GNU Compiler Collection Internals

For ccc version 4.2.1

Richard M. Stallman and the Gcc Developer Community

Copyright (© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction e v v v v oo vvve e e e et i eeeenoooenoeeaossns 1
1 Contributing to GCC Development . o o o v v v e e veennnn. 3
2 GCCand Portability e o o o v v v vvveneneiieeenennanns 5
3 Interfacing to GCC Output + v v v v v v e e eeeenennns 7
4 The GCC low-level runtime library « ... oo veeeneennn.. 9
5 Language Front Ends in GCC0ccveenn, 21
6 Source Tree Structure and Build System............... 23
7 Option specification fileS. o o o o o v v v v v eeooooeoeeens 51
8 Passes and Files of the Compilerc0venn... 55
9 Trees: The intermediate representation used by the C and C++
frontends «vvee e ettt i s 69
10 Analysis and Optimization of GIMPLE Trees « ¢ oo oo ... 107
11 Analysis and Representation of LOOPS e e v v v v v v v oo v v v oo 131
12 RTL Representation e v oo eeeeeeeeeeeeoooeeeonsans 141
13 Control Flow Graph e e e e e e e oo e eeeeveeeeoooesss 189
14 Machine Descriptions o o o o o o o v v v v v vveeeseeneeseas 199
15 Target Description Macros and Functions 293
16 Host Configuration « v e e v e eeeoeeeeooeseonas 439
17 Makefile Fragments « « v v v v v v et v i e e e nneeennnns 443
18 collect2 i v v i it eeeeneeeesoeeennooonoos 447
19 Standard Header File Directories « o v v v v v v v v v eennn.. 449
20 Memory Management and Type Information 451
Funding Free Software . oo oo v it inni i ennns 457
The GNU Project and GNU/LINUX + v ¢ e v o e v v vvevooenenns 459
GNU GENERAL PUBLICLICENSE . o o v v et v v v e s nnnns 461
GNU Free Documentation License « o v v v o v v v v vveeeeeensn 467
Contributors to GCC . v v v v v v i i i i it esnennnnnns 475
Option Index .o oo oo e e e envneeeeeeeeeesssennnnonas 491

Concept Index o v v v v e v e eeeoeeeeeeeeooscsooossooeas 493

i

GNU Compiler Collection (GCC) Internals

Table of Contents

Introduction oL, 1
1 Contributing to GCC Development 3
2 GCC and Portability....................... 5
3 Interfacing to GCC Output................. 7
4 The GCC low-level runtime library 9
4.1 Routines for integer arithmetic............................... 9
4.1.1 Arithmetic functions i 9
4.1.2 Comparison functions L. 10
4.1.3 Trapping arithmetic functions 11
4.1.4 Bit operationsouuviii e 11
4.2 Routines for floating point emulation 12
4.2.1 Arithmetic functions L 12
4.2.2 Conversion functions.............. ... i, 13
4.2.3 Comparison functions L. 14
4.2.4 Other floating-point functions 16
4.3 Routines for decimal floating point emulation................. 16
4.3.1 Arithmetic functions 16
4.3.2 Conversion functions.............. ... i, 17
4.3.3 Comparison functions L, 18
4.4 Language-independent routines for exception handling 19
4.5 Miscellaneous runtime library routines 20
4.5.1 Cache control functions 20
5 Language Front Ends in GCC 21
6 Source Tree Structure and Build System ... 23
6.1 Configure Terms and History.................... 23
6.2 Top Level Source Directoryo .. 23
6.3 The ‘gcc’ Subdirectory ...l 24
6.3.1 Subdirectories of ‘gcc” ... 25
6.3.2 Configuration in the ‘gcc’ Directory..................... 25
6.3.2.1 Scripts Used by ‘configure’....................... 26

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’
Files ... oo 26
6.3.2.3 Files Created by configure........................ 26
6.3.3 Build System in the ‘gcc’ Directory 27

6.3.4 Makefile Targets. ... 27

iii

v

7

GNU Compiler Collection (GCC) Internals

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

.. 30

6.3.6 Headers Installed by GCC.................... 30
6.3.7 Building Documentation 30
6.3.7.1 Texinfo Manuals 31
6.3.7.2 Man Page Generationiii.. 31
6.3.7.3 Miscellaneous Documentation...................... 32

6.3.8 Anatomy of a Language Front End...................... 33
6.3.8.1 The Front End ‘language’ Directory 34
6.3.8.2 The Front End ‘config-lang.in’ File.............. 36

6.3.9 Anatomy of a Target Back End 37
6.4 Testsuites.........ooiiiii 38
6.4.1 Idioms Used in Testsuite Code..................., 38
6.4.2 Directives used within DejaGnu tests.................... 39
6.4.3 Ada Language Testsuites............................... 43
6.4.4 C Language Testsuitesccoiiiiiiiiin .. 44
6.4.5 The Java library testsuites.......... 45
6.4.6 Support for testing gcov ... 46
6.4.7 Support for testing profile-directed optimizations......... 47
6.4.8 Support for testing binary compatibility 47
Option specification files 51
7.1 Option file format 51
7.2 Option propertiesou e 51
Passes and Files of the Compiler........... 55
8.1 Parsing passoiiiiiiii 5]
8.2 Gimplification pass...........ooo i 56
8.3 Pass Manager........ ...ttt 56
8.4 Tree-SSA PasSeS. . ..ottt 57
8.5 RTL passesot e e 63

Trees: The intermediate representation used by

the C and C++ frontends............... 69
9.1 Deficienciesov v 69
0.2 OVEIVICW . .ottt e e e e e 69

0.2,] TrCeS . ot 70

0.2.2 Identifiers.t 70

0.2.3 Containerso 71
9.3 IyPeS .ot 71
0.4 SCOPES . ottt 76

9.4 1 NamMESPACES « .« v v e et et e e e e 76

0.4.2 ClasSeS . . vt 77
9.5 Declarationst e 79

9.5.1 Working with declarations.............................. 79

9.5.2 Internal structure........... ... 81

9.5.2.1 Current structure hierarchy 82

9.5.2.2 Adding new DECL node types 83

9.6 Functions. e 84
9.6.1 Function BasicS.coi i 85
9.6.2 Function Bodies.......... ... 88

9.6.2.1 Statementsurii 88

9.7 Attributes In trees.t 92

0.8 EXPIeSsiOnSttt 92

10 Analysis and Optimization of GIMPLE Trees

....................................... 107

10.1 GENERIC. ... 107
10.2 GIMPLE ... 107
10.2.1 Interfaceso 108
10.2.2 Temporaries.t et 108
10.2.3 EXPIesSiOnSvvvtreti e et 109
10.2.3.1 Compound Expressions.......................... 109
10.2.3.2 Compound Lvalues.............................. 109
10.2.3.3 Conditional Expressions 109
10.2.3.4 Logical Operators........... ..o 110
10.2.4 Statements.............. i 110
10.24.1 BlockS ..o 110
10.2.4.2 Statement Sequences 111
10.2.4.3 Empty Statements 111
10.2.4.4 LOODPS . oo v 111
10.2.4.5 Selection Statements 111
10.24.6 0 JUMPS « o et 111
10.2.4.7 Cleanupso et 111
10.2.4.8 Exception Handling 112
10.2.5 GIMPLE Example....... i, 112
10.2.6 Rough GIMPLE Grammarccun.... 114
10.3 Annotations 116
10.4 Statement Operands.............ooviiiiiiiiiniia.. 117
10.4.1 Operand Iterators And Access Routines 118
10.4.2 Immediate Uses 121
10.5 Static Single Assignment............... 122
10.5.1 Preserving the SSA form............................. 123
10.5.2 Preserving the virtual SSA form 125
10.5.3 Examining SSA_NAME nodes.cooiiiiinn.... 125
10.5.4 Walking use-def chains........................ 126
10.5.5 Walking the dominator tree 126

10.6 Alias analysis..........oooiiiiiii i 126

vi GNU Compiler Collection (GCC) Internals

11 Analysis and Representation of Loops.... 131

11.1 Loop representationoiiiiiiiiii ... 131
11.2 Loop qUeryingco et e 132
11.3 Loop manipulation............. i 133
11.4 Loop-closed SSA form 134
11.5 Scalar evolutions i 134
11.6 IVanalysison RTL i 135
11.7 Number of iterations analysis 136
11.8 Data Dependency Analysis....... ..., 137
11.9 Linear loop transformations framework 139
12 RTL Representation.................... 141
12.1 RTL Object Types ..ot 141
12.2 RTL Classes and Formats................................. 142
12.3 Access to Operands ... i 144
12.4 Access to Special Operands 145
12.5 Flags in an RTL Expression.............o..... 147
12.6 Machine Modesooviniiini i e 153
12.7 Constant Expression Types o ... 156
12.8 Registers and Memory............... i 158
12.9 RTL Expressions for Arithmetic........................... 163
12.10 Comparison Operations.cooiviiiiinee .. 166
12,11 Bit-Fieldsoo oo 168
12.12 Vector Operations.oouiuiniiinneiinnen... 168
12,13 COnVErSIONS. . .ottt et ettt et et e 169
12.14 Declarationst e 170
12.15 Side Effect Expressions, 170
12.16 Embedded Side-Effects on Addresses 175
12.17 Assembler Instructions as Expressions 177
12,18 INSTIS . ettt 177
12.19 RTL Representation of Function-Call Insns................ 186
12.20 Structure Sharing Assumptions........................... 186
1221 Reading RTLo 187
13 Control Flow Graph 189
13.1 BasicBlocks. ... 189
13.2 Edges ..o 190
13.3 Profile information 193
13.4 Maintaining the CFG...... 194

13.5 Liveness Informationo, 196

Vil

14 Machine Descriptions................... 199
14.1 Overview of How the Machine Description is Used 199
14.2 Everything about Instruction Patterns..................... 199
14.3 Example of define_insn................ ... i, 200
144 RTL Template . ..o e 201
14.5 Output Templates and Operand Substitution............... 204
14.6 C Statements for Assembler Output 206
14.7 Predicates....... ..o 207

14.7.1 Machine-Independent Predicates...................... 208
14.7.2 Defining Machine-Specific Predicates.................. 210
14.8 Operand Constraintscoo ... 211
14.8.1 Simple Constraints, 212
14.8.2 Multiple Alternative Constraints...................... 216
14.8.3 Register Class Preferences............................ 217
14.8.4 Constraint Modifier Characters....................... 217
14.8.5 Constraints for Particular Machines................... 218
14.8.6 Defining Machine-Specific Constraints................. 233
14.8.7 Testing constraints from C 235
14.9 Standard Pattern Names For Generation................... 236
14.10 When the Order of Patterns Matters 257
14.11 Interdependence of Patterns 258
14.12 Defining Jump Instruction Patterns 259
14.13 Defining Looping Instruction Patterns.................... 260
14.14 Canonicalization of Instructions 262
14.15 Defining RTL Sequences for Code Generation 263
14.16 Defining How to Split Instructions........................ 266
14.17 Including Patterns in Machine Descriptions................ 269
14.17.1 RTL Generation Tool Options for Directory Search.... 270
14.18 Machine-Specific Peephole Optimizers 270
14.18.1 RTL to Text Peephole Optimizers.................... 270
14.18.2 RTL to RTL Peephole Optimizers.................... 272
14.19 Instruction Attributes.......... 274
14.19.1 Defining Attributes and their Values................. 274
14.19.2 Attribute Expressions. ... 274
14.19.3 Assigning Attribute Values toInsns.................. 277
14.19.4 Example of Attribute Specifications.................. 278
14.19.5 Computing the Length of an Insn................. ... 279
14.19.6 Constant Attributes 280
14.19.7 Delay Slot Scheduling................... 281
14.19.8 Specifying processor pipeline description.............. 282
14.20 Conditional Execution............ i, 287
14.21 Constant Definitions 288
14.22 MaCroS .. . oot 289
14.22.1 Mode Macrosovernee 289
14.22.1.1 Defining Mode Macros. 289
14.22.1.2 Substitution in Mode Macros 290
14.22.1.3 Mode Macro Examples 290

14.22.2 Code Macros..........oiii .. 291

viii GNU Compiler Collection (GCC) Internals

15 Target Description Macros and Functions

....................................... 293

15.1 The Global targetm Variable 293
15.2 Controlling the Compilation Driver, ‘gcc’.................. 293
15.3 Run-time Target Specification............................. 301
15.4 Defining data structures for per-function information........ 303
15.5 Storage Layout......... ... i 304
15.6 Layout of Source Language Data Types.................... 313
15.7 Register Usage 317
15.7.1 Basic Characteristics of Registers..................... 317
15.7.2 Order of Allocation of Registers....................... 319
15.7.3 How Values Fit in Registers.......................... 319
15.7.4 Handling Leaf Functions, 321
15.7.5 Registers That Form a Stack 322
15.8 Register Classes.ouvieiiiiiiie i 323
15.9 Obsolete Macros for Defining Constraints 331
15.10 Stack Layout and Calling Conventions.................... 333
15.10.1 Basic Stack Layout, 333
15.10.2 Exception Handling Support 337
15.10.3 Specifying How Stack Checking is Done 339
15.10.4 Registers That Address the Stack Frame 340
15.10.5 Eliminating Frame Pointer and Arg Pointer........... 342
15.10.6 Passing Function Arguments on the Stack............ 343
15.10.7 Passing Arguments in Registers...................... 345
15.10.8 How Scalar Function Values Are Returned............ 350
15.10.9 How Large Values Are Returned 351
15.10.10 Caller-Saves Register Allocation 353
15.10.11 Function Entry and Exit 353
15.10.12 Generating Code for Profiling 357
15.10.13 Permitting tail calls.......................... 357
15.10.14 Stack smashing protection.......................... 358
15.11 TImplementing the Varargs Macros........................ 358
15.12 Trampolines for Nested Functions 360
15.13 Implicit Calls to Library Routines........................ 363
15.14 Addressing Modes. 364
15.15 Anchored Addresses..............oooiiiiiiii.. 368
15.16 Condition Code Status 369
15.17 Describing Relative Costs of Operations 371
15.18 Adjusting the Instruction Scheduler 375
15.19 Dividing the Output into Sections (Texts, Data, ...) 381
15.20 Position Independent Code 385
15.21 Defining the Output Assembler Language 386
15.21.1 The Overall Framework of an Assembler File 386
1521.2 Outputof Data. 388
15.21.3 Output of Uninitialized Variables.................... 390
15.21.4 Output and Generation of Labels.................... 392
15.21.5 How Initialization Functions Are Handled 399

15.21.6 Macros Controlling Initialization Routines............ 400

15.21.7 OQutput of Assembler Instructions.................... 402
15.21.8 Output of Dispatch Tables 405
15.21.9 Assembler Commands for Exception Regions 407
15.21.10 Assembler Commands for Alignment................ 409

15.22 Controlling Debugging Information Format................ 410
15.22.1 Macros Affecting All Debugging Formats............. 410
15.22.2 Specific Options for DBX Output 411
15.22.3 Open-Ended Hooks for DBX Format................. 413
15.22.4 File Names in DBX Format 414
15.22.5 Macros for SDB and DWARF Output................ 415
15.22.6 Macros for VMS Debug Format...................... 416

15.23 Cross Compilation and Floating Point 416
15.24 Mode Switching Instructions............................. 418
15.25 Defining target-specific uses of __attribute__............ 419
15.26 Defining coprocessor specifics for MIPS targets. 421
15.27 Parameters for Precompiled Header Validity Checking 421
15.28 CH+ ABI parameters, 422
15.29 Miscellaneous Parameters........ 423
16 Host Configuration 439
16.1 Host Common ...t 439
16.2 Host Filesystem 440
16.3 Host MiSC ..ot 441
17 Makefile Fragments..................... 443
17.1 Target Makefile Fragments...................... 443
17.2 Host Makefile Fragments................., 445
18 collect2 .vvvviiiiiiiiii it iiieennnnn 447
19 Standard Header File Directories........ 449

....................................... 451

20.1 The Inside of a GTY(()) +.vvrree e 451
20.2 Marking Roots for the Garbage Collector 455
20.3 Source Files Containing Type Information.................. 455
Funding Free Software 457

The GNU Project and GNU/Linux 459

1X

X GNU Compiler Collection (GCC) Internals

GNU GENERAL PUBLIC LICENSE........ 461
Preamble. o 461
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . ..o e 462
Appendix: How to Apply These Terms to Your New Programs 466

GNU Free Documentation License 467
ADDENDUM: How to use this License for your documents. 473

Contributors to GCC 475

OptionIndex, 491

Concept Index.............coiiiiiiii.... 493

Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages. It
corresponds to the compilers version 4.2.1. The use of the GNU compilers is documented
in a separate manual. See section “Introduction” in Using the GNU Compiler Collection
(GCCO).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing], page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability|, page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 5 [Languages],
page 21). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.

http://gcc.gnu.org/readings.html

GNU Compiler Collection (GCC) Internals

Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current developiment
sources are available by SVN (see http://gcc.gnu.org/svn.html). Source and binary
snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.
If you would like to work on improvements to GCC, please read the advice at these URLs:
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

GNU Compiler Collection (GCC) Internals

Chapter 2: GCC and Portability)

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, ad-hoc parameters have been defined for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.

GNU Compiler Collection (GCC) Internals

Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 15 [Target Macros|, page 293).

However, returning of structure and union values is done differently on some target ma-
chines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or uniouns.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The target hook TARGET_STRUCT_
VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.

GNU Compiler Collection (GCC) Internals

Chapter 4: The GCC low-level runtime library 9

4 The GCC low-level runtime library

GCC provides a low-level runtime library, ‘libgcc.a’ or ‘libgcc_s.so.1’ on some plat-
forms. GCC generates calls to routines in this library automatically, whenever it needs to
perform some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor
cannot, perform directly. This includes integer multiply and divide on some machines, and
all floating-point operations on other machines. 1ibgcc also includes routines for exception
handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in section “Other
Builtins” in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a specific machine mode, not a specific
C type. See Section 12.6 [Machine Modes], page 153, for an explanation of this concept. For
illustrative purposes, in this chapter the floating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long
to DImode; and long long and unsigned long long to TImode.

