but
GCC doesn’t know about it.

-minline-all-stringops
By default GCC inlines string operations only when destination is known to be
aligned at least to 4 byte boundary. This enables more inlining, increase code
size, but may improve performance of code that depends on fast memcpy, strlen
and memset for short lengths.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘-fomit-frame-pointer’ removes
the frame pointer for all functions which might make debugging harder.

-mtls-direct-seg-refs

-mno-tls-direct-seg-refs
Controls whether TLS variables may be accessed with offsets from the TLS
segment register (%gs for 32-bit, %fs for 64-bit), or whether the thread base
pointer must be added. Whether or not this is legal depends on the operating
system, and whether it maps the segment to cover the entire TLS area.

For systems that use GNU libc, the default is on.

These ‘-m’ switches are supported in addition to the above on AMD x86-64 processors in
64-bit environments.

-m32

-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets
int, long and pointer to 32 bits and generates code that runs on any 1386 system.
The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and
generates code for AMD’s x86-64 architecture. For darwin only the -m64 option
turns off the ‘~fno-pic’ and ‘-mdynamic-no-pic’ options.

-mno-red-zone
Do not use a so called red zone for x86-64 code. The red zone is mandated by the
x86-64 ABI, it is a 128-byte area beyond the location of the stack pointer that
will not be modified by signal or interrupt handlers and therefore can be used for
temporary data without adjusting the stack pointer. The flag ‘-mno-red-zone’
disables this red zone.

154 Using the GNU Compiler Collection (GCC)

-mcmodel=small
Generate code for the small code model: the program and its symbols must be
linked in the lower 2 GB of the address space. Pointers are 64 bits. Programs
can be statically or dynamically linked. This is the default code model.

-mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the negative 2 GB
of the address space. This model has to be used for Linux kernel code.

-mcmodel=medium
Generate code for the medium model: The program is linked in the lower 2
GB of the address space but symbols can be located anywhere in the address
space. Programs can be statically or dynamically linked, but building of shared
libraries are not supported with the medium model.

-mcmodel=large
Generate code for the large model: This model makes no assumptions about
addresses and sizes of sections. Currently GCC does not implement this model.

3.17.15 TA-64 Options
These are the ‘-m’ options defined for the Intel TA-64 architecture.

-mbig-endian
Generate code for a big endian target. This is the default for HP-UX.

-mlittle-endian
Generate code for a little endian target. This is the default for AIX5 and
GNU/Linux.

-mgnu-as
-mno-gnu-as
Generate (or don’t) code for the GNU assembler. This is the default.

-mgnu-1d
-mno-gnu-1d
Generate (or don’t) code for the GNU linker. This is the default.

-mno-pic Generate code that does not use a global pointer register. The result is not
position independent code, and violates the TA-64 ABI.

-mvolatile-asm-stop

-mno-volatile-asm-stop
Generate (or don’t) a stop bit immediately before and after volatile asm state-
ments.

-mregister—names

-mno-register-names
Generate (or don’t) ‘in’, ‘loc’, and ‘out’ register names for the stacked registers.
This may make assembler output more readable.

-mno—-sdata
-msdata Disable (or enable) optimizations that use the small data section. This may be
useful for working around optimizer bugs.

Chapter 3: GCC Command Options 155

-mconstant-gp
Generate code that uses a single constant global pointer value. This is useful
when compiling kernel code.

-mauto-pic
Generate code that is self-relocatable. This implies
useful when compiling firmware code.

‘-mconstant-gp’. This is

-minline-float-divide-min-latency
Generate code for inline divides of floating point values using the minimum
latency algorithm.

-minline-float-divide-max-throughput
Generate code for inline divides of floating point values using the maximum
throughput algorithm.

-minline-int-divide-min-latency
Generate code for inline divides of integer values using the minimum latency
algorithm.

-minline-int-divide-max-throughput
Generate code for inline divides of integer values using the maximum through-
put algorithm.

-minline-sqrt-min-latency
Generate code for inline square roots using the minimum latency algorithm.

-minline-sqgrt-max-throughput
Generate code for inline square roots using the maximum throughput algorithm.

-mno-dwarf2-asm

-mdwarf2-asm
Don’t (or do) generate assembler code for the DWARF2 line number debugging
info. This may be useful when not using the GNU assembler.

-mearly-stop-bits

-mno-early-stop-bits
Allow stop bits to be placed earlier than immediately preceding the instruction
that triggered the stop bit. This can improve instruction scheduling, but does
not always do so.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

-mtls-size=tls-size
Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64.

-mtune=cpu-type
Tune the instruction scheduling for a particular CPU, Valid values are itanium,
itaniuml, merced, itanium2, and mckinley.

156 Using the GNU Compiler Collection (GCC)

-mt

-pthread Add support for multithreading using the POSIX threads library. This option
sets flags for both the preprocessor and linker. It does not affect the thread
safety of object code produced by the compiler or that of libraries supplied with
it. These are IIP-UX specific flags.

-milp32

-mlp64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets
int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits. These are HP-UX specific flags.

-mno-sched-br-data-spec

-msched-br-data-spec
(Dis/En)able data speculative scheduling before reload. This will result in
generation of the ld.a instructions and the corresponding check instructions
(Id.c / chk.a). The default is 'disable’.

-msched-ar-data-spec

-mno-sched-ar-data-spec
(En/Dis)able data speculative scheduling after reload. This will result in gen-
eration of the ld.a instructions and the corresponding check instructions (Id.c
/ chk.a). The default is ’enable’.

-mno-sched-control-spec

-msched-control-spec
(Dis/En)able control speculative scheduling. This feature is available only dur-
ing region scheduling (i.e. before reload). This will result in generation of the
ld.s instructions and the corresponding check instructions chk.s . The default
is ’disable’.

-msched-br-in-data-spec

-mno-sched-br-in-data-spec
(En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads before reload. This is effective only with
‘-msched-br-data-spec’ enabled. The default is ’enable’.

-msched-ar-in-data-spec

-mno-sched-ar-in-data-spec
(En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads after reload. This is effective only with
‘-msched-ar-data-spec’ enabled. The default is ’enable’.

-msched-in-control-spec

-mno-sched-in-control-spec
(En/Dis)able speculative scheduling of the instructions that are de-
pendent on the control speculative loads. This is effective only with
‘-msched-control-spec’ enabled. The default is ’enable’.

Chapter 3: GCC Command Options 157

-msched-1dc

-mno-sched-1dc
(En/Dis)able use of simple data speculation checks Id.c . If disabled, only chk.a
instructions will be emitted to check data speculative loads. The default is
‘enable’.

-mno-sched-control-1dc

-msched-control-1dc
(Dis/En)able use of ld.c instructions to check control speculative loads. If
enabled, in case of control speculative load with no speculatively scheduled
dependent instructions this load will be emitted as Id.sa and 1d.c will be used
to check it. The default is ’disable’.

-mno-sched-spec-verbose
-msched-spec-verbose
(Dis/En)able printing of the information about speculative motions.

-mno-sched-prefer-non-data-spec-insns

-msched-prefer-non-data-spec-insns
If enabled, data speculative instructions will be chosen for schedule only if
there are no other choices at the moment. This will make the use of the data
speculation much more conservative. The default is ’disable’.

-mno-sched-prefer-non-control-spec-insns
-msched-prefer-non-control-spec-insns
If enabled, control speculative instructions will be chosen for schedule only if
there are no other choices at the moment. This will make the use of the control
speculation much more conservative. The default is 'disable’.

-mno-sched-count-spec-in-critical-path

-msched-count-spec-in-critical-path
If enabled, speculative dependencies will be considered during computation of
the instructions priorities. This will make the use of the speculation a bit more
conservative. The default is 'disable’.

3.17.16 M32C Options

-mcpu=name
Select the CPU for which code is generated. name may be one of ‘r8c’ for
the R8C/Tiny series, ‘m16¢’ for the M16C (up to /60) series, ‘m32cm’ for the
M16C/80 series, or ‘m32¢’ for the M32C/80 series.

-msim Specifies that the program will be run on the simulator. This causes an alternate
runtime library to be linked in which supports, for example, file I/O. You must
not use this option when generating programs that will run on real hardware;
you must provide your own runtime library for whatever I/O functions are
needed.