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don’t provide hardware support
for arithmetic operations on some modes.

4.1.1 Arithmetic functions

int __ashlsi3 (int a, int b) [Runtime Function]

long __ashldi3 (long a, int b) [Runtime Function]

long long __ashlti3 (long long a, int b) [Runtime Function]
These functions return the result of shifting a left by b bits.

int __ashrsi3 (int a, int b) [Runtime Function]

long __ashrdi3 (long a, int b) [Runtime Function]

long long __ashrti3 (long long a, int b) [Runtime Function]
These functions return the result of arithmetically shifting a right by b bits.

int __divsi3 (int a, int b) [Runtime Function]

long __divdi3 (long a, long b) [Runtime Function]

long long __divti3 (long long a, long long b) [Runtime Function]
These functions return the quotient of the signed division of a and b.

int __1shrsi3 (int a, int b) [Runtime Function]

long __1shrdi3 (long a, int b) [Runtime Function]

long long __lshrti3 (long long a, int b) [Runtime Function]

These functions return the result of logically shifting a right by b bits.

10 GNU Compiler Collection (GCC) Internals

int __modsi3 (int a, int b) [Runtime Function]

long __moddi3 (long a, long b) [Runtime Function]

long long __modti3 (long long a, long long b) [Runtime Function]
These functions return the remainder of the signed division of a and b.

int __mulsi3 (int a, int b) [Runtime Function]

long __muldi3 (long a, long b) [Runtime Function]

long long __multi3 (long long a, long long b) [Runtime Function]
These functions return the product of a and b.

long __negdi2 (long a) [Runtime Function]

long long __negti2 (long long a) [Runtime Function]
These functions return the negation of a.

unsigned int __udivsi3 (unsigned int a, unsigned int b) [Runtime Function]

unsigned long __udivdi3 (unsigned long a, unsigned long b) [Runtime Function]

unsigned long long __udivti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the quotient of the unsigned division of a and b.

unsigned long __udivmoddi3 (unsigned long a, unsigned long [Runtime Function]
b, unsigned long *c)
unsigned long long __udivti3 (unsigned long long a, [Runtime Function]
unsigned long long b, unsigned long long *c)
These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

unsigned int __umodsi3 (unsigned int a, unsigned int b) [Runtime Function]
unsigned long __umoddi3 (unsigned long a, unsigned long b) [Runtime Function]
unsigned long long __umodti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

int __cmpdi2 (long a, long b) [Runtime Function]
int __cmpti2 (long long a, long long b) [Runtime Function]
These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

int __ucmpdi2 (unsigned long a, unsigned long b) [Runtime Function]
int __ucmpti2 (unsigned long long a, unsigned long long b) [Runtime Function]
These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

Chapter 4: The GCC low-level runtime library 11

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic overflow.

int __absvsi2 (int a) [Runtime Function]
long __absvdi2 (long a) [Runtime Function]
These functions return the absolute value of a.

int __addvsi3 (int a, int b) [Runtime Function]

long __addvdi3 (long a, long b) [Runtime Function]
These functions return the sum of a and b; that is a + b.

int __mulvsi3 (int a, int b) [Runtime Function]

long __mulvdi3 (long a, long b) [Runtime Function]

The functions return the product of a and b; that is a * b.

long __negvdi2 (long a) [Runtime Function]
These functions return the negation of a; that is -a.

int __negvsi2 (int a Runtime Function
g

int __subvsi3 (int a, int b) [Runtime Function]
long __subvdi3 (long a, long b) [Runtime Function]
These functions return the difference between b and a; that is a - b.

4.1.4 Bit operations

int __clzsi2 (int a) [Runtime Function]
int __clzdi2 (long a) [Runtime Function]
int __clzti2 (long long a) [Runtime Function]

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is undefined.

int __ctzsi2 (int a) [Runtime Function]
int __ctzdi2 (long a) [Runtime Function]
int __ctzti2 (long long a) [Runtime Function]

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is undefined.

int __ffsdi2 (long a) [Runtime Function]

int __ffsti2 (long long a) [Runtime Function]
These functions return the index of the least significant 1-bit in a, or the value zero
if a is zero. The least significant bit is index one.

int __paritysi2 (int a) [Runtime Function]
int __paritydi2 (long a) [Runtime Function]
int __parityti2 (long long a) [Runtime Function]

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.

12 GNU Compiler Collection (GCC) Internals

int __popcountsi2 (int a) [Runtime Function]
int __popcountdi2 (long a) [Runtime Function]
int __popcountti2 (long long a) [Runtime Function]

These functions return the number of bits set in a.

4.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support
for floating point. It is also used whenever ‘-msoft-float’ is used to disable generation of
floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 15.13 [Library Calls],
page 363). In this section, the default names are used.

Presently the library does not support XFmode, which is used for long double on some
architectures.

4.2.1 Arithmetic functions

float __addsf3 (float a, float b) [Runtime Function]
double __adddf3 (double a, double b) [Runtime Function]
long double __addtf3 (long double a, long double b) [Runtime Function]
long double __addxf3 (long double a, long double b) [Runtime Function]

These functions return the sum of a and b.

float __subsf3 (float a, float b) [Runtime Function]
double __subdf3 (double a, double b) [Runtime Function]
[]

]

long double _subtf3 (long double a, long double b) Runtime Function
long double __subxf3 (long double a, long double b) [Runtime Function

These functions return the difference between b and a; that is, a — b.

float __mulsf3 (float a, float b) [Runtime Function]
double __muldf3 (double a, double b) [Runtime Function]
long double __multf3 (long double a, long double b) [Runtime Function]
long double __mulxf3 (long double a, long double b) [Runtime Function]

These functions return the product of a and b.

float __divsf3 (float a, float b) [Runtime Function]
double __divdf3 (double a, double b) [Runtime Function]
long double __divtf3 (long double a, long double b) [Runtime Function]
long double __divxf3 (long double a, long double b) [Runtime Function]

These functions return the quotient of a and b; that is, a/b.

float __negsf2 (float a) Runtime Function

[]
double __negdf2 (double a) [Runtime Function]
long double __negtf2 (long double a) [Runtime Function]
long double __negxf2 (long double a) [Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

Chapter 4: The GCC low-level runtime library 13

4.2.2 Conversion functions

double __extendsfdf2 (float a) [Runtime Function]
long double __extendsftf2 (float a) [Runtime Function]
_extendsfxf2 (float a) [Runtime Function]
[]
[]

long double _ (
long double __extenddftf2 (double a) Runtime Function
long double __extenddfxf2 (double a) Runtime Function

These functions extend a to the wider mode of their return type.

double __truncxfdf2 (long double a) Runtime Function
double __trunctfdf2 (long double a) Runtime Function

[]

[]

float __truncxfsf2 (long double a) [Runtime Function]
[]

]

float __trunctfsf2 (long double a) Runtime Function

float __truncdfsf2 (double a) [Runtime Function
These functions truncate a to the narrower mode of their return type, rounding toward
Zero.

int __fixsfsi (foat a) [Runtime Function]

int __fixdfsi (double a) [Runtime Function]

int __fixtfsi (long double a) [Runtime Function]

int __fixxfsi (long double a) [Runtime Function]

These functions convert a to a signed integer, rounding toward zero.

Runtime Function
Runtime Function
Runtime Function
Runtime Function

long __fixsfdi (float a)

long __fixdfdi (double a)

long __fixtfdi (long double a)

long __fixxfdi (long double a)
These functions convert a to a signed long, rounding toward zero.

[]
[]
[]
[]

long long __fixsfti (float a) [Runtime Function]

long long __fixdfti (double a) [Runtime Function]

long long __fixtfti (long double a) [Runtime Function]

long long __fixxfti (long double a) [Runtime Function]
These functions convert a to a signed long long, rounding toward zero.

unsigned int __fixunssfsi (foat a) [Runtime Function]
unsigned int __fixunsdfsi (double a) [Runtime Function]
unsigned int __fixunstfsi (long double a) [Runtime Function]

]

unsigned int __fixunsxfsi (long double a) [Runtime Function
These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

unsigned long __fixunssfdi (float a) [Runtime Function]
unsigned long __fixunsdfdi (double a) [Runtime Function]
unsigned long __fixunstfdi (long double a) [Runtime Function]
unsigned long __fixunsxfdi (long double a) [Runtime Function]

These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

14 GNU Compiler Collection (GCC) Internals

unsigned long long __fixunssfti (float a) [Runtime Function]
unsigned long long __fixunsdfti (double a) [Runtime Function]
unsigned long long __fixunstfti (long double a) [Runtime Function]
unsigned long long __fixunsxfti (long double a) [Runtime Function]

These functions convert a to an unsigned long long, rounding toward zero. Negative
values all become zero.

- [Runtime Function
double __floatsidf (int i) [Runtime Function
long double __floatsitf (int i) [Runtime Function
long double __floatsixf (int i) [Runtime Function
These functions convert i, a signed integer, to floating point.

float __floatsisf (int 1)]
]
]
]

float __floatdisf (long i) [Runtime Function]
double __floatdidf (long i) [Runtime Function]
long double __floatditf (long i) [Runtime Function]
long double __floatdixf (long i) [Runtime Function]

These functions convert i, a signed long, to floating point.

float __floattisf (long long i) [Runtime Function]
double __floattidf (long long i) [Runtime Function]
long double __floattitf (long long i) [Runtime Function]
long double __floattixf (long long i) [Runtime Function]

These functions convert i, a signed long long, to floating point.

float __floatunsisf (unsigned int i) [Runtime Function]
double __floatunsidf (unsigned int 1) [Runtime Function]
long double __floatunsitf (unsigned int i) [Runtime Function]
long double __floatunsixf (unsigned int i) [Runtime Function]

These functions convert i, an unsigned integer, to floating point.

float __floatundisf (unsigned long i) [Runtime Function]
double __floatundidf (unsigned long i) [Runtime Function]
long double __floatunditf (unsigned long i) [Runtime Function]
long double __floatundixf (unsigned long i) [Runtime Function]

These functions convert i, an unsigned long, to floating point.

float __floatuntisf (unsigned long long 1) [Runtime Function]
double __floatuntidf (unsigned long long 1) [Runtime Function]
long double __floatuntitf (unsigned long long i) [Runtime Function]
long double __floatuntixf (unsigned long long i) [Runtime Function]

These functions convert i, an unsigned long long, to floating point.

4.2.3 Comparison functions

There are two sets of basic comparison functions.

int __cmpsf2 (float a, float b) [Runtime Function]
int __cmpdf2 (double a, double b) [Runtime Function]

Chapter 4: The GCC low-level runtime library 15

int __cmptf2 (long double a, long double b) [Runtime Function]
These functions calculate ¢ <=> b. That is, if a is less than b, they return —1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,
use one of the higher-level comparison functions.

int __unordsf2 (float a, float b) [Runtime Function]
int __unorddf2 (double a, double b) [Runtime Function]
int __unordtf2 (long double a, long double b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))
return E;
return __cmpXf2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsf2 (float a, float b) [Runtime Function]

int __eqdf2 (double a, double b) [Runtime Function]

int __eqtf2 (long double a, long double b) [Runtime Function]
These functions return zero if neither argument is NaN, and a and b are equal.

int __nesf2 (float a, float b) [Runtime Function]

int __nedf2 (double a, double b) [Runtime Function]

int __netf2 (long double a, long double b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesf2 (float a, float b) [Runtime Function]

int __gedf2 (double a, double b) [Runtime Function]

int __getf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsf2 (float a, float b) [Runtime Function]
int __1tdf2 (double a, double b) [Runtime Function]
int __1ttf2 (long double a, long double b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

int __lesf2 (float a, float b) [Runtime Function]
int __ledf2 (double a, double b) [Runtime Function]
int __letf2 (long double a, long double b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

16 GNU Compiler Collection (GCC) Internals

int __gtsf2 (float a, float b)
int __gtdf2 (double a, double b)
int __gttf2 (long double a, long double b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is

strictly greater than b.
4.2.4 Other floating-point functions

float __powisf2 (float a, int b)

double __powidf2 (double a, int b)

long double __powitf2 (long double a, int b)

long double __powixf2 (long double a, int b)
These functions convert raise a to the power b.

complex float __mulsc3 (float a, float b, float c, float d)

complex double __muldc3 (double a, double b, double c,
double d)

complex long double __multc3 (long double a, long double
b, long double c, long double d)

complex long double __mulxc3 (long double a, long double

b, long double c, long double d)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

These functions return the product of a + ib and ¢ + 4d, following the rules of C99

Annex G.

complex float __divsc3 (float a, float b, float c, float d)

complex double __divdc3 (double a, double b, double c,
double d)

complex long double __divtc3 (long double a, long double
b, long double c, long double d)

complex long double __divxc3 (long double a, long double
b, long double c, long double d)

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

These functions return the quotient of a + ¢b and ¢ + id (i.e., (a + ib)/(c + id)),

following the rules of C99 Annex G.

4.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754R decimal floating point

arithmetic and is only activated on selected targets.

4.3.1 Arithmetic functions

_Decimal32 __addsd3 (_Decimal32 a, _Decimal32 b)

_Decimal64 __adddd3 (_Decimal64 a, _Decimal64 b)

_Decimall28 __addtd3 (_Decimall28 a, _Decimall28 b)
These functions return the sum of a and b.

_Decimal32 __subsd3 (_Decimal32 a, _Decimal32 b)
_Decimal64 __subdd3 (_Decimal64 a, _Decimal64 b)
_Decimall28 __subtd3 (_Decimall28 a, _Decimall28 b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the difference between b and a; that is, a — b.

Chapter 4: The GCC low-level runtime library 17

_Decimal32 __mulsd3 (_Decimal32 a, _Decimal32 b) [Runtime Function]

_Decimal64 __muldd3 (_Decimal64 a, _Decimal64 b) [Runtime Function]

_Decimall28 __multd3 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return the product of a and b.

_Decimal32 __divsd3 (_Decimal32 a, _Decimal32 b) [Runtime Function]

_Decimal64 __divdd3 (_Decimal64 a, -Decimal64 b) [Runtime Function]

_Decimall28 __divtd3 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return the quotient of a and b; that is, a/b.

_Decimal32 __negsd2 (_Decimal32 a) [Runtime Function]

_Decimal64 __negdd2 (_Decimal64 a) [Runtime Function]

_Decimall28 __negtd2 (_Decimall28 a) [Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

4.3.2 Conversion functions

_Decimal64 __extendsddd2 (_Decimal32 a)
_Decimall28 __extendsdtd2 (_Decimal32 a)
_Decimall28 __extendddtd2 (_Decimal64 a)
_Decimal32 __extendsfsd (float a)

Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
__ [Runtime Function]
double __extendsddf (_Decimal32 a) [Runtime Function]
long double __extendsdxf (_Decimal32 a) [Runtime Function]
_Decimal64 __extendsfdd (float a) [Runtime Function]
_Decimal64 __extenddfdd (double a) [Runtime Function]
long double __extendddxf (_Decimal64 a) [Runtime Function]
_Decimall28 __extendsftd (float a) [Runtime Function]
_Decimall128 __extenddftd (double a) [Runtime Function]
_Decimall28 __extendxftd (long double a) [Runtime Function]

These functions extend a to the wider mode of their return type.

Runtime Function
Runtime Function
Runtime Function

_Decimal32 __truncddsd2 (_Decimal64 a) [
_Decimal32 __trunctdsd2 (_Decimall28 a) [
_Decimal64 __trunctddd2 (_Decimall28 a) [
float __truncsdsf (-Decimal32 a) [Runtime Function
_Decimal32 __truncdfsd (double a) [Runtime Function
_Decimal32 __truncxfsd (long double a) [Runtime Function
float __truncddsf (_Decimal64 a) [Runtime Function
double __truncdddf (_Decimal64 a) [Runtime Function
_Decimal64 __truncxfdd (long double a) [Runtime Function
float __trunctdsf (_Decimall28 a) [Runtime Function
double __trunctddf (_Decimall28 a) [Runtime Function
long double __trunctdxf (_Decimall28 a) [Runtime Function
These functions truncate a to the narrower mode of their return type.

]
]
]
]
]
]
]
]
]
]
]
]

int __fixsdsi (_Decimal32 a) [Runtime Function]
int __fixddsi (_Decimal64 a) [Runtime Function]

18 GNU Compiler Collection (GCC) Internals

int __fixtdsi (_Decimall28 a) [Runtime Function]
These functions convert a to a signed integer.

long __fixsddi (_Decimal32 a) [Runtime Function]

long __fixdddi (-Decimal64 a) [Runtime Function]

long __fixtddi (_Decimall28 a) [Runtime Function]
These functions convert a to a signed long.

unsigned int __fixunssdsi (_Decimal32 a) [Runtime Function]

unsigned int __fixunsddsi (_Decimal64 a) [Runtime Function]

unsigned int __fixunstdsi (-Decimall28 a) [Runtime Function]

These functions convert a to an unsigned integer. Negative values all become zero.

unsigned long __fixunssddi (_Decimal32 a) [Runtime Function]
unsigned long __fixunsdddi (_Decimal64 a) [Runtime Function]
unsigned long __fixunstddi (_Decimall28 a) [Runtime Function]

These functions convert a to an unsigned long. Negative values all become zero.

_Decimal32 __floatsisd (int i) [Runtime Function]
_Decimal64 __floatsidd (int i) [Runtime Function]
_Decimall28 __floatsitd (int i) [Runtime Function]

These functions convert i, a signed integer, to decimal floating point.

_Decimal32 __floatdisd (long i) [Runtime Function]

_Decimalé4 __floatdidd (long i) [Runtime Function]

_Decimal128 __floatditd (long i) [Runtime Function]
These functions convert i, a signed long, to decimal floating point.

_Decimal32 __floatunssisd (unsigned int i) [Runtime Function]

_Decimalé4 __floatunssidd (unsigned int i) [Runtime Function]

_Decimal128 __floatunssitd (unsigned int i) [Runtime Function]
These functions convert i, an unsigned integer, to decimal floating point.

_Decimal32 __floatunsdisd (unsigned long i) [Runtime Function]
_Decimalé4 __floatunsdidd (unsigned long i) [Runtime Function]
_Decimal128 __floatunsditd (unsigned long i) [Runtime Function]

These functions convert i, an unsigned long, to decimal floating point.

4.3.3 Comparison functions

int __unordsd2 (_Decimal32 a, -Decimal32 b) [Runtime Function]
int __unorddd2 (_-Decimal64 a, _Decimal64 b) [Runtime Function]
int __unordtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

Chapter 4: The GCC low-level runtime library 19

if (__unordXd2 (a, b))
return E;
return __cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]

int __eqdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]

int __eqtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return zero if neither argument is NaN, and a and b are equal.

int __nesd2 (-Decimal32 a, _Decimal32 b) [Runtime Function]

int __nedd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]

int __netd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]

int __gedd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]

int __getd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __1tdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __1ttd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

int __lesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __ledd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __letd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

int __gtsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __gtdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __gttd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.4 Language-independent routines for exception handling

document me!

_Unwind_DeleteException
_Unwind_Find_FDE
_Unwind_ForcedUnwind
_Unwind_GetGR
_Unwind_GetIP

20 GNU Compiler Collection (GCC) Internals

_Unwind_GetLanguageSpecificData
_Unwind_GetRegionStart
_Unwind_GetTextRelBase
_Unwind_GetDataRelBase
_Unwind_RaiseException
_Unwind_Resume

_Unwind_SetGR

_Unwind_SetIP
_Unwind_FindEnclosingFunction
_Unwind_SjLj_Register
_Unwind_SjLj_Unregister
_Unwind_SjLj_RaiseException
_Unwind_SjLj_ForcedUnwind
_Unwind_SjLj_Resume
__deregister_frame
__deregister_frame_info
__deregister_frame_info_bases
__register_frame
__register_frame_info
__register_frame_info_bases
__register_frame_info_table
__register_frame_info_table_bases
__register_frame_table

4.5 Miscellaneous runtime library routines

4.5.1 Cache control functions

void __clear_cache (char *beg, char *end) [Runtime Function]
This function clears the instruction cache between beg and end.

Chapter 5: Language Front Ends in GCC 21

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 9 [Trees], page 69), was initially designed for C, and many aspects of it are still
somewhat biased towards C and C-like languages. It is, however, reasonably well suited to
other procedural languages, and front ends for many such languages have been written for
GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

e GCC front ends benefit from the support for many different target machines already
present in GCC.

e GCC front ends benefit from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code then
when it is compiling from generated C code.

e Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.

22

GNU Compiler Collection (GCC) Internals

Chapter 6: Source Tree Structure and Build System 23

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built.
The user documentation for building and installing GCC is in a separate manual
(http://gcc.gnu.org/install/), with which it is presumed that you are familiar.

6.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘--host=’, and ‘--target=".

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the saime, this is called a native. If build and host are the
same but target is different, this is called a cross. If build, host, and target are all different
this is called a canadian (for obscure reasons dealing with Canada’s political party and the
background of the person working on the build at that time). If host and target are the
same, but build is different, you are using a cross-compiler to build a native for a different
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is different, you are using a cross compiler to build a cross
compiler that produces code for the machine you’re building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like 1ibstdc++). If build and host are different, you must have already
build and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you're building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you’re not building a compiler, you're
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

The libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:

http://gcc.gnu.org/install/

24 GNU Compiler Collection (GCC) Internals

‘boehm-gc’
The Boehm conservative garbage collector, used as part of the Java runtime
library.

‘contrib’ Contributed scripts that may be found useful in conjunction with GCC. One
of these, ‘contrib/texi2pod.pl’, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

‘fastjar’ An implementation of the jar command, used with the Java front end.

‘gec’ The main sources of GCC itself (except for runtime libraries), including op-

timizers, support for different target architectures, language front ends, and
testsuites. See Section 6.3 [The ‘gcc’ Subdirectory], page 24, for details.

‘include’ Headers for the 1ibiberty library.
‘libada’ The Ada runtime library.
‘libcpp’ The C preprocessor library.
‘libgfortran’
The Fortran runtime library.
‘1ibffi’ The 1ibffi library, used as part of the Java runtime library.
‘libiberty’
The libiberty library, used for portability and for some generally useful data

structures and algorithms. See section “Introduction” in GNU libiberty, for
more information about this library.

‘libjava’ The Java runtime library.

‘libmudflap’
The libmudflap library, used for instrumenting pointer and array dereferencing
operations.

‘libobjc’ The Objective-C and Objective-C++ runtime library.

‘libstdc++-v3’
The C++ runtime library.

‘maintainer-scripts’
Scripts used by the gccadmin account on gcc.gnu.org.

‘z1ib’ The z1ib compression library, used by the Java front end and as part of the
Java runtime library.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See section “GNU configure and build system”
in The GNU configure and build system, for details.

6.3 The ‘gcc’ Subdirectory

The ‘gcc’ directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a testsuite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 8 [Passes and Files of the Compiler], page 55.

Chapter 6: Source Tree Structure and Build System 25

6.3.1 Subdirectories of ‘gcc’

The ‘gcc’ directory contains the following subdirectories:

‘language’

‘config’

‘doc

‘fixinc’

‘ginclude’

‘intl’

po

‘testsuite’

Subdirectories for various languages. Directories containing a file
‘config-lang.in’ are language subdirectories. The contents of the
subdirectories ‘cp’ (for C++), ‘objc’ (for Objective-C) and ‘objcp’ (for
Objective-C++) are documented in this manual (see Chapter 8 [Passes and
Files of the Compiler], page 55); those for other languages are not. See
Section 6.3.8 [Anatomy of a Language Front End], page 33, for details of the
files in these directories.

Configuration files for supported architectures and operating systems. See Sec-
tion 6.3.9 [Anatomy of a Target Back End], page 37, for details of the files in
this directory.

Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See Sec-
tion 6.3.7 [Documentation], page 30.

The support for fixing system headers to work with GCC. See ‘fixinc/README’
for more information. The headers fixed by this mechanism are installed in
‘libsubdir/include’. Along with those headers, ‘README-fixinc’ is also in-
stalled, as ‘1ibsubdir/include/README’.

System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 6.3.6 [Headers Installed by GCC],
page 30, for details of when these and other headers are installed.

GNU 1libintl, from GNU gettext, for systems which do not include it in libc.
Properly, this directory should be at top level, parallel to the ‘gcc’ directory.

Message catalogs with translations of messages produced by GCC into various
languages, ‘language.po’. This directory also contains ‘gcc.pot’, the template
for these message catalogues, ‘exgettext’, a wrapper around gettext to ex-
tract the messages from the GCC sources and create ‘gcc.pot’, which is run
by ‘make gcc.pot’, and ‘EXCLUDES’, a list of files from which messages should
not be extracted.

The GCC testsuites (except for those for runtime libraries). See Section 6.4
[Testsuites], page 38.

6.3.2 Configuration in the ‘gcc’ Directory

The ‘gcc’ directory is configured with an Autoconf-generated script ‘configure’. The

‘configure’

script is generated from ‘configure.ac’ and ‘aclocal.m4’. From the files

‘configure.ac’ and ‘acconfig.h’, Autoheader generates the file ‘config.in’. The file
‘cstamp-h.in’ is used as a timestamp.

26 GNU Compiler Collection (GCC) Internals

6.3.2.1 Scripts Used by ‘configure’

‘configure’ uses some other scripts to help in its work:

e The standard GNU ‘config.sub’ and ‘config.guess’ files, kept in the top level direc-
tory, are used. FIXME: when is the ‘config.guess’ file in the ‘gcc’ directory (that
just calls the top level one) used?

o The file ‘config.gcc’ is used to handle configuration specific to the particular target
machine. The file ‘config.build’ is used to handle configuration specific to the par-
ticular build machine. The file ‘config.host’ is used to handle configuration specific
to the particular host machine. (In general, these should only be used for features
that cannot reasonably be tested in Autoconf feature tests.) See Section 6.3.2.2 [The
‘config.build’; ‘config.host’; and ‘config.gcc’ Files|, page 26, for details of the
contents of these files.

e Dach language subdirectory has a file ‘language/config-lang.in’ that is used for
front-end-specific configuration. See Section 6.3.8.2 [The Front End ‘config-lang.in’
File], page 36, for details of this file.

e A helper script ‘configure.frag’ is used as part of creating the output of ‘configure’.

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’ Files

The ‘config.build’ file contains specific rules for particular systems which GCC is built
on. This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The ‘config.host’ file contains specific rules for particular systems which GCC will run
on. This is rarely needed.

The ‘config.gcc’ file contains specific rules for particular systems which GCC will gen-
erate code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.

FIXME: document the contents of these files, and what variables should be set to control
build, host and target configuration.

6.3.2.3 Files Created by configure

Here we spell out what files will be set up by ‘configure’ in the ‘gcc’ directory. Some
other files are created as temporary files in the configuration process, and are not used in
the subsequent build; these are not documented.

e ‘Makefile’is constructed from ‘Makefile.in’, together with the host and target frag-
ments (see Chapter 17 [Makefile Fragments], page 443) ‘t-target’ and ‘x-host’ from
‘config’, if any, and language Makefile fragments ‘language /Make-lang.in’.

e ‘auto-host.h’ contains information about the host machine determined by
‘configure’. If the host machine is different from the build machine, then
‘auto-build.h’ is also created, containing such information about the build machine.

e ‘config.status’is a script that may be run to recreate the current configuration.

e ‘configargs.h’ is a header containing details of the arguments passed to ‘configure’
to configure GCC, and of the thread model used.

e ‘cstamp-h’ is used as a timestamp.

Chapter 6: Source Tree Structure and Build System 27

e ‘fixinc/Makefile’ is constructed from ‘fixinc/Makefile.in’.

e ‘gccbug’, a script for reporting bugs in GCC, is constructed from ‘gccbug.in’.

e ‘intl/Makefile’ is constructed from ‘intl/Makefile.in’.

e ‘mklibgcc’, a shell script to create a Makefile to build libgce, is constructed from
‘mklibgcc.in’.

e If a language ‘config-lang.in’ file (see Section 6.3.8.2 [The Front End

‘config-lang.in’ File], page 36) sets outputs, then the files listed in outputs there
are also generated.

The following configuration headers are created from the Makefile, using ‘mkconfig.sh’,
rather than directly by ‘configure’. ‘config.h’, ‘bconfig.h’ and ‘tconfig.h’ all contain
the ‘xm-machine.h’ header, if any, appropriate to the host, build and target machines
respectively, the configuration headers for the target, and some definitions; for the host
and build machines, these include the autoconfigured headers generated by ‘configure’.
The other configuration headers are determined by ‘config.gcc’. They also contain the
typedefs for rtx, rtvec and tree.

e ‘config.h’, for use in programs that run on the host machine.

e ‘beconfig.h’, for use in programs that run on the build machine.

e ‘tconfig.h’, for use in programs and libraries for the target machine.

e ‘tm_p.h’, which includes the header ‘machine-protos.h’ that contains prototypes for

functions in the target *.c’ file. FIXME: why is such a separate header necessary?

6.3.3 Build System in the ‘gcc’ Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 8 [Passes], page 55).

6.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all This is the default target. Depending on what your build/host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
‘make man’ and ‘make info’.

dvi Produce DVI-formatted documentation.
pdf Produce PDF-formatted documentation.
html Produce HTML-formatted documentation.
man Generate man pages.

info Generate info-formatted pages.
mostlyclean

Delete the files made while building the compiler.
clean That, and all the other files built by ‘make all’.

28 GNU Compiler Collection (GCC) Internals

distclean
That, and all the files created by configure.

maintainer-clean
Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build gcc.

srcextra Generates files in the source directory that do not exist in CVS but should go
into a release tarball. One example is ‘gcc/java/parse.c’ which is generated
from the CVS source file ‘gcc/java/parse.y’.

srcinfo
srcman Copies the info-formatted and manpage documentation into the source directory
usually for the purpose of generating a release tarball.

install Installs gce.

uninstall
Deletes installed files.

check Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘.1og’ files containing the results of the testing. You can run subsets
with, for example, ‘make check-gcc’. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:
make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as TCL or dejagnu.

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Makefile that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times—once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
‘make compare’ can check. FEach stage is configured separately and compiled into a separate
directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g. that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures'.

Other targets available from the top level include:

L Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case,
it’s best to use make restrap.

Chapter 6: Source Tree Structure and Build System 29

bootstrap-lean
Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

bootstrap2

bootstrap2-lean
Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a “lean” bootstrap is approximately
independent of the number of stages.

stagelN-bubble (N =1...4)
Rebuild all the stages up to N, with the appropriate flags, “bubbling” the
changes as described above.

all-stageN (N =1...4)
Assuming that stage N has already been built, rebuild it with the appropriate
flags. This is rarely needed.

cleanstrap
Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

profiledbootstrap
Builds a compiler with profiling feedback information. For more information,
see section “Building with profile feedback™ in Installing GCC.

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N =1...4)
For each package that is bootstrapped, rename directories so that, for example,
‘gee’ points to the stageN GCC, compiled with the stageN-1 GCC?.

You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run ‘make’ either to rebuild it
or to run test suites), you should be able to work directly in the ‘stageN-gcc’
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the ‘gcc’ directory points to the stage2 GCC, after
invoking this target it will be renamed to ‘stage2-gcc’.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in

2 Customarily, the system compiler is also termed the ‘stage0’ GCC.

30 GNU Compiler Collection (GCC) Internals

the first stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing
‘make’.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompi-
lation caused by the stagel compiler, you may need a command like

make stage2-bubble STAGE1_LANGUAGES=c,fortran

Alternatively, you can use per-language targets to build and test languages that are not
enabled by default in stagel. For example, make £951 will build a Fortran compiler even in
the stagel build directory.

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

FIXME: list here, with explanation, all the C source files and headers under the ‘gcc’
directory that aren’t built into the GCC executable but rather are part of runtime libraries
and object files, such as ‘crtstuff.c’ and ‘unwind-dw2.c’. See Section 6.3.6 [Headers
Installed by GCC], page 30, for more information about the ‘ginclude’ directory.

6.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used
with it. However, GCC will fix those headers if necessary to make them work with GCC,
and will install some headers required of freestanding implementations. These headers are
installed in ‘Iibsubdir/include’. Headers for non-C runtime libraries are also installed
by GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the ‘ginclude’ directory. These headers,
‘is0646.h’, ‘stdarg.h’;, ‘stdbool.h’; and ‘stddef.h’, are installed in ‘libsub-
dir/include’, unless the target Makefile fragment (see Section 17.1 [Target Fragment],
page 443) overrides this by setting USER_H.

In addition to these headers and those generated by fixing system headers to work with
GCC, some other headers may also be installed in ‘libsubdir/include’. ‘config.gcc’
may set extra_headers; this specifies additional headers under ‘config’ to be installed on
some systems.

GCCO installs its own version of <float.h>, from ‘ginclude/float.h’. This is done to
cope with command-line options that change the representation of floating point numbers.

GCCO also installs its own version of <limits.h>; this is generated from ‘glimits.h’; to-
gether with ‘limitx.h’ and ‘limity.h’ if the system also has its own version of <limits.h>.
(GCC provides its own header because it is required of ISO C freestanding implementations,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be defined in <1imits.h>.) The system’s
<limits.h> header is used via ‘libsubdir/include/syslimits.h’, which is copied from
‘gsyslimits.h’ if it does not need fixing to work with GCC; if it needs fixing, ‘syslimits.h’
is the fixed copy.

6.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format; DVI versions may be generated by ‘make dvi’, PDF versions by
‘make pdf’, and HTML versions by make html. In addition, some man pages are generated
from the Texinfo manuals, there are some other text files with miscellaneous documentation,

Chapter 6: Source Tree Structure and Build System 31

and runtime libraries have their own documentation outside the ‘gcc’ directory. FIXME:
document the documentation for runtime libraries somewhere.

6.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files ‘doc/*.texi’.
Other front ends have their own manuals in files ‘language/*.texi’. Common files
‘doc/include/*.texi’ are provided which may be included in multiple manuals; the
following files are in ‘doc/include’:

‘fdl.texi’
The GNU Free Documentation License.

‘funding.texi’
The section “Funding Free Software”.

‘gcc-common. texi’
Common definitions for manuals.

‘gpl.texi’
The GNU General Public License.

‘texinfo.tex’
A copy of ‘texinfo.tex’ known to work with the GCC manuals.

DVI-formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the Make-
file macro $ (TEXI2DVI)). PDF-formatted manuals are generated by ‘make pdf’, which uses
texi2pdf (via the Makefile macro $(TEXI2PDF)). HTML formatted manuals are generated
by make html. Info manuals are generated by ‘make info’ (which is run as part of a boot-
strap); this generates the manuals in the source directory, using makeinfo via the Makefile
macro $(MAKEINFO), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script ‘maintainer-scripts/update_web_docs’. Each manual to be
provided online must be listed in the definition of MANUALS in that file; a file ‘name.texi’
must only appear once in the source tree, and the output manual must have the same
name as the source file. (However, other Texinfo files, included in manuals but not them-
selves the root files of manuals, may have names that appear more than once in the source
tree.) The manual file ‘name.texi’ should only include other files in its own directory or in
‘doc/include’. HTML manuals will be generated by ‘makeinfo --html’, PostScript manu-
als by texi2dvi and dvips, and PDF manuals by texi2pdf. All Texinfo files that are parts
of manuals must be checked into CVS, even if they are generated files, for the generation
of online manuals to work.

The installation manual, ‘doc/install.texi’, is also provided on the GCC web site. The
HTML version is generated by the script ‘doc/install.texi2html’.