-memregs=number
Specifies the number of memory-based pseudo-registers GCC will use during
code generation. These pseudo-registers will be used like real registers, so there

158 Using the GNU Compiler Collection (GCC)

is a tradeoff between GCC'’s ability to fit the code into available registers, and
the performance penalty of using memory instead of registers. Note that all
modules in a program must be compiled with the same value for this option.
Because of that, you must not use this option with the default runtime libraries
gce builds.

3.17.17 M32R/D Options
These ‘-m’ options are defined for Renesas M32R /D architectures:

-m32r2 Generate code for the M32R/2.
-m32rx Generate code for the M32R/X.
-m32r Generate code for the M32R. This is the default.

-mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the 1d24 instruction), and assume all subroutines are reach-
able with the bl instruction. This is the default.

The addressability of a particular object can be set with the model attribute.

-mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and assume all
subroutines are reachable with the bl instruction.

-mmodel=large
Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume subrou-
tines may not be reachable with the bl instruction (the compiler will generate
the much slower seth/add3/j1 instruction sequence).

-msdata=none
Disable use of the small data area. Variables will be put into one of ‘.data’,
‘bss’, or ‘.rodata’ (unless the section attribute has been specified). This is
the default.

The small data area consists of sections ‘.sdata’ and ‘.sbss’. Objects may be
explicitly put in the small data area with the section attribute using one of
these sections.

-msdata=sdata
Put small global and static data in the small data area, but do not generate
special code to reference them.

-msdata=use
Put small global and static data in the small data area, and generate special
instructions to reference them.

-G num Put global and static objects less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss sections. The default
value of num is 8. The ‘-msdata’ option must be set to one of ‘sdata’ or ‘use’
for this option to have any effect.

Chapter 3: GCC Command Options 159

All modules should be compiled with the same ‘-G num’ value. Compiling with
different values of num may or may not work; if it doesn’t the linker will give
an error message—incorrect code will not be generated.

-mdebug Makes the M32R specific code in the compiler display some statistics that might
help in debugging programs.

-malign-loops
Align all loops to a 32-byte boundary.

-mno-align-loops
Do not enforce a 32-byte alignment for loops. This is the default.

-missue-rate=number
Issue number instructions per cycle. number can only be 1 or 2.

-mbranch-cost=number
number can only be 1 or 2. If it is 1 then branches will be preferred over
conditional code, if it is 2, then the opposite will apply.

-mflush-trap=number
Specifies the trap number to use to flush the cache. The default is 12. Valid
numbers are between 0 and 15 inclusive.

-mno-flush-trap
Specifies that the cache cannot be flushed by using a trap.

-mflush-func=name
Specifies the name of the operating system function to call to flush the cache.
The default is _flush_cache, but a function call will only be used if a trap is not
available.

-mno-flush-func
Indicates that there is no OS function for flushing the cache.

3.17.18 M680x0 Options

These are the ‘-m’ options defined for M680x0 and ColdFire processors. The default settings
depend on which architecture was selected when the compiler was configured; the defaults
for the most common choices are given below.

-march=arch

Generate code for a specific M680x0 or ColdFire instruction set architecture.
Permissible values of arch for M680x0 architectures are: ‘68000, ‘68010,
‘680207, ‘68030°, ‘68040°, ‘68060" and ‘cpu32’. ColdFire architectures are
selected according to Freescale’s ISA classification and the permissible values
are: ‘isaa’, ‘isaaplus’, ‘isab’ and ‘isac’.

gce defines a macro ‘__mcfarch__" whenever it is generating code for a ColdFire
target. The arch in this macro is one of the ‘-march’ arguments given above.

When used together, ‘-march’ and ‘-mtune’ select code that runs on a family
of similar processors but that is optimized for a particular microarchitecture.