6.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using ‘contrib/texi2pod.pl’ and pod2man. (The man page for g++, ‘cp/g++.1",
just contains a ‘.so’ reference to ‘gcc.1’, but all the other man pages are generated from
Texinfo manuals.)

32 GNU Compiler Collection (GCC) Internals

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the ‘configure’ script detects that recent enough tools
are installed, and the Makefiles allow generating man pages to fail without aborting the
build. Man pages are also included in release distributions. They are generated in the
source directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file
go into a man page. Only a subset of Texinfo is supported by ‘texi2pod.pl’, and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
‘doc/include/gcc-common.texi’ which ‘texi2pod.pl’ understands:

Q@gcctabopt
Use in the form ‘@table @gcctabopt’ for tables of options, where for printed
output the effect of ‘Gcode’ is better than that of ‘@option’ but for man page
output a different effect is wanted.

Q@gccoptlist
Use for summary lists of options in manuals.

Qgol Use at the end of each line inside ‘@gccoptlist’. This is necessary to avoid
problems with differences in how the ‘@gccoptlist’ macro is handled by dif-
ferent Texinfo formatters.

FIXME: describe the ‘texi2pod.pl’ input language and magic comments in more detail.

6.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text files with miscellaneous documentation:

‘ABOUT-GCC-NLS’
Notes on GCC’s Native Language Support. FIXME: this should be part of this
manual rather than a separate file.

‘ABOUT-NLS’
Notes on the Free Translation Project.

‘COPYING’ The GNU General Public License.

‘COPYING.LIB’
The GNU Lesser General Public License.

‘xChangeLog#’

‘x/ChangeLog*’
Change log files for various parts of GCC.

‘LANGUAGES’
Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this file should be part of general documentation of the front-end
interface in this manual.

‘ONEWS’ Information about new features in old versions of GCC. (For recent versions,

the information is on the GCC web site.)

Chapter 6: Source Tree Structure and Build System 33

‘README.Portability’
Information about portability issues when writing code in GCC. FIXME: why
isn’t this part of this manual or of the GCC Coding Conventions?

‘SERVICE’ A pointer to the GNU Service Directory.

FIXME: document such files in subdirectories, at least ‘config’, ‘cp’, ‘objc’, ‘testsuite’.

6.3.8 Anatomy of a Language Front End
A front end for a language in GCC has the following parts:

e A directory ‘language’ under ‘gcc’ containing source files for that front end. See
Section 6.3.8.1 [The Front End ‘language’ Directory], page 34, for details.

e A mention of the language in the list of supported languages in ‘gcc/doc/install.texi’]

e A mention of the name under which the language’s runtime library is recog-
nized by ‘--enable-shared=package’ in the documentation of that option in
‘gcc/doc/install.texi’.

e A mention of any special prerequisites for building the front end in the documentation
of prerequisites in ‘gcc/doc/install.texi’.

e Details of contributors to that front end in ‘gcc/doc/contrib.texi’. If the details are
in that front end’s own manual then there should be a link to that manual’s list in
‘contrib.texi’.

e Information about support for that language in ‘gcc/doc/frontends.texi’.

e Information about standards for that language, and the front end’s support for them,
in ‘gcc/doc/standards.texi’. This may be a link to such information in the front
end’s own manual.

e Details of source file suffixes for that language and ‘-x lang’ options supported, in
‘gcc/doc/invoke . texi’.

e Entries in default_compilers in ‘gcc.c’ for source file suffixes for that language.

e Preferably testsuites, which may be under ‘gcc/testsuite’ or runtime library direc-
tories. FIXME: document somewhere how to write testsuite harnesses.

e Probably a runtime library for the language, outside the ‘gcc’ directory. FIXME:
document this further.

e Details of the directories of any runtime libraries in ‘gcc/doc/sourcebuild.texi’.
If the front end is added to the official GCC CVS repository, the following are also
necessary:

e At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be mentioned in ‘gcc/gccbug.in’, as well as being added to the
Bugzilla database.

e Normally, one or more maintainers of that front end listed in ‘MAINTAINERS’.

e Mentions on the GCC web site in ‘index.html’ and ‘frontends.html’, with any rele-
vant links on ‘readings.html’. (Front ends that are not an official part of GCC may
also be listed on ‘frontends.html’, with relevant links.)

e A news item on ‘index.html’, and possibly an announcement on the
gcc-announce@gcc. gnu.org mailing list.

mailto:gcc-announce@gcc.gnu.org

34 GNU Compiler Collection (GCC) Internals

e The front end’s manuals should be mentioned in ‘maintainer-scripts/update_web_docs’}]
(see Section 6.3.7.1 [Texinfo Manuals], page 31) and the online manuals should be
linked to from ‘onlinedocs/index.html’.

e Any old releases or CVS repositories of the front end, before its in-
clusion in GCC, should be made available on the GCC FTP site
ftp://gcc.gnu.org/pub/gcc/old-releases/.

e The release and snapshot script ‘maintainer-scripts/gcc_release’
should be updated to generate appropriate tarballs for this front
end. The associated ‘maintainer-scripts/snapshot-README’ and

‘maintainer-scripts/snapshot-index.html’ files should be updated to list
the tarballs and diffs for this front end.

e If this front end includes its own version files that include the current date,
‘maintainer-scripts/update_version’ should be updated accordingly.

e ‘CVSRO0T/modules’ in the GCC CVS repository should be updated.

6.3.8.1 The Front End ‘language’ Directory

A front end ‘language’ directory contains the source files of that front end (but not of any
runtime libraries, which should be outside the ‘gcc’ directory). This includes documenta-
tion, and possibly some subsidiary programs build alongside the front end. Certain files are
special and other parts of the compiler depend on their names:

‘config-lang.in’
This file is required in all language subdirectories. See Section 6.3.8.2 [The
Front End ‘config-lang.in’ File], page 36, for details of its contents

‘Make-lang.in’

This file is required in all language subdirectories. It contains targets
lang.hook (where lang is the setting of language in ‘config-lang.in’) for
the following values of hook, and any other Makefile rules required to build
those targets (which may if necessary use other Makefiles specified in outputs
in ‘config-lang.in’, although this is deprecated). It also adds any testsuite
targets that can use the standard rule in ‘gcc/Makefile.in’ to the variable
lang_checks.

all.cross
start.encap
rest.encap
FIXME: exactly what goes in each of these targets?

tags Build an etags ‘TAGS’ file in the language subdirectory in the source
tree.
info Build info documentation for the front end, in the build directory.

This target is only called by ‘make bootstrap’ if a suitable version
of makeinfo is available, so does not need to check for this, and
should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory.
This should be done using $(TEXI2DVI), with appropriate ‘-1’ ar-
guments pointing to directories of included files.

ftp://gcc.gnu.org/pub/gcc/old-releases/

Chapter 6: Source Tree Structure and Build System 35

pdf Build PDF documentation for the front end, in the build direc-
tory. This should be done using $(TEXI2PDF), with appropriate
‘-1’ arguments pointing to directories of included files.

html Build HTML documentation for the front end, in the build direc-
tory.
man Build generated man pages for the front end from Texinfo man-

uals (see Section 6.3.7.2 [Man Page Generation], page 31), in the
build directory. This target is only called if the necessary tools are
available, but should ignore errors so as not to stop the build if
errors occur; man pages are optional and the tools involved may be
installed in a broken way.

install-common
Install everything that is part of the front end, apart from the
compiler executables listed in compilers in ‘config-lang.in’.

install-info
Install info documentation for the front end, if it is present in the
source directory. This target should have dependencies on info files
that should be installed.

install-man
Install man pages for the front end. This target should ignore
errors.

srcextra Copies its dependencies into the source directory. This generally
should be used for generated files such as Bison output files
which are not present in CVS, but should be included in any
release tarballs. This target will be executed during a bootstrap
if ‘--enable-generated-files-in-srcdir’ was specified as a
‘configure’ option.

srcinfo

srcman Copies its dependencies into the source directory.
These targets will be executed during a bootstrap if
‘-—enable-generated-files-in-srcdir’ was specified as a
‘configure’ option.

uninstall
Uninstall files installed by installing the compiler. This is currently
documented not to be supported, so the hook need not do anything.

mostlyclean

clean

distclean

maintainer-clean
The language parts of the standard GNU ‘*clean’ targets. See
section “Standard Targets for Users” in GNU Coding Standards,
for details of the standard targets. For GCC, maintainer-clean
should delete all generated files in the source directory that are

36 GNU Compiler Collection (GCC) Internals

not checked into CVS, but should not delete anything checked into

CVS.
stagel
stage2
stage3
staged
stageprofile
stagefeedback

Move to the stage directory files not included in stagestuff in
‘config-lang.in’ or otherwise moved by the main ‘Makefile’.

‘lang.opt’
This file registers the set of switches that the front end accepts on the command
line, and their ‘--help’ text. See Chapter 7 [Options], page 51.

‘lang-specs.h’
This file provides entries for default_compilers in ‘gcc.c’ which override the
default of giving an error that a compiler for that language is not installed.

‘language-tree.def’
This file, which need not exist, defines any language-specific tree codes.

6.3.8.2 The Front End ‘config-lang.in’ File

Each language subdirectory contains a ‘config-lang.in’ file. In addition the main direc-
tory contains ‘c-config-lang.in’, which contains limited information for the C language.
This file is a shell script that may define some variables describing the language:

language This definition must be present, and gives the name of the language for some
purposes such as arguments to ‘-—enable-languages’.

lang_requires
If defined, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Java front end depends on the C++ front
end, so sets ‘lang_requires=c++’.

subdir_requires
If defined, this variable lists (space-separated) front end directories other than
C that this front end requires to be present. For example, the Objective-C++
front end uses source files from the C++ and Objective-C front ends, so sets
‘subdir_requires="cp objc"’.

target_libs
If defined, this variable lists (space-separated) targets in the top level ‘Makefile’
to build the runtime libraries for this language, such as target-1libobjc.

lang_dirs
If defined, this variable lists (space-separated) top level directories (parallel to
‘gec’), apart from the runtime libraries, that should not be configured if this
front end is not built.

Chapter 6: Source Tree Structure and Build System 37

build_by_default
If defined to ‘no’, this language front end is not built unless enabled in a
‘--—enable-languages’ argument. Otherwise, front ends are built by default,
subject to any special logic in ‘configure.ac’ (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language
If defined to ‘yes’, this front end is built in stage 1 of the bootstrap. This is
only relevant to front ends written in their own languages.

compilers
If defined, a space-separated list of compiler executables that will be run by the
driver. The names here will each end with ‘\$ (exeext)’.

stagestuff
If defined, a space-separated list of files that should be moved to the ‘stagen’
directories in each stage of bootstrap.

outputs Ifdefined, a space-separated list of files that should be generated by ‘configure’
substituting values in them. This mechanism can be used to create a file ‘1an-
guage /Makefile’ from ‘language/Makefile.in’, but this is deprecated, build-
ing everything from the single ‘gcc/Makefile’ is preferred.

gtfiles If defined, a space-separated list of files that should be scanned by gengtype.c
to generate the garbage collection tables and routines for this language. This
excludes the files that are common to all front ends. See Chapter 20 [Type
Information], page 451.

need_gmp If defined to ‘yes’, this frontend requires the GMP library. Enables configure
tests for GMP, which set GMPLIBS and GMPINC appropriately.

6.3.9 Anatomy of a Target Back End
A back end for a target architecture in GCC has the following parts:

e A directory ‘machine’ under ‘gcc/config’, containing a machine description
‘machine.md’ file (see Chapter 14 [Machine Descriptions|, page 199), header files
‘machine.h’ and ‘machine-protos.h’ and a source file ‘machine.c’ (see Chapter 15
[Target Description Macros and Functions|, page 293), possibly a target Makefile
fragment ‘t-machine’ (see Section 17.1 [The Target Makefile Fragment], page 443),
and maybe some other files. The names of these files may be changed from the
defaults given by explicit specifications in ‘config.gcc’.

e If necessary, a file ‘machine-modes.def’ in the ‘machine’ directory, containing addi-
tional machine modes to represent condition codes. See Section 15.16 [Condition Code],
page 369, for further details.

e An optional ‘machine.opt’ file in the ‘machine’ directory, containing a list of target-
specific options. You can also add other option files using the extra_options variable
in ‘config.gcc’. See Chapter 7 [Options], page 51.

e Entries in ‘config.gcc’ (see Section 6.3.2.2 [The ‘config.gcc’ File], page 26) for the
systems with this target architecture.

38

GNU Compiler Collection (GCC) Internals

Documentation in ‘gcc/doc/invoke. texi’ for any command-line options supported by
this target (see Section 15.3 [Run-time Target Specification], page 301). This means
both entries in the summary table of options and details of the individual options.

Documentation in ‘gcc/doc/extend.texi’ for any target-specific attributes supported
(see Section 15.25 [Defining target-specific uses of __attribute__], page 419), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

Documentation in ‘gcc/doc/extend.texi’ for any target-specific pragmas supported.
Documentation in ‘gcc/doc/extend. texi’ of any target-specific built-in functions sup-
ported.

Documentation in ‘gcc/doc/extend. texi’ of any target-specific format checking styles
supported.

Documentation in ‘gcc/doc/md.texi’ of any target-specific constraint letters (see Sec-
tion 14.8.5 [Constraints for Particular Machines|, page 218).

A note in ‘gcc/doc/contrib.texi’ under the person or people who contributed the
target support.

Entries in ‘gcc/doc/install.texi’ for all target triplets supported with this target

architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

Possibly other support outside the ‘gcc’ directory for runtime libraries. FIXME: refer-
ence docs for this. The libstdc++ porting manual needs to be installed as info for this
to work, or to be a chapter of this manual.

If the back end is added to the official GCC CVS repository, the following are also

necessary:

e An entry for the target architecture in ‘readings.html’ on the GCC web site, with

any relevant links.
Details of the properties of the back end and target architecture in ‘backends.html’
on the GCC web site.

A news item about the contribution of support for that target architecture, in
‘index.html’ on the GCC web site.

Normally, one or more maintainers of that target listed in ‘MAINTAINERS’. Some existing
architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

6.4 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have testsuites. Currently only the C language
testsuites are documented here; FIXME: document the others.

6.4.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing ‘-n.c’, starting with ‘-1.c¢’, in case other testcases
with similar names are added later. If the test is a test of some well-defined feature, it
should have a name referring to that feature such as ‘feature-1.c’. If it does not test a

Chapter 6: Source Tree Structure and Build System 39

well-defined feature but just happens to exercise a bug somewhere in the compiler, and a
bug report has been filed for this bug in the GCC bug database, ‘prbug-number-1.c’ is
the appropriate form of name. Otherwise (for miscellaneous bugs not filed in the GCC bug
database), and previously more generally, test cases are named after the date on which they
were added. This allows people to tell at a glance whether a test failure is because of a
recently found bug that has not yet been fixed, or whether it may be a regression, but does
not give any other information about the bug or where discussion of it may be found. Some
other language testsuites follow similar conventions.

In the ‘gcec.dg’ testsuite, it is often necessary to test that an error is indeed a hard error
and not just a warning—for example, where it is a constraint violation in the C standard,
which must become an error with ‘-pedantic-errors’. The following idiom, where the
first line shown is line line of the file and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } */
/* { dg-error "regexp" "message" { target *-*-* } line } */

It may be necessary to check that an expression is an integer constant expression and has
a certain value. To check that E has value V, an idiom similar to the following is used:

char x[((E) == (V) 21 : -1)]1;

In ‘gcc.dg’ tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, ‘gcc.dg/c99-condexpr-1.c’. The more subtle uses depend
on the exact rules for the types of conditional expressions in the C standard; see, for example,
‘gcc.dg/c99-intconst-1.c’.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where flow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in ‘gcc.c-torture/execute’. Where code should be
optimized away, a call to a nonexistent function such as 1ink_failure () may be inserted;
a definition

#ifndef __OPTIMIZE__
void
link_failure (void)
{

abort ();
}

#endif
will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be defined as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ
by directory.

FIXME: discuss non-C testsuites here.

6.4.2 Directives used within DejaGnu tests

Test directives appear within comments in a test source file and begin with dg-. Some of
these are defined within DejaGnu and others are local to the GCC testsuite.

40 GNU Compiler Collection (GCC) Internals

The order in which test directives appear in a test can be important: directives local to
GCC sometimes override information used by the DejaGnu directives, which know nothing
about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors which are usually preceded by the keyword target
or xfail. A selector is: one or more target triplets, possibly including wildcard charac-
ters; a single effective-target keyword; or a logical expression. Depending on the con-
text, the selector specifies whether a test is skipped and reported as unsupported or is
expected to fail. Use ‘*-x-*’ to match any target. Effective-target keywords are defined in
‘target-supports.exp’ in the GCC testsuite.

A selector expression appears within curly braces and uses a single logical operator: one
of ‘1’ ‘&&’, or ‘| |’. An operand is another selector expression, an effective-target keyword,
a single target triplet, or a list of target triplets within quotes or curly braces. For example:

{ target { ! "hppa*-*—* jia64x—*-*" } }
{ target { powerpck-*-* && 1p64 } }
{ xfail { 1p64 || vect_no_align } }
{ dg-do do-what-keyword [{ target/xfail selector }] }
do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

preprocess
Compile with ‘-E’ to run only the preprocessor.

assemble Compile with ‘=S’ to produce an assembly code file.
compile Compile with ‘-¢’ to produce a relocatable object file.
link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is compile. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

If the directive includes the optional ‘{ target selector }’ then the test is
skipped unless the target system is included in the list of target triplets or
matches the effective-target keyword.

If the directive includes the optional ‘{ xfail selector }’ and the selector is
met then the test is expected to fail. For dg-do run, execution is expected to
fail but compilation is expected to pass.

{ dg-options options [{ target selector }] }
This DejaGnu directive provides a list of compiler options, to be used if the
target system matches selector, that replace the default options used for this
set of tests.

{ dg-skip-if comment { selector } { include-opts } { exclude-opts } }
Skip the test if the test system is included in selector and if each of the options
in include-opts is in the set of options with which the test would be compiled
and if none of the options in exclude-opts is in the set of options with which
the test would be compiled.

Use ‘""" for an empty include-opts list and ‘"""’ for an empty exclude-opts list.

Chapter 6: Source Tree Structure and Build System 41

{ dg-xfail-if comment { selector } { include-opts } { exclude-opts } }
Expect the test to fail if the conditions (which are the same as for dg-skip-if)
are met.

{ dg-require-support args }
Skip the test if the target does not provide the required support; see
‘gcc-dg.exp’ in the GCC testsuite for the actual directives. These directives
must appear after any dg-do directive in the test. They require at least one
argument, which can be an empty string if the specific procedure does not
examine the argument.

{ dg-require-effective-target keyword }
Skip the test if the test target, including current multilib flags, is not covered
by the effective-target keyword. This directive must appear after any dg-do
directive in the test.

{ dg-shouldfail comment { selector } { include-opts } { exclude-opts } }
Expect the test executable to return a nonzero exit status if the conditions
(which are the same as for dg-skip-if) are met.

{ dg-error regexp [comment [{ target/xfail selector } [line] }]1] }
This DejaGnu directive appears on a source line that is expected to get an error
message, or else specifies the source line associated with the message. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message. The check
does not look for the string ‘"error"’ unless it is part of regexp.

{ dg-warning regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that is expected to get a
warning message, or else specifies the source line associated with the message.
If there is no message for that line or if the text of that message is not matched
by regexp then the check fails and comment is included in the FAIL message.
The check does not look for the string ‘"warning"’ unless it is part of regexp.

{ dg-bogus regexp [comment [{ target/xfail selector } [line] }1] }
This DejaGnu directive appears on a source line that should not get a message
matching regexp, or else specifies the source line associated with the bogus
message. [t is usually used with ‘xfail’ to indicate that the message is a
known problem for a particular set of targets.

{ dg-excess-errors comment [{ target/xfail selector }] }
This DejaGnu directive indicates that the test is expected to fail due to compiler
messages that are not handled by ‘dg-error’, ‘dg-warning’ or ‘dg-bogus’.

{ dg-output regexp [{ target/xfail selector }] }
This DejaGnu directive compares regexp to the combined output that the test
executable writes to ‘stdout’ and ‘stderr’.

{ dg-prune-output regexp }
Prune messages matching regexp from test output.

42 GNU Compiler Collection (GCC) Internals

{ dg-additional-files "filelist" }
Specify additional files, other than source files, that must be copied to the
system where the compiler runs.

{ dg-additional-sources "filelist" }
Specify additional source files to appear in the compile line following the main
test file.

{ dg-final { local-directive } }
This DejaGnu directive is placed within a comment anywhere in the source file
and is processed after the test has been compiled and run. Multiple ‘dg-final’
commands are processed in the order in which they appear in the source file.

The GCC testsuite defines the following directives to be used within dg-final.

cleanup-coverage-files
Removes coverage data files generated for this test.

cleanup-repo-files
Removes files generated for this test for ‘~frepo’.

cleanup-rtl-dump suffix
Removes RTL dump files generated for this test.

cleanup-tree-dump suffix
Removes tree dump files matching suffix which were generated for
this test.

cleanup-saved-temps
Removes files for the current test which were kept for
‘~--save-temps’.

scan-file filename regexp [{ target/xfail selector }]
Passes if regexp matches text in filename.

scan-file-not filename regexp [{ target/xfail selector }]
Passes if regexp does not match text in filename.

scan-hidden symbol [{ target/xfail selector }]
Passes if symbol is defined as a hidden symbol in the test’s assembly
output.

scan-not-hidden symbol [{ target/xfail selector 1}]
Passes if symbol is not defined as a hidden symbol in the test’s
assembly output.

scan-assembler-times regex num [{ target/xfail selector }]
Passes if regex is matched exactly num times in the test’s assembler
output.

scan-assembler regex [{ target/xfail selector }]
Passes if regex matches text in the test’s assembler output.

scan-assembler-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s assembler output.

Chapter 6: Source Tree Structure and Build System 43

scan-assembler-dem regex [{ target/xfail selector }]
Passes if regex matches text in the test’s demangled assembler out-
put.

scan-assembler-dem-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s demangled assem-
bler output.

scan-tree-dump-times regex num suffix [{ target/xfail selector }]
Passes if regex is found exactly num times in the dump file with
suffix suffix.

scan-tree-dump regex suffix [{ target/xfail selector }]
Passes if regex matches text in the dump file with suffix suffix.

scan-tree-dump-not regex suffix [{ target/xfail selector }]
Passes if regex does not match text in the dump file with suffix
suffix.

scan-tree-dump-dem regex suffix [{ target/xfail selector }]
Passes if regex matches demangled text in the dump file with suffix
suffix.

scan-tree-dump-dem—not regex suffix [{ target/xfail selector }]
Passes if regex does not match demangled text in the dump file
with suffix suffix.

output-exists [{ target/xfail selector }]
Passes if compiler output file exists.

output-exists-not [{ target/xfail selector }]
Passes if compiler output file does not exist.

run-gcov sourcefile
Check line counts in gcov tests.

run-gcov [branches] [calls] { opts sourcefile }
Check branch and/or call counts, in addition to line counts, in gcov
tests.

6.4.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS 2.5 testsuite, publicly available
at http://www.adaic.org/compilers/acats/2.5

These tests are integrated in the GCC testsuite in the ‘gcc/testsuite/ada/acats’ di-
rectory, and enabled automatically when running make check, assuming the Ada language
has been enabled when configuring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset
of the tests by specifying which chapter to run, e.g.:
$ make check-ada CHAPTERS="c3 c9"

The tests are organized by directory, each directory corresponding to a chapter of the Ada
Reference Manual. So for example, ¢9 corresponds to chapter 9, which deals with tasking
features of the language.

http://www.adaic.org/compilers/acats/2.5

44 GNU Compiler Collection (GCC) Internals

There is also an extra chapter called ‘gcc’ containing a template for creating new exe-
cutable tests.

The tests are run using two sh scripts: ‘run_acats’ and ‘run_all.sh’. To run the
tests using a simulator or a cross target, see the small customization section at the top of
‘run_all.sh’.

These tests are run using the build tree: they can be run without doing a make install.

6.4.4 C Language Testsuites

GCC contains the following C language testsuites, in the ‘gcc/testsuite’ directory:

‘gcc.dg’ This contains tests of particular features of the C compiler, using the more
modern ‘dg’ harness. Correctness tests for various compiler features should go
here if possible.

Magic comments determine whether the file is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options ‘~ansi -pedantic’ unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

gcc.dg/compat’
This subdirectory contains tests for binary compatibility using ‘compat.exp’,
which in turn uses the language-independent support (see Section 6.4.8 [Support
for testing binary compatibility], page 47).

gcc.dg/cpp’
This subdirectory contains tests of the preprocessor.

‘gcc.dg/debug’
This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

gcc.dg/format’
This subdirectory contains tests of the ‘-Wformat’ format checking. Tests in
this directory are run with and without ‘~-DWIDE’.

gcc.dg/noncompile’
This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.

gcc.dg/special’
FIXME: describe this.

gcc.c-torture’
This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn’t
been done yet.

Chapter 6: Source Tree Structure and Build System 45

‘gece.

‘gece.

gcc.

gcc.

gcce.

gcce.

c-torture/compat’
FIXME: describe this.

This directory should probably not be used for new tests.

c-torture/compile’

This testsuite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several different combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
specific platforms, by the use of ‘.x’ files, mostly these test cases should not
contain platform dependencies. FIXME: discuss how defines such as NO_LABEL _
VALUES and STACK_SIZE are used.

c-torture/execute’
This testsuite contains test cases that should compile, link and run; otherwise
the same comments as for ‘gcc.c-torture/compile’ apply.

c-torture/execute/ieee’
This contains tests which are specific to IEEE floating point.

c-torture/unsorted’
FIXME: describe this.

This directory should probably not be used for new tests.

c-torture/misc-tests’
This directory contains C tests that require special handling. Some of these
tests have individual expect files, and others share special-purpose expect files:

‘bprobx*.c’
Test ‘-fbranch-probabilities’ using ‘bprob.exp’, which in
turn uses the generic, language-independent framework (see
Section 6.4.7 [Support for testing profile-directed optimizations],
page 47).

‘dg-*.c’ Test the testsuite itself using ‘dg-test.exp’.

‘gecovk.c’ Test gcov output using ‘gcov.exp’, which in turn uses the
language-independent support (see Section 6.4.6 [Support for
testing gcov], page 46).

‘386-pf-*.c’
Test i386-specific support for data prefetch using
‘1386-prefetch.exp’.

FIXME: merge in ‘testsuite/README.gcc’ and discuss the format of test cases and
magic comments more.

6.4.5 The Java library testsuites.

Runtime tests are executed via ‘make check’in the ‘target/libjava/testsuite’ directory
in the build tree. Additional runtime tests can be checked into this testsuite.

46 GNU Compiler Collection (GCC) Internals

Regression testing of the core packages in libgcj is also covered by the Mauve testsuite.
The Mauve Project develops tests for the Java Class Libraries. These tests are run as
part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at
‘libjava/testsuite/libjava.mauve/mauve’, or by specifying the location of that tree
when invoking ‘make’, as in ‘make MAUVEDIR="/mauve check’.

To detect regressions, a mechanism in ‘mauve.exp’ compares the failures for a test run
against the list of expected failures in ‘libjava/testsuite/libjava.mauve/xfails’ from
the source hierarchy. Update this file when adding new failing tests to Mauve, or when
fixing bugs in libgcj that had caused Mauve test failures.

The Jacks project provides a testsuite for Java compilers that can be used
to test changes that affect the GCJ front end. This testsuite is run as part
of Java testing by placing the Jacks tree within the libjava testsuite sources at
‘libjava/testsuite/libjava.jacks/jacks’.

We encourage developers to contribute test cases to Mauve and Jacks.

6.4.6 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling
produces expected values, is provided by the expect file ‘gcov.exp’. gcov tests also rely
on procedures in ‘gcc.dg.exp’ to compile and run the test program. A typical gcov test
contains the following DejaGnu commands within comments:

{ dg-options "-fprofile-arcs -ftest-coverage" }

{ dg-do run { target native } }
{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return per-
centages. All of these checks are requested via commands that appear in comments in the
test’s source file. Commands to check line counts are processed by default. Commands to
check branch percentages and call return percentages are processed if the run-gcov com-
mand has arguments branches or calls, respectively. For example, the following specifies
checking both, as well as passing ‘-b’ to gcov:

{ dg-final { run-gcov branches calls { -b sourcefile } } }

A line count command appears within a comment on the source line that is expected to
get the specified count and has the form count (cnt). A test should only check line counts
for lines that will get the same count for any architecture.

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the first of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 & j > i & j < 20) /* branch(27 50 75) */
/* branch(end) */
foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to

return. For a branch percentage, the value is either the expected percentage or 100 mi-

http://sourceware.org/mauve/
http://sourceware.org/mauve/jacks.html

Chapter 6: Source Tree Structure and Build System 47

nus that value, since the direction of a branch can differ depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don’t check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

6.4.7 Support for testing profile-directed optimizations

The file ‘profopt.exp’ provides language-independent support for checking correct execu-
tion of a test built with profile-directed optimization. This testing requires that a test
program be built and executed twice. The first time it is compiled to generate profile data,
and the second time it is compiled to use the data that was generated during the first
execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with the
profile-directed optimizations. ‘profopt.exp’ has the beginnings of this kind of support.

‘profopt.exp’ provides generic support for profile-directed optimizations. Each set of
tests that uses it provides information about a specific optimization:

tool tool being tested, e.g., gcc

profile_option
options used to generate profile data

feedback_option
options used to optimize using that profile data

prof_ext suffix of profile data files

PROFOPT_OPTIONS
list of options with which to run each test, similar to the lists for torture tests

6.4.8 Support for testing binary compatibility

The file ‘compat . exp’ provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not affect binary compatibility. It is intended
to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source file: a main
program and two pieces that interact with each other to split up the functionality being
tested.

‘testname _main.suffix’
Contains the main program, which calls a function in file ‘testname _x.suffix’.

‘testname _x.suffix’
Contains at least one call to a function in ‘testname_y.suffix’.

48 GNU Compiler Collection (GCC) Internals

‘testname _y.suffix’
Shares data with, or gets arguments from, ‘testname _x.suffix’.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is specified, then all three source files are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The first element of such a pair specifies
options used with the GCC under test, and the second element of the pair specifies options
used with the alternate compiler. Each test is compiled with each pair of options.

‘compat . exp’ defines default pairs of compiler options. These can be overridden by defin-

ing the environment variable COMPAT_OPTIONS as:
COMPAT_QPTIONS="[list [list {tst1} {alt1}]
...[1list {tstn} {altn}]1]1"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [1ist [list {-g -00} {-03}] [list
{-fpic} {-fPIC -02}1], the test is first built with ‘-g -00’ by the compiler under test and
with ‘=03" by the alternate compiler. The test is built a second time using ‘-fpic’ by the
compiler under test and ‘-fPIC -02’ by the alternate compiler.

An alternate compiler is specified by defining an environment variable to be the full
pathname of an installed compiler; for C define ALT_CC_UNDER_TEST, and for C++ define
ALT_CXX_UNDER_TEST. These will be written to the ‘site.exp’ file used by DejaGnu. The
default is to build each test with the compiler under test using the first of each pair of
compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_
TEST is same, each test is built using the compiler under test but with combinations of the
options from COMPAT_OPTIONS.

To run only the C++ compatibility suite using the compiler under test and another version
of GCC using specific compiler options, do the following from ‘objdir/gcc’:

rm site.exp

make -k \
ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
COMPAT_OPTIONS="lists as shown above" \
check-c++ \
RUNTESTFLAGS="compat.exp"

A test that fails when the source files are compiled with different compilers, but passes
when the files are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was fixed in the compiler under
test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that
appear within comments in a test file.

dg-require-*
These commands can be used in ‘testname _main.suffix’ to skip the test if
specific support is not available on the target.

dg-options
The specified options are used for compiling this particular source file, ap-

pended to the options from COMPAT_OPTIONS. When this command appears in
‘testname _main.suffix’ the options are also used to link the test program.

Chapter 6: Source Tree Structure and Build System 49

dg-xfail-if
This command can be used in a secondary source file to specify that compilation
is expected to fail for particular options on particular targets.

o0

GNU Compiler Collection (GCC) Internals

Chapter 7: Option specification files o1

7 Option specification files

Most GCC command-line options are described by special option definition files, the names
of which conventionally end in .opt. This chapter describes the format of these files.

7.1 Option file format

Option files are a simple list of records in which each field occupies its own line and in which
the records themselves are separated by blank lines. Comments may appear on their own
line anywhere within the file and are preceded by semicolons. Whitespace is allowed before
the semicolon.

The files can contain the following types of record:

e A language definition record. These records have two fields: the string ‘Language’ and
the name of the language. Once a language has been declared in this way, it can be
used as an option property. See Section 7.2 [Option properties], page 51.

e An option definition record. These records have the following fields:

“_n

1. the name of the option, with the leading removed

2. a space-separated list of option properties (see Section 7.2 [Option properties],
page 51)

3. the help text to use for ‘--help’ (omitted if the second field contains the
Undocumented property).

By default, all options beginning with “f”, “W” or “m” are implicitly assumed to take a
“no-" form. This form should not be listed separately. If an option beginning with one
of these letters does not have a “no-" form, you can use the RejectNegative property
to reject it.

The help text is automatically line-wrapped before being displayed. Normally the name
of the option is printed on the left-hand side of the output and the help text is printed
on the right. However, if the help text contains a tab character, the text to the left of
the tab is used instead of the option’s name and the text to the right of the tab forms
the help text. This allows you to elaborate on what type of argument the option takes.

e A target mask record. These records have one field of the form ‘Mask(x)’. The options-
processing script will automatically allocate a bit in target_flags (see Section 15.3
[Run-time Target|, page 301) for each mask name x and set the macro MASK_x to the
appropriate bitmask. It will also declare a TARGET_x macro that has the value 1 when
bit MASK_x is set and 0 otherwise.

They are primarily intended to declare target masks that are not associated with user
options, either because these masks represent internal switches or because the options
are not available on all configurations and yet the masks always need to be defined.

7.2 Option properties
The second field of an option record can specify the following properties:

Common The option is available for all languages and targets.

Target The option is available for all languages but is target-specific.

52 GNU Compiler Collection (GCC) Internals

language The option is available when compiling for the given language.

It is possible to specify several different languages for the same option. FEach
language must have been declared by an earlier Language record. See Sec-
tion 7.1 [Option file format], page 51.

RejectNegative
The option does not have a “no-” form. All options beginning with “f”, “W”
or “m” are assumed to have a “no-" form unless this property is used.

Negative (othername)
The option will turn off another option othername, which is the the option
name with the leading “-” removed. This chain action will propagate through
the Negative property of the option to be turned off.

Joined

Separate 'The option takes a mandatory argument. Joined indicates that the option and
argument can be included in the same argv entry (as with -mflush-func=name,
for example). Separate indicates that the option and argument can be separate
argv entries (as with -0). An option is allowed to have both of these properties.

JoinedOrMissing
The option takes an optional argument. If the argument is given, it will be part
of the same argv entry as the option itself.

This property cannot be used alongside Joined or Separate.

UInteger The option’s argument is a non-negative integer. The option parser will check
and convert the argument before passing it to the relevant option handler.

Var(var) The state of this option should be stored in variable var. The way that the
state is stored depends on the type of option:

e If the option uses the Mask or InverseMask properties, var is the integer
variable that contains the mask.

e If the option is a normal on/off switch, var is an integer variable that is
nonzero when the option is enabled. The options parser will set the variable
to 1 when the positive form of the option is used and 0 when the “no-”
form is used.

e If the option takes an argument and has the UInteger property, var is an
integer variable that stores the value of the argument.

e Otherwise, if the option takes an argument, var is a pointer to the argument
string. The pointer will be null if the argument is optional and wasn’t given.