160 Using the GNU Compiler Collection (GCC)

-mcpu=cpu
Generate code for a specific M680x0 or ColdFire processor. The M680x0 cpus
are: ‘680007, ‘68010, ‘680207, ‘68030°, ‘68040’, ‘68060, ‘68302’, ‘68332’ and
‘cpu32’. The ColdFire cpus are given by the table below, which also classifies
the CPUs into families:

Family ‘-mcpu’ arguments

‘61ge’ ‘61qge’

‘6206’ ‘5202’ ‘56204’ ‘562086’

‘6206¢’ ‘5206¢’

‘6208’ ‘6207’ ‘6208’

‘6211a’ ‘6210a’ ‘5211a’

‘6213’ ‘6211’ ‘5212’ ‘5213’

‘6216’ ‘6214’ ‘5216’

‘52235’ ‘52230’ ‘52231’ ‘52232’ ‘562233’ ‘52234’ ‘52235’
‘6225’ ‘6224’ ‘5225’

‘6235’ ‘6232’ ‘6233’ ‘5234’ ‘5235’ ‘5623x%’
‘6249’ ‘5249’

‘6250’ ‘5250’

‘6271’ ‘5270’ ‘56271’

‘6272’ ‘5272’

‘6275’ ‘6274’ ‘6275’

‘6282’ ‘6280’ ‘5281’ ‘5282’ ‘528%’
‘6307’ ‘5307’

‘6329’ ‘6327’ ‘6328’ ‘5329’ ‘532%’
‘6373’ ‘6372’ ‘6373’ ‘637x’

‘5407’ ‘5407’

‘6475’ ‘6470’ ‘6471’ ‘bAT2’ ‘GAT3’ ‘bAT4’ ‘G475’ ‘BATx’ ‘6480° ‘5481’ ‘5482’

‘6483’ ‘6484’ ‘5485’

‘-mcpu=cpu’ overrides ‘-march=arch’ if arch is compatible with cpu. Other

combinations of ‘-mcpu’ and ‘-march’ are rejected.

gce defines the macro ¢

It also defines *

the table above.

__mcf_cpu_cpu’ when ColdFire target cpu is selected.
_mcf_family_family’, where the value of family is given by

-mtune=tune
Tune the code for a particular microarchitecture, within the constraints set by
‘-march’ and ‘-mcpu’. The M680x0 microarchitectures are: ‘68000°, ‘68010,
‘680207, ‘68030, ‘680407, ‘68060’ and ‘cpu32’. The ColdFire microarchitectures
are: ‘cfvl’, ‘cfv2’, ‘cfv3’, ‘cfvd’ and ‘cfvie’.

You can also use ‘-mtune=68020-40’ for code that needs to run relatively well
on 68020, 68030 and 68040 targets. ‘-mtune=68020-60’ is similar but includes
68060 targets as well. These two options select the same tuning decisions as
‘-m68020-40’ and ‘-m68020-60° respectively.

¢ b

gee defines the macros ‘__mcarch’ and ‘__mcarch when tuning for 680x0
architecture arch. It also defines ‘mcarch’ unless either ‘-~ansi’ or a non-GNU

Chapter 3:

-m68000
-mc68000

-m68010

-m68020
-mc68020

-m68030

-m68040

-m68060

-mcpu3?2

-m5200

-m5206e

-mb528x

GCC Command Options 161

‘-std’ option is used. If gce is tuning for a range of architectures, as selected
by ‘-mtune=68020-40 or ‘-mtune=68020-60’, it defines the macros for every
architecture in the range.

gee also defines the macro ‘__muarch__’ when tuning for ColdFire microarchi-
tecture warch, where uarch is one of the arguments given above.

Generate output for a 68000. This is the default when the compiler is configured
for 68000-based systems. It is equivalent to ‘-march=68000’.

Use this option for microcontrollers with a 68000 or EC000 core, including the
68008, 68302, 68306, 68307, 68322, 68328 and 68356.

Generate output for a 68010. This is the default when the compiler is configured
for 68010-based systems. It is equivalent to ‘-march=68010’.

Generate output for a 68020. This is the default when the compiler is configured
for 68020-based systems. It is equivalent to ‘-march=68020’.

Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems. It is equivalent to ‘-march=68030’.

Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems. It is equivalent to ‘-march=68040’.

This option inhibits the use of 68881/68882 instructions that have to be em-
ulated by software on the 68040. Use this option if your 68040 does not have
code to emulate those instructions.

Generate output for a 68060. This is the default when the compiler is configured
for 68060-based systems. It is equivalent to ‘-march=68060’.

This option inhibits the use of 68020 and 68881/68882 instructions that have
to be emulated by software on the 68060. Use this option if your 68060 does
not have code to emulate those instructions.

Generate output for a C