The option-processing script will usually declare var in ‘options.c’ and leave
it to be zero-initialized at start-up time. You can modify this behavior using
VarExists and Init.

Var(var, set)
The option controls an integer variable var and is active when var equals set.
The option parser will set var to set when the positive form of the option is
used and !set when the “no-” form is used.

var is declared in the same way as for the single-argument form described above.

Chapter 7: Option specification files 53

VarExists
The variable specified by the Var property already exists. No definition should
be added to ‘options.c’ in response to this option record.

You should use this property only if the variable is declared outside ‘options.c’.

Init(value)
The variable specified by the Var property should be statically initialized to
value.

Mask (name)
The option is associated with a bit in the target_flags variable (see Sec-
tion 15.3 [Run-time Target], page 301) and is active when that bit is set. You
may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the
option. If the option is attached to ‘target_flags’, the script will set the
macro MASK_name to the appropriate bitmask. It will also declare a TARGET_
name macro that has the value 1 when the option is active and 0 otherwise. If
you use Var to attach the option to a different variable, the associated macros
are called OPTION_MASK_name and OPTION_name respectively.

You can disable automatic bit allocation using MaskExists.

InverseMask (othername)

InverseMask(othername, thisname)
The option is the inverse of another option that has the Mask (othername) prop-
erty. If thisname is given, the options-processing script will declare a TARGET_
thisname macro that is 1 when the option is active and 0 otherwise.

MaskExists
The mask specified by the Mask property already exists. No MASK or TARGET
definitions should be added to ‘options.h’ in response to this option record.

The main purpose of this property is to support synonymous options. The
first option should use ‘Mask(name)’ and the others should use ‘Mask (name)
MaskExists’.

Report The state of the option should be printed by ‘~fverbose-asm’.

Undocumented
The option is deliberately missing documentation and should not be included
in the ‘~-help’ output.

Condition(cond)
The option should only be accepted if preprocessor condition cond is true. Note
that any C declarations associated with the option will be present even if cond
is false; cond simply controls whether the option is accepted and whether it is
printed in the ‘--help’ output.

o4

GNU Compiler Collection (GCC) Internals

Chapter 8: Passes and Files of the Compiler 95

8 Passes and Files of the Compiler

This chapter is dedicated to giving an overview of the optimization and code generation
passes of the compiler. In the process, it describes some of the language front end interface,
though this description is no where near complete.

8.1 Parsing pass

The language front end is invoked only once, via lang_hooks.parse_file, to parse the
entire input. The language front end may use any intermediate language representation
deemed appropriate. The C front end uses GENERIC trees (CROSSREF), plus a double
handful of language specific tree codes defined in ‘c-common.def’. The Fortran front end
uses a completely different private representation.

At some point the front end must translate the representation used in the front end to a
representation understood by the language-independent portions of the compiler. Current
practice takes one of two forms. The C front end manually invokes the gimplifier (CROSS-
REF) on each function, and uses the gimplifier callbacks to convert the language-specific
tree nodes directly to GIMPLE (CROSSREF) before passing the function off to be com-
piled. The Fortran front end converts from a private representation to GENERIC, which is
later lowered to GIMPLE when the function is compiled. Which route to choose probably
depends on how well GENERIC (plus extensions) can be made to match up with the source
language and necessary parsing data structures.

BUG: Gimplification must occur before nested function lowering, and nested function
lowering must be done by the front end before passing the data off to cgraph.

TODO: Cgraph should control nested function lowering. It would only be invoked when
it is certain that the outer-most function is used.

TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is
certain that the function is used, (2) warning flags specified by the user require some amount
of compilation in order to honor, (3) the language indicates that semantic analysis is not
complete until gimplification occurs. Hum. . . this sounds overly complicated. Perhaps we
should just have the front end gimplify always; in most cases it’s only one function call.

The front end needs to pass all function definitions and top level declarations off to the
middle-end so that they can be compiled and emitted to the object file. For a simple
procedural language, it is usually most convenient to do this as each top level declaration
or definition is seen. There is also a distinction to be made between generating functional
code and generating complete debug information. The only thing that is absolutely required
for functional code is that function and data definitions be passed to the middle-end. For
complete debug information, function, data and type declarations should all be passed as
well.

In any case, the front end needs each complete top-level function or data declaration,
and each data definition should be passed to rest_of_decl_compilation. Each complete
type definition should be passed to rest_of_type_compilation. Each function definition
should be passed to cgraph_finalize_function.

TODO: T know rest_of_compilation currently has all sorts of rtl-generation semantics.
I plan to move all code generation bits (both tree and rtl) to compile_function. Should
we hide cgraph from the front ends and move back to rest_of_compilation as the official

56 GNU Compiler Collection (GCC) Internals

interface? Possibly we should rename all three interfaces such that the names match in
some meaningful way and that is more descriptive than "rest_of".

The middle-end will, at its option, emit the function and data definitions immediately or
queue them for later processing.

8.2 Gimplification pass

Gimplification is a whimsical term for the process of converting the intermediate repre-
sentation of a function into the GIMPLE language (CROSSREF). The term stuck, and so
words like “gimplification”, “gimplify”, “gimplifier” and the like are sprinkled throughout
this section of code.

While a front end may certainly choose to generate GIMPLE directly if it chooses, this
can be a moderately complex process unless the intermediate language used by the front
end is already fairly simple. Usually it is easier to generate GENERIC trees plus extensions
and let the language-independent gimplifier do most of the work.

The main entry point to this pass is gimplify_function_tree located in ‘gimplify.c’.
From here we process the entire function gimplifying each statement in turn. The main
workhorse for this pass is gimplify_expr. Approximately everything passes through here
at least once, and it is from here that we invoke the lang_hooks.gimplify_expr callback.

The callback should examine the expression in question and return GS_UNHANDLED if the
expression is not a language specific construct that requires attention. Otherwise it should
alter the expression in some way to such that forward progress is made toward producing
valid GIMPLE. If the callback is certain that the transformation is complete and the
expression is valid GIMPLE, it should return GS_ALL_DONE. Otherwise it should return
GS_0K, which will cause the expression to be processed again. If the callback encounters
an error during the transformation (because the front end is relying on the gimplification
process to finish semantic checks), it should return GS_ERROR.

8.3 Pass manager

The pass manager is located in ‘passes.c’, ‘tree-optimize.c’ and ‘tree-pass.h’. Its
job is to run all of the individual passes in the correct order, and take care of standard
bookkeeping that applies to every pass.

The theory of operation is that each pass defines a structure that represents everything
we need to know about that pass—when it should be run, how it should be run, what
intermediate language form or on-the-side data structures it needs. We register the pass to
be run in some particular order, and the pass manager arranges for everything to happen
in the correct order.

The actuality doesn’t completely live up to the theory at present. Command-line switches
and timevar_id_t enumerations must still be defined elsewhere. The pass manager vali-
dates constraints but does not attempt to (re-)generate data structures or lower intermediate
language form based on the requirements of the next pass. Nevertheless, what is present is
useful, and a far sight better than nothing at all.

TODO: describe the global variables set up by the pass manager, and a brief description
of how a new pass should use it. I need to look at what info rtl passes use first...

Chapter 8: Passes and Files of the Compiler o7

8.4 Tree-SSA passes

The following briefly describes the tree optimization passes that are run after gimplification
and what source files they are located in.

e Remove useless statements

This pass is an extremely simple sweep across the gimple code in which we identify
obviously dead code and remove it. Here we do things like simplify if statements
with constant conditions, remove exception handling constructs surrounding code that
obviously cannot throw, remove lexical bindings that contain no variables, and other
assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather
than wait until later when it’s more work to get rid of it. This pass is located in
‘tree-cfg.c’ and described by pass_remove_useless_stmts.

e Mudflap declaration registration

If mudflap (see section “-fmudflap -fmudflapth -fmudflapir” in Using the GNU Compiler
Collection (GCC)) is enabled, we generate code to register some variable declarations
with the mudflap runtime. Specifically, the runtime tracks the lifetimes of those variable
declarations that have their addresses taken, or whose bounds are unknown at compile
time (extern). This pass generates new exception handling constructs (try/finally),
and so must run before those are lowered. In addition, the pass enqueues declarations
of static variables whose lifetimes extend to the entire program. The pass is located in
‘tree-mudflap.c’ and is described by pass_mudflap_1.

e OpenMP lowering

If OpenMP generation (‘-fopenmp’) is enabled, this pass lowers OpenMP constructs
into GIMPLE.

Lowering of OpenMP constructs involves creating replacement expressions for local
variables that have been mapped using data sharing clauses, exposing the control flow
of most synchronization directives and adding region markers to facilitate the creation
of the control flow graph. The pass is located in ‘omp-low.c’ and is described by
pass_lower_omp.

e OpenMP expansion

If OpenMP generation (‘-fopenmp’) is enabled, this pass expands parallel regions
into their own functions to be invoked by the thread library. The pass is located
in ‘omp-low.c’ and is described by pass_expand_omp.

e Lower control flow
This pass flattens if statements (COND_EXPR) and moves lexical bindings (BIND_EXPR)
out of line. After this pass, all if statements will have exactly two goto statements in
its then and else arms. Lexical binding information for each statement will be found

in TREE_BLOCK rather than being inferred from its position under a BIND_EXPR. This
pass is found in ‘gimple-low.c’ and is described by pass_lower_cf.

e Lower exception handling control flow

This pass decomposes high-level exception handling constructs (TRY_FINALLY_EXPR and
TRY_CATCH_EXPR) into a form that explicitly represents the control flow involved. After
this pass, lookup_stmt_eh_region will return a non-negative number for any state-
ment that may have EH control flow semantics; examine tree_can_throw_internal

o8

GNU Compiler Collection (GCC) Internals

or tree_can_throw_external for exact semantics. Exact control flow may be ex-
tracted from foreach_reachable_handler. The EH region nesting tree is defined in
‘except.h’ and built in ‘except.c’. The lowering pass itself is in ‘tree-eh.c’ and is
described by pass_lower_eh.

Build the control flow graph

This pass decomposes a function into basic blocks and creates all of the edges that
connect them. It is located in ‘tree-cfg.c’ and is described by pass_build_cfg.

Find all referenced variables

This pass walks the entire function and collects an array of all variables referenced
in the function, referenced_vars. The index at which a variable is found in the
array is used as a UID for the variable within this function. This data is needed by
the SSA rewriting routines. The pass is located in ‘tree-dfa.c’ and is described by
pass_referenced_vars.

Enter static single assignment form

This pass rewrites the function such that it is in SSA form. After this pass, all is_
gimple_reg variables will be referenced by SSA_NAME, and all occurrences of other
variables will be annotated with VDEFS and VUSES; PHI nodes will have been inserted
as necessary for each basic block. This pass is located in ‘tree-ssa.c’ and is described
by pass_build_ssa.

Warn for uninitialized variables

This pass scans the function for uses of SSA_NAMEs that are fed by default definition.
For non-parameter variables, such uses are uninitialized. The pass is run twice, before
and after optimization. In the first pass we only warn for uses that are positively
uninitialized; in the second pass we warn for uses that are possibly uninitialized. The
pass is located in ‘tree-ssa.c’ and is defined by pass_early_warn_uninitialized
and pass_late_warn_uninitialized.

Dead code elimination

This pass scans the function for statements without side effects whose result is unused.
It does not do memory life analysis, so any value that is stored in memory is considered
used. The pass is run multiple times throughout the optimization process. It is located
in ‘tree-ssa-dce.c’ and is described by pass_dce.

Dominator optimizations
This pass performs trivial dominator-based copy and constant propagation, expression

simplification, and jump threading. It is run multiple times throughout the optimiza-
tion process. It it located in ‘tree-ssa-dom.c’ and is described by pass_dominator.

Redundant PHI elimination

This pass removes PHI nodes for which all of the arguments are the same value, ex-
cluding feedback. Such degenerate forms are typically created by removing unreachable
code. The pass is run multiple times throughout the optimization process. It is located
in ‘tree-ssa.c’ and is described by pass_redundant_phi.o

Forward propagation of single-use variables

This pass attempts to remove redundant computation by substituting variables that are
used once into the expression that uses them and seeing if the result can be simplified.
It is located in ‘tree-ssa-forwprop.c’ and is described by pass_forwprop.

Chapter 8: Passes and Files of the Compiler 99

e Copy Renaming

This pass attempts to change the name of compiler temporaries involved in copy oper-
ations such that SSA->normal can coalesce the copy away. When compiler temporaries
are copies of user variables, it also renames the compiler temporary to the user variable
resulting in better use of user symbols. It is located in ‘tree-ssa-copyrename.c’ and
is described by pass_copyrename.

e PHI node optimizations

This pass recognizes forms of PHI inputs that can be represented as conditional expres-
sions and rewrites them into straight line code. It is located in ‘tree-ssa-phiopt.c’
and is described by pass_phiopt.
e May-alias optimization

This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-
alias, must-alias, and escape analysis information is used to promote variables from
in-memory addressable objects to non-aliased variables that can be renamed into SSA
form. We also update the VDEF/VUSE memory tags for non-renameable aggregates so
that we get fewer false kills. The pass is located in ‘tree-ssa-alias.c’ and is described
by pass_may_alias.

Interprocedural points-to information is located in ‘tree-ssa-structalias.c’ and de-
scribed by pass_ipa_pta.

e Profiling
This pass rewrites the function in order to collect runtime block and value profiling
data. Such data may be fed back into the compiler on a subsequent run so as to
allow optimization based on expected execution frequencies. The pass is located in
‘predict.c’ and is described by pass_profile.

e Lower complex arithmetic
This pass rewrites complex arithmetic operations into their component scalar arith-
metic operations. The pass is located in ‘tree-complex.c’ and is described by pass_
lower_complex.

e Scalar replacement of aggregates

This pass rewrites suitable non-aliased local aggregate variables into a set of scalar
variables. The resulting scalar variables are rewritten into SSA form, which allows
subsequent optimization passes to do a significantly better job with them. The pass is
located in ‘tree-sra.c’ and is described by pass_sra.

e Dead store elimination

This pass eliminates stores to memory that are subsequently overwritten by another
store, without any intervening loads. The pass is located in ‘tree-ssa-dse.c’ and is
described by pass_dse.

e Tail recursion elimination

This pass transforms tail recursion into a loop. It is located in ‘tree-tailcall.c’ and
is described by pass_tail_recursion.

e Forward store motion

This pass sinks stores and assignments down the flowgraph closer to it’s use point. The
pass is located in ‘tree-ssa-sink.c’ and is described by pass_sink_code.

60

GNU Compiler Collection (GCC) Internals

e Partial redundancy elimination

This pass eliminates partially redundant computations, as well as performing load
motion. The pass is located in ‘tree-ssa-pre.c’ and is described by pass_pre.

Just before partial redundancy elimination, if ‘-funsafe-math-optimizations’ is on,
GCC tries to convert divisions to multiplications by the reciprocal. The pass is located
in ‘tree-ssa-math-opts.c’ and is described by pass_cse_reciprocal.

Full redundancy elimination

This is a simpler form of PRE that only eliminate redundancies that occur an all paths.
It is located in ‘tree-ssa-pre.c’ and described by pass_fre.

Loop optimization
The main driver of the pass is placed in ‘tree-ssa-loop.c’ and described by pass_
loop.

The optimizations performed by this pass are:

Loop invariant motion. This pass moves only invariants that would be hard to handle
on rtl level (function calls, operations that expand to nontrivial sequences of insns).
With ‘-funswitch-loops’ it also moves operands of conditions that are invariant out of
the loop, so that we can use just trivial invariantness analysis in loop unswitching. The
pass also includes store motion. The pass is implemented in ‘tree-ssa-loop-im.c’.

Canonical induction variable creation. This pass creates a simple counter for number
of iterations of the loop and replaces the exit condition of the loop using it, in case
when a complicated analysis is necessary to determine the number of iterations. Later
optimizations then may determine the number easily. The pass is implemented in
‘tree-ssa-loop-ivcanon.c’.

Induction variable optimizations. This pass performs standard induction variable op-
timizations, including strength reduction, induction variable merging and induction
variable elimination. The pass is implemented in ‘tree-ssa-loop-ivopts.c’.

Loop unswitching. This pass moves the conditional jumps that are invariant out of the
loops. To achieve this, a duplicate of the loop is created for each possible outcome of
conditional jump(s). The pass is implemented in ‘tree-ssa-loop-unswitch.c’. This
pass should eventually replace the rtl-level loop unswitching in ‘loop-unswitch.c’, but
currently the rtl-level pass is not completely redundant yet due to deficiencies in tree
level alias analysis.

The optimizations also use various utility functions contained in ‘tree-ssa-loop-manip.

‘cfgloop.c’, ‘cfgloopanal.c’ and ‘cfgloopmanip.c’.

Vectorization. This pass transforms loops to operate on vector types instead of scalar
types. Data parallelism across loop iterations is exploited to group data elements from
consecutive iterations into a vector and operate on them in parallel. Depending on
available target support the loop is conceptually unrolled by a factor VF (vectorization
factor), which is the number of elements operated upon in parallel in each iteration, and
the VF copies of each scalar operation are fused to form a vector operation. Additional
loop transformations such as peeling and versioning may take place to align the number
of iterations, and to align the memory accesses in the loop. The pass is implemented in
‘tree-vectorizer.c’ (the main driver and general utilities), ‘tree-vect-analyze.c’
and ‘tree-vect-transform.c’. Analysis of data references is in ‘tree-data-ref.c’.

Chapter 8: Passes and Files of the Compiler 61

e Tree level if-conversion for vectorizer

This pass applies if-conversion to simple loops to help vectorizer. We identify if con-
vertible loops, if-convert statements and merge basic blocks in one big block. The idea
is to present loop in such form so that vectorizer can have one to one mapping between
statements and available vector operations. This patch re-introduces COND_EXPR, at
GIMPLE level. This pass is located in ‘tree-if-conv.c’ and is described by pass_
if_conversion.

e Conditional constant propagation

This pass relaxes a lattice of values in order to identify those that must be constant
even in the presence of conditional branches. The pass is located in ‘tree-ssa-ccp.c’
and is described by pass_ccp.

A related pass that works on memory loads and stores, and not just register values, is
located in ‘tree-ssa-ccp.c’ and described by pass_store_ccp.

e Conditional copy propagation

This is similar to constant propagation but the lattice of values is the “copy-of” relation.
It eliminates redundant copies from the code. The pass is located in ‘tree-ssa-copy.c’
and described by pass_copy_prop.

A related pass that works on memory copies, and not just register copies, is located in
‘tree-ssa-copy.c’ and described by pass_store_copy_prop.

e Value range propagation

This transformation is similar to constant propagation but instead of propagating sin-
gle constant values, it propagates known value ranges. The implementation is based on
Patterson’s range propagation algorithm (Accurate Static Branch Prediction by Value
Range Propagation, J. R. C. Patterson, PLDI ’95). In contrast to Patterson’s algo-
rithm, this implementation does not propagate branch probabilities nor it uses more
than a single range per SSA name. This means that the current implementation cannot
be used for branch prediction (though adapting it would not be difficult). The pass is
located in ‘tree-vrp.c’ and is described by pass_vrp.

e Folding built-in functions

This pass simplifies built-in functions, as applicable, with constant arguments or with
inferrable string lengths. It is located in ‘tree-ssa-ccp.c’ and is described by pass_
fold_builtins.

e Split critical edges
This pass identifies critical edges and inserts empty basic blocks such that the edge
is no longer critical. The pass is located in ‘tree-cfg.c’ and is described by pass_
split_crit_edges.

e Control dependence dead code elimination

This pass is a stronger form of dead code elimination that can eliminate unnecessary
control flow statements. It is located in ‘tree-ssa-dce.c’ and is described by pass_
cd_dce.

e Tail call elimination

This pass identifies function calls that may be rewritten into jumps. No code trans-
formation is actually applied here, but the data and control flow problem is solved.

62

GNU Compiler Collection (GCC) Internals

The code transformation requires target support, and so is delayed until RTL. In the
meantime CALL_EXPR_TAILCALL is set indicating the possibility. The pass is located in
‘tree-tailcall.c’ and is described by pass_tail_calls. The RTL transformation
is handled by fixup_tail_calls in ‘calls.c’.

Warn for function return without value

For non-void functions, this pass locates return statements that do not specify a value
and issues a warning. Such a statement may have been injected by falling off the end
of the function. This pass is run last so that we have as much time as possible to prove
that the statement is not reachable. It is located in ‘tree-cfg.c’ and is described by
pass_warn_function_return.

Mudflap statement annotation

If mudflap is enabled, we rewrite some memory accesses with code to validate that
the memory access is correct. In particular, expressions involving pointer dereferences
(INDIRECT_REF, ARRAY_REF, etc.) are replaced by code that checks the selected address
range against the mudflap runtime’s database of valid regions. This check includes
an inline lookup into a direct-mapped cache, based on shift/mask operations of the
pointer value, with a fallback function call into the runtime. The pass is located in
‘tree-mudflap.c’ and is described by pass_mudflap_2.

Leave static single assignment form

This pass rewrites the function such that it is in normal form. At the same time, we
eliminate as many single-use temporaries as possible, so the intermediate language is
no longer GIMPLE, but GENERIC. The pass is located in ‘tree-outof-ssa.c’ and
is described by pass_del_ssa.

Merge PHI nodes that feed into one another

This is part of the CFG cleanup passes. It attempts to join PHI nodes from a
forwarder CFG block into another block with PHI nodes. The pass is located in
‘tree-cfgcleanup.c’ and is described by pass_merge_phi.

Return value optimization

If a function always returns the same local variable, and that local variable is an
aggregate type, then the variable is replaced with the return value for the function
(i.e., the function’s DECL_RESULT). This is equivalent to the C++ named return
value optimization applied to GIMPLE. The pass is located in ‘tree-nrv.c’ and is
described by pass_nrv.

Return slot optimization

If a function returns a memory object and is called as var = foo(), this pass tries to
change the call so that the address of var is sent to the caller to avoid an extra memory
copy. This pass is located in tree-nrv.c and is described by pass_return_slot.
Optimize calls to __builtin_object_size

This is a propagation pass similar to CCP that tries to remove calls to __builtin_
object_size when the size of the object can be computed at compile-time. This pass
is located in ‘tree-object-size.c’ and is described by pass_object_sizes.

Loop invariant motion

This pass removes expensive loop-invariant computations out of loops. The pass is
located in ‘tree-ssa-loop.c’ and described by pass_1lim.

Chapter 8: Passes and Files of the Compiler 63

e Loop nest optimizations

This is a family of loop transformations that works on loop nests. It includes loop
interchange, scaling, skewing and reversal and they are all geared to the optimiza-
tion of data locality in array traversals and the removal of dependencies that hamper
optimizations such as loop parallelization and vectorization. The pass is located in
‘tree-loop-linear.c’ and described by pass_linear_transform.

e Removal of empty loops
This pass removes loops with no code in them. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_empty_loop.

e Unrolling of small loops
This pass completely unrolls loops with few iterations. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_complete_unroll.

e Array prefetching

This pass issues prefetch instructions for array references inside loops. The pass is
located in ‘tree-ssa-loop-prefetch.c’ and described by pass_loop_prefetch.

e Reassociation

This pass rewrites arithmetic expressions to enable optimizations that operate
on them, like redundancy elimination and vectorization. The pass is located in
‘tree-ssa-reassoc.c’ and described by pass_reassoc.

e Optimization of stdarg functions

This pass tries to avoid the saving of register arguments into the stack on entry to
stdarg functions. If the function doesn’t use any va_start macros, no registers need
to be saved. If va_start macros are used, the va_list variables don’t escape the
function, it is only necessary to save registers that will be used in va_arg macros.
For instance, if va_arg is only used with integral types in the function, floating point
registers don’t need to be saved. This pass is located in tree-stdarg.c and described
by pass_stdarg.

8.5 RTL passes

The following briefly describes the rtl generation and optimization passes that are run after
tree optimization.

e RTL generation

The source files for RTL generation include ‘stmt.c’, ‘calls.c’, ‘expr.c’, ‘explow.c’,
‘expmed.c’, ‘function.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’,
generated from the machine description by the program genemit, is used in this pass.
The header file ‘expr.h’ is used for communication within this pass.

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

e Generate exception handling landing pads

This pass generates the glue that handles communication between the exception han-
dling library routines and the exception handlers within the function. Entry points in

64

GNU Compiler Collection (GCC) Internals

the function that are invoked by the exception handling library are called landing pads.
The code for this pass is located within ‘except.c’.

Cleanup control flow graph

This pass removes unreachable code, simplifies jumps to next, jumps to jump, jumps
across jumps, etc. The pass is run multiple times. For historical reasons, it is occasion-
ally referred to as the “jump optimization pass”. The bulk of the code for this pass is
in ‘cfgcleanup.c’, and there are support routines in ‘cfgrtl.c’ and ‘jump.c’.

Common subexpression elimination

This pass removes redundant computation within basic blocks, and optimizes address-
ing modes based on cost. The pass is run twice. The source is located in ‘cse.c’.

Global common subexpression elimination.

This pass performs two different types of GCSE depending on whether you are opti-
mizing for size or not (LCM based GCSE tends to increase code size for a gain in speed,
while Morel-Renvoise based GCSE does not). When optimizing for size, GCSE is done
using Morel-Renvoise Partial Redundancy Elimination, with the exception that it does
not try to move invariants out of loops—that is left to the loop optimization pass. If
MR PRE GCSE is done, code hoisting (aka unification) is also done, as well as load
motion. If you are optimizing for speed, LCM (lazy code motion) based GCSE is done.
LCM is based on the work of Knoop, Ruthing, and Steffen. LCM based GCSE also does
loop invariant code motion. We also perform load and store motion when optimizing
for speed. Regardless of which type of GCSE is used, the GCSE pass also performs
global constant and copy propagation. The source file for this pass is ‘gcse.c’; and the
LCM routines are in ‘lcm.c’.

Loop optimization

This pass performs several loop related optimizations. The source files ‘cfgloopanal.c’
and ‘cfgloopmanip.c’ contain generic loop analysis and manipulation code. Initializa-
tion and finalization of loop structures is handled by ‘loop-init.c’. A loop invariant
motion pass is implemented in ‘loop-invariant.c’. Basic block level optimizations—
unrolling, peeling and unswitching loops— are implemented in ‘loop-unswitch.c’
and ‘loop-unroll.c’. Replacing of the exit condition of loops by special machine-
dependent instructions is handled by ‘loop-doloop.c’.

Jump bypassing

This pass is an aggressive form of GCSE that transforms the control flow graph of a
function by propagating constants into conditional branch instructions. The source file
for this pass is ‘gcse.c’.

If conversion

This pass attempts to replace conditional branches and surrounding assignments with
arithmetic, boolean value producing comparison instructions, and conditional move
instructions. In the very last invocation after reload, it will generate predicated in-
structions when supported by the target. The pass is located in ‘ifcvt.c’.

Web construction

This pass splits independent uses of each pseudo-register. This can improve effect of the
other transformation, such as CSE or register allocation. Its source files are ‘web.c’.

Chapter 8: Passes and Files of the Compiler 65

e Life analysis

This pass computes which pseudo-registers are live at each point in the program, and
makes the first instruction that uses a value point at the instruction that computed the
value. It then deletes computations whose results are never used, and combines memory
references with add or subtract instructions to make autoincrement or autodecrement
addressing. The pass is located in ‘flow.c’.

e Instruction combination

This pass attempts to combine groups of two or three instructions that are related by
data flow into single instructions. It combines the RTL expressions for the instructions
by substitution, simplifies the result using algebra, and then attempts to match the
result against the machine description. The pass is located in ‘combine.c’.

e Register movement

This pass looks for cases where matching constraints would force an instruction to
need a reload, and this reload would be a register-to-register move. It then attempts
to change the registers used by the instruction to avoid the move instruction. The pass
is located in ‘regmove.c’.

e Optimize mode switching

This pass looks for instructions that require the processor to be in a specific “mode”
and minimizes the number of mode changes required to satisfy all users. What these
modes are, and what they apply to are completely target-specific. The source is located
in ‘mode-switching.c’.

e Modulo scheduling

This pass looks at innermost loops and reorders their instructions by overlapping differ-
ent iterations. Modulo scheduling is performed immediately before instruction schedul-
ing. The pass is located in (‘modulo-sched.c’).

e Instruction scheduling

This pass looks for instructions whose output will not be available by the time that it
is used in subsequent instructions. Memory loads and floating point instructions often
have this behavior on RISC machines. It re-orders instructions within a basic block to
try to separate the definition and use of items that otherwise would cause pipeline stalls.
This pass is performed twice, before and after register allocation. The pass is located in
‘haifa-sched.c’, ‘sched-deps.c’, ‘sched-ebb.c’, ‘sched-rgn.c’ and ‘sched-vis.c’.

e Register allocation

These passes make sure that all occurrences of pseudo registers are eliminated, either
by allocating them to a hard register, replacing them by an equivalent expression (e.g.
a constant) or by placing them on the stack. This is done in several subpasses:

o Register class preferencing. The RTL code is scanned to find out which register
class is best for each pseudo register. The source file is ‘regclass.c’.

e Local register allocation. This pass allocates hard registers to pseudo registers
that are used only within one basic block. Because the basic block is linear, it
can use fast and powerful techniques to do a decent job. The source is located in
‘local-alloc.c’.

66

GNU Compiler Collection (GCC) Internals

e Global register allocation. This pass allocates hard registers for the remaining
pseudo registers (those whose life spans are not contained in one basic block). The
pass is located in ‘global.c’.

e Reloading. This pass renumbers pseudo registers with the hardware registers num-
bers they were allocated. Pseudo registers that did not get hard registers are re-
placed with stack slots. Then it finds instructions that are invalid because a value
has failed to end up in a register, or has ended up in a register of the wrong kind.
It fixes up these instructions by reloading the problematical values temporarily
into registers. Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instruc-
tions to save and restore call-clobbered registers around calls.

Source files are ‘reload.c’ and ‘reloadl.c’, plus the header ‘reload.h’ used for
communication between them.

Basic block reordering

This pass implements profile guided code positioning. If profile information is not avail-
able, various types of static analysis are performed to make the predictions normally
coming from the profile feedback (IE execution frequency, branch probability, etc). It
is implemented in the file ‘bb-reorder.c’, and the various prediction routines are in
‘predict.c’.

Variable tracking

This pass computes where the variables are stored at each position in code and gener-
ates notes describing the variable locations to RTL code. The location lists are then
generated according to these notes to debug information if the debugging information
format supports location lists.

Delayed branch scheduling

This optional pass attempts to find instructions that can go into the delay slots of other
instructions, usually jumps and calls. The source file name is ‘reorg.c’.

Branch shortening

On many RISC machines, branch instructions have a limited range. Thus, longer
sequences of instructions must be used for long branches. In this pass, the compiler
figures out what how far each instruction will be from each other instruction, and
therefore whether the usual instructions, or the longer sequences, must be used for
each branch.

Register-to-stack conversion

Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The source file name is ‘reg-stack.c’.

Final

This pass outputs the assembler code for the function. The source files are ‘final.c’
plus ‘insn-output.c’; the latter is generated automatically from the machine descrip-
tion by the tool ‘genoutput’. The header file ‘conditions.h’ is used for communication
between these files. If mudflap is enabled, the queue of deferred declarations and any
addressed constants (e.g., string literals) is processed by mudflap_finish_file into a
synthetic constructor function containing calls into the mudflap runtime.

Chapter 8: Passes and Files of the Compiler 67

e Debugging information output

This is run after final because it must output the stack slot offsets for pseudo registers
that did not get hard registers. Source files are ‘dbxout.c’ for DBX symbol table
format, ‘sdbout.c’ for SDB symbol table format, ‘dwarfout.c’ for DWARF symbol
table format, files ‘dwarf2out.c’ and ‘dwarf2asm.c’ for DWARF2 symbol table format,
and ‘vmsdbgout.c’ for VMS debug symbol table format.

68

GNU Compiler Collection (GCC) Internals

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 69

9 Trees: The intermediate representation used by
the C and C++ front ends

This chapter documents the internal representation used by GCC to represent C and C++
source programs. When presented with a C or C++ source program, GCC parses the
program, performs semantic analysis (including the generation of error messages), and then
produces the internal representation described here. This representation contains a complete
representation for the entire translation unit provided as input to the front end. This
representation is then typically processed by a code-generator in order to produce machine
code, but could also be used in the creation of source browsers, intelligent editors, automatic
documentation generators, interpreters, and any other programs needing the ability to
process C or C++ code.

This chapter explains the internal representation. In particular, it documents the internal
representation for C and C++ source constructs, and the macros, functions, and variables
that can be used to access these constructs. The C++ representation is largely a superset
of the representation used in the C front end. There is only one construct used in C that
does not appear in the C++ front end and that is the GNU “nested function” extension.
Many of the macros documented here do not apply in C because the corresponding language
constructs do not appear in C.

If you are developing a “back end”, be it is a code-generator or some other tool, that uses
this representation, you may occasionally find that you need to ask questions not easily
answered by the functions and macros available here. If that situation occurs, it is quite
likely that GCC already supports the functionality you desire, but that the interface is
simply not documented here. In that case, you should ask the GCC maintainers (via mail
to gcclgec.gnu.org) about documenting the functionality you require. Similarly, if you
find yourself writing functions that do not deal directly with your back end, but instead
might be useful to other people using the GCC front end, you should submit your patches
for inclusion in GCC.

9.1 Deficiencies

There are many places in which this document is incomplet and incorrekt. It is, as of yet,
only preliminary documentation.

9.2 Overview

The central data structure used by the internal representation is the tree. These nodes,
while all of the C type tree, are of many varieties. A tree is a pointer type, but the object
to which it points may be of a variety of types. From this point forward, we will refer to
trees in ordinary type, rather than in this font, except when talking about the actual C
type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many,
many macros take trees as input and return trees as output. However, most macros require
a certain kind of tree node as input. In other words, there is a type-system for trees, but it
is not reflected in the C type-system.

For safety, it is useful to configure GCC with ‘~-enable-checking’. Although this results
in a significant performance penalty (since all tree types are checked at run-time), and is

mailto:gcc@gcc.gnu.org

70 GNU Compiler Collection (GCC) Internals

therefore inappropriate in a release version, it is extremely helpful during the development
process.

Many macros behave as predicates. Many, although not all, of these predicates end in
‘_P’. Do not rely on the result type of these macros being of any particular type. You may,
however, rely on the fact that the type can be compared to 0, so that statements like

if (TEST_P (t) && !TEST_P (y))
x =1;
and
int i = (TEST_P (t) != 0);

are legal. Macros that return int values now may be changed to return tree values, or
other pointers in the future. Even those that continue to return int may return multiple
nonzero codes where previously they returned only zero and one. Therefore, you should not
write code like

if (TEST_P (t) == 1)
as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described
here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are
entirely in lowercase. There are rare exceptions to this rule. You should assume that any
macro or function whose name is made up entirely of uppercase letters may evaluate its
arguments more than once. You may assume that a macro or function whose name is made
up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is
only ever one node with that code, the usual practice is to compare the tree against error_
mark_node. (This test is just a test for pointer equality.) If an error has occurred during
front-end processing the flag errorcount will be set. If the front end has encountered code
it cannot handle, it will issue a message to the user and set sorrycount. When these
flags are set, any macro or function which normally returns a tree of a particular kind may
instead return the error_mark_node. Thus, if you intend to do any processing of erroneous
code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular field
in a declaration) will be referred to as “reserved for the back end”. These slots are used to
store RTL when the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked up to an intelligent
editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes of
types not mentioned here, or macros documented to return entities of a particular kind that
instead return entities of some different kind, you have found a bug, either in the front end
or in the documentation. Please report these bugs as you would any other bug.

9.2.1 Trees

This section is not here yet.

9.2.2 Identifiers

An IDENTIFIER_NODE represents a slightly more general concept that the standard C or
C++ concept of identifier. In particular, an IDENTIFIER_NODE may contain a ‘$’, or other
extraordinary characters.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 71

There are never two distinct IDENTIFIER_NODESs representing the same identifier. There-
fore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a
routine like strcmp.

You can use the following macros to access identifiers:

IDENTIFIER_POINTER
The string represented by the identifier, represented as a char*. This string is
always NUL-terminated, and contains no embedded NUL characters.

IDENTIFIER_LENGTH
The length of the string returned by IDENTIFIER_POINTER, not including the
trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as
strlen (IDENTIFIER_POINTER (x)).

IDENTIFIER_OPNAME_P
This predicate holds if the identifier represents the name of an overloaded
operator. In this case, you should not depend on the contents of either the
IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.

IDENTIFIER_TYPENAME_P
This predicate holds if the identifier represents the name of a user-defined con-
version operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds
the type to which the conversion operator converts.

9.2.3 Containers

Two common container data structures can be represented directly with tree nodes. A
TREE_LIST is a singly linked list containing two trees per node. These are the TREE_
PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of
tag, or additional information, while the TREE_VALUE contains the majority of the payload.
In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_
PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node
is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have
reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving the
number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_ELT
macro, which takes two arguments. The first is the TREE_VEC in question; the second is an
integer indicating which element in the vector is desired. The elements are indexed from
Z€ero.

9.3 Types

All types have corresponding tree nodes. However, you should not assume that there is
exactly one tree node corresponding to each type. There are often several nodes each of
which correspond to the same type.

For the most part, different kinds of types have different tree codes. (For example, pointer
types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However, pointers to
member functions use the RECORD_TYPE code. Therefore, when writing a switch statement
that depends on the code associated with a particular type, you should take care to handle
pointers to member functions under the RECORD_TYPE case label.

72 GNU Compiler Collection (GCC) Internals

In C++, an array type is not qualified; rather the type of the array elements is qualified.
This situation is reflected in the intermediate representation. The macros described here
will always examine the qualification of the underlying element type when applied to an
array type. (If the element type is itself an array, then the recursion continues until a
non-array type is found, and the qualification of this type is examined.) So, for example,
CP_TYPE_CONST_P will hold of the type const int () [7], denoting an array of seven ints.

The following functions and macros deal with cv-qualification of types:

CP_TYPE_QUALS
This macro returns the set of type qualifiers applied to this type. This value is
TYPE_UNQUALIFIED if no qualifiers have been applied. The TYPE_QUAL_CONST
bit is set if the type is const-qualified. The TYPE_QUAL_VOLATILE bit is set if
the type is volatile-qualified. The TYPE_QUAL_RESTRICT bit is set if the type
is restrict-qualified.

CP_TYPE_CONST_P
This macro holds if the type is const-qualified.

CP_TYPE_VOLATILE_P
This macro holds if the type is volatile-qualified.

CP_TYPE_RESTRICT_P
This macro holds if the type is restrict-qualified.

CP_TYPE_CONST_NON_VOLATILE_P
This predicate holds for a type that is const-qualified, but not volatile-
qualified; other cv-qualifiers are ignored as well: only the const-ness is tested.

TYPE_MAIN_VARIANT
This macro returns the unqualified version of a type. It may be applied to an
unqualified type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE
The number of bits required to represent the type, represented as an INTEGER_
CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN
The alignment of the type, in bits, represented as an int.

TYPE_NAME
This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return a IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

CP_INTEGRAL_TYPE
This predicate holds if the type is an integral type. Notice that in C++, enu-
merations are not integral types.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 73

ARITHMETIC_TYPE_P
This predicate holds if the type is an integral type (in the C++ sense) or a
floating point type.

CLASS_TYPE_P
This predicate holds for a class-type.

TYPE_BUILT_IN
This predicate holds for a built-in type.

TYPE_PTRMEM_P
This predicate holds if the type is a pointer to data member.

TYPE_PTR_P
This predicate holds if the type is a pointer type, and the pointee is not a data
member.

TYPE_PTRFN_P
This predicate holds for a pointer to function type.

TYPE_PTROB_P
This predicate holds for a pointer to object type. Note however that it does not
hold for the generic pointer to object type void *. You may use TYPE_PTROBV_P
to test for a pointer to object type as well as void *.

same_type_p

This predicate takes two types as input, and holds if they are the same type.
For example, if one type is a typedef for the other, or both are typedefs
for the same type. This predicate also holds if the two trees given as input
are simply copies of one another; i.e., there is no difference between them at
the source level, but, for whatever reason, a duplicate has been made in the
representation. You should never use == (pointer equality) to compare types;
always use same_type_p instead.

Detailed below are the various kinds of types, and the macros that can be used to access
them. Although other kinds of types are used elsewhere in G++, the types described here
are the only ones that you will encounter while examining the intermediate representation.

VOID_TYPE
Used to represent the void type.

INTEGER_TYPE

Used to represent the various integral types, including char, short, int, long,
and long long. This code is not used for enumeration types, nor for the bool
type. The TYPE_PRECISION is the number of bits used in the representation,
represented as an unsigned int. (Note that in the general case this is not
the same value as TYPE_SIZE; suppose that there were a 24-bit integer type,
but that alignment requirements for the ABI required 32-bit alignment. Then,
TYPE_SIZE would be an INTEGER_CST for 32, while TYPE_PRECISION would be
24.) The integer type is unsigned if TYPE_UNSIGNED holds; otherwise, it is
signed.

74 GNU Compiler Collection (GCC) Internals

The TYPE_MIN_VALUE is an INTEGER_CST for the smallest integer that may be
represented by this type. Similarly, the TYPE_MAX_VALUE is an INTEGER_CST for
the largest integer that may be represented by this type.

REAL_TYPE
Used to represent the float, double, and long double types. The number of
bits in the floating-point representation is given by TYPE_PRECISION, as in the
INTEGER_TYPE case.

COMPLEX_TYPE
Used to represent GCC built-in __complex__ data types. The TREE_TYPE is
the type of the real and imaginary parts.

ENUMERAL_TYPE
Used to represent an enumeration type. The TYPE_PRECISION gives (as an
int), the number of bits used to represent the type. If there are no negative
enumeration constants, TYPE_UNSIGNED will hold. The minimum and maximum
enumeration constants may be obtained with TYPE_MIN_VALUE and TYPE_MAX_
VALUE, respectively; each of these macros returns an INTEGER_CST.

The actual enumeration constants themselves may be obtained by looking at
the TYPE_VALUES. This macro will return a TREE_LIST, containing the con-
stants. The TREE_PURPOSE of each node will be an IDENTIFIER_NODE giving
the name of the constant; the TREE_VALUE will be an INTEGER_CST giving the
value assigned to that constant. These constants will appear in the order in
which they were declared. The TREE_TYPE of each of these constants will be
the type of enumeration type itself.

BOOLEAN_TYPE
Used to represent the bool type.

POINTER_TYPE
Used to represent pointer types, and pointer to data member types. The TREE_
TYPE gives the type to which this type points. If the type is a pointer to data
member type, then TYPE_PTRMEM_P will hold. For a pointer to data member
type of the form ‘T X::#’, TYPE_PTRMEM_CLASS_TYPE will be the type X, while
TYPE_PTRMEM_POINTED_TO_TYPE will be the type T.

REFERENCE_TYPE
Used to represent reference types. The TREE_TYPE gives the type to which this
type refers.

FUNCTION_TYPE

Used to represent the type of non-member functions and of static member
functions. The TREE_TYPE gives the return type of the function. The TYPE_
ARG_TYPES are a TREE_LIST of the argument types. The TREE_VALUE of each
node in this list is the type of the corresponding argument; the TREE_PURPOSE is
an expression for the default argument value, if any. If the last node in the list
is void_list_node (a TREE_LIST node whose TREE_VALUE is the void_type_
node), then functions of this type do not take variable arguments. Otherwise,
they do take a variable number of arguments.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 75

Note that in C (but not in C++) a function declared like void £ () is an unpro-
totyped function taking a variable number of arguments; the TYPE_ARG_TYPES
of such a function will be NULL.

METHOD_TYPE
Used to represent the type of a non-static member function. Like a FUNCTION_
TYPE, the return type is given by the TREE_TYPE. The type of *this, i.e., the
class of which functions of this type are a member, is given by the TYPE_METHOD_
BASETYPE. The TYPE_ARG_TYPES is the parameter list, as for a FUNCTION_TYPE,
and includes the this argument.

ARRAY_TYPE

Used to represent array types. The TREE_TYPE gives the type of the elements
in the array. If the array-bound is present in the type, the TYPE_DOMAIN is an
INTEGER_TYPE whose TYPE_MIN_VALUE and TYPE_MAX_VALUE will be the lower
and upper bounds of the array, respectively. The TYPE_MIN_VALUE will always
be an INTEGER_CST for zero, while the TYPE_MAX_VALUE will be one less than
the number of elements in the array, i.e., the highest value which may be used
to index an element in the array.

RECORD_TYPE

Used to represent struct and class types, as well as pointers to member
functions and similar constructs in other languages. TYPE_FIELDS contains the
items contained in this type, each of which can be a FIELD_DECL, VAR_DECL,
CONST_DECL, or TYPE_DECL. You may not make any assumptions about the
ordering of the fields in the type or whether one or more of them overlap. If
TYPE_PTRMEMFUNC_P holds, then this type is a pointer-to-member type. In that
case, the TYPE_PTRMEMFUNC_FN_TYPE is a POINTER_TYPE pointing to a METHOD_
TYPE. The METHOD_TYPE is the type of a function pointed to by the pointer-
to-member function. If TYPE_PTRMEMFUNC_P does not hold, this type is a class
type. For more information, see see Section 9.4.2 [Classes|, page 77.

UNION_TYPE
Used to represent union types. Similar to RECORD_TYPE except that all FIELD_
DECL nodes in TYPE_FIELD start at bit position zero.

QUAL_UNION_TYPE
Used to represent part of a variant record in Ada. Similar to UNION_TYPE except
that each FIELD_DECL has a DECL_QUALIFIER field, which contains a boolean
expression that indicates whether the field is present in the object. The type
will only have one field, so each field’s DECL_QUALIFIER is only evaluated if none
of the expressions in the previous fields in TYPE_FIELDS are nonzero. Normally
these expressions will reference a field in the outer object using a PLACEHOLDER _
EXPR.

UNKNOWN_TYPE
This node is used to represent a type the knowledge of which is insufficient for
a sound processing.

76 GNU Compiler Collection (GCC) Internals

OFFSET_TYPE
This node is used to represent a pointer-to-data member. For a data member
X::m the TYPE_OFFSET_BASETYPE is X and the TREE_TYPE is the type of m.

TYPENAME_TYPE
Used to represent a construct of the form typename T::A. The TYPE_CONTEXT
is T; the TYPE_NAME is an IDENTIFIER_NODE for A. If the type is specified via a
template-id, then TYPENAME_TYPE_FULLNAME yields a TEMPLATE_ID_EXPR. The
TREE_TYPE is non-NULL if the node is implicitly generated in support for the
implicit typename extension; in which case the TREE_TYPE is a type node for
the base-class.

TYPEQOF_TYPE
Used to represent the __typeof__ extension. The TYPE_FIELDS is the expres-
sion the type of which is being represented.

There are variables whose values represent some of the basic types. These include:

void_type_node
A node for void.

integer_type_node
A node for int.

unsigned_type_node.
A node for unsigned int.

char_type_node.
A node for char.

It may sometimes be useful to compare one of these variables with a type in hand, using
same_type_p.

9.4 Scopes

The root of the entire intermediate representation is the variable global_namespace. This is
the namespace specified with : : in C++ source code. All other namespaces, types, variables,
functions, and so forth can be found starting with this namespace.

Besides namespaces, the other high-level scoping construct in C++ is the class. (Through-
out this manual the term class is used to mean the types referred to in the ANSI/ISO C++
Standard as classes; these include types defined with the class, struct, and union key-
words.)

9.4.1 Namespaces
A namespace is represented by a NAMESPACE_DECL node.

However, except for the fact that it is distinguished as the root of the representation,
the global namespace is no different from any other namespace. Thus, in what follows, we
describe namespaces generally, rather than the global namespace in particular.

The following macros and functions can be used on a NAMESPACE_DECL:

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 77

DECL_NAME

This macro is used to obtain the IDENTIFIER_NODE corresponding to the unqual-
ified name of the name of the namespace (see Section 9.2.2 [Identifiers], page 70).
The name of the global namespace is ‘::’, even though in C++ the global
namespace is unnamed. However, you should use comparison with global_
namespace, rather than DECL_NAME to determine whether or not a namespace
is the global one. An unnamed namespace will have a DECL_NAME equal to
anonymous_namespace_name. Within a single translation unit, all unnamed
namespaces will have the same name.

DECL_CONTEXT
This macro returns the enclosing namespace. The DECL_CONTEXT for the
global_namespace is NULL_TREE.

DECL_NAMESPACE_ALIAS
If this declaration is for a namespace alias, then DECL_NAMESPACE_ALIAS is the
namespace for which this one is an alias.

Do not attempt to use cp_namespace_decls for a namespace which is an alias.
Instead, follow DECL_NAMESPACE_ALIAS links until you reach an ordinary, non-
alias, namespace, and call cp_namespace_decls there.

DECL_NAMESPACE_STD_P
This predicate holds if the namespace is the special : :std namespace.

cp_namespace_decls
This function will return the declarations contained in the namespace, including
types, overloaded functions, other namespaces, and so forth. If there are no dec-
larations, this function will return NULL_TREE. The declarations are connected
through their TREE_CHAIN fields.

Although most entries on this list will be declarations, TREE_LIST nodes may
also appear. In this case, the TREE_VALUE will be an OVERLOAD. The value of the
TREE_PURPOSE is unspecified; back ends should ignore this value. As with the
other kinds of declarations returned by cp_namespace_decls, the TREE_CHAIN
will point to the next declaration in this list.

For more information on the kinds of declarations that can occur on this list,
See Section 9.5 [Declarations|, page 79. Some declarations will not appear on
this list. In particular, no FIELD_DECL, LABEL_DECL, or PARM_DECL nodes will
appear here.

This function cannot be used with namespaces that have DECL_NAMESPACE_
ALTIAS set.

9.4.2 Classes

A class type is represented by either a RECORD_TYPE or a UNION_TYPE. A class declared
with the union tag is represented by a UNION_TYPE, while classes declared with either the
struct or the class tag are represented by RECORD_TYPEs. You can use the CLASSTYPE_
DECLARED_CLASS macro to discern whether or not a particular type is a class as opposed
to a struct. This macro will be true only for classes declared with the class tag.

Almost all non-function members are available on the TYPE_FIELDS list. Given one mem-
ber, the next can be found by following the TREE_CHAIN. You should not depend in any

78 GNU Compiler Collection (GCC) Internals

way on the order in which fields appear on this list. All nodes on this list will be ‘DECL’
nodes. A FIELD_DECL is used to represent a non-static data member, a VAR_DECL is used to
represent a static data member, and a TYPE_DECL is used to represent a type. Note that the
CONST_DECL for an enumeration constant will appear on this list, if the enumeration type
was declared in the class. (Of course, the TYPE_DECL for the enumeration type will appear
here as well.) There are no entries for base classes on this list. In particular, there is no
FIELD_DECL for the “base-class portion” of an object.

The TYPE_VFIELD is a compiler-generated field used to point to virtual function tables.
It may or may not appear on the TYPE_FIELDS list. However, back ends should handle the
TYPE_VFIELD just like all the entries on the TYPE_FIELDS list.

The function members are available on the TYPE_METHODS list. Again, subsequent mem-
bers are found by following the TREE_CHAIN field. If a function is overloaded, each of the
overloaded functions appears; no OVERLOAD nodes appear on the TYPE_METHODS list. Lm-
plicitly declared functions (including default constructors, copy constructors, assignment
operators, and destructors) will appear on this list as well.

Every class has an associated binfo, which can be obtained with TYPE_BINFO. Binfos
are used to represent base-classes. The binfo given by TYPE_BINFO is the degenerate case,
whereby every class is considered to be its own base-class. The base binfos for a particular
binfo are held in a vector, whose length is obtained with BINFO_N_BASE_BINFOS. The base
binfos themselves are obtained with BINFO_BASE_BINFO and BINFO_BASE_ITERATE. To add
a new binfo, use BINFO_BASE_APPEND. The vector of base binfos can be obtained with
BINFO_BASE_BINFOS, but normally you do not need to use that. The class type associated
with a binfo is given by BINFO_TYPE. It is not always the case that BINFO_TYPE (TYPE_
BINFO (x)), because of typedefs and qualified types. Neither is it the case that TYPE_BINFO
(BINFO_TYPE (y)) is the same binfo as y. The reason is that if y is a binfo representing a
base-class B of a derived class D, then BINFO_TYPE (y) will be B, and TYPE_BINFQ (BINFO_
TYPE (y)) will be B as its own base-class, rather than as a base-class of D.

The access to a base type can be found with BINFO_BASE_ACCESS. This will produce
access_public_node, access_private_node or access_protected_node. If bases are
always public, BINFO_BASE_ACCESSES may be NULL.

BINFO_VIRTUAL_P is used to specify whether the binfo is inherited virtually or not. The
other flags, BINFO_MARKED_P and BINFO_FLAG_1 to BINFO_FLAG_6 can be used for language
specific use.

The following macros can be used on a tree node representing a class-type.

LOCAL_CLASS_P
This predicate holds if the class is local class i.e. declared inside a function
body.

TYPE_POLYMORPHIC_P
This predicate holds if the class has at least one virtual function (declared or
inherited).

TYPE_HAS_DEFAULT_CONSTRUCTOR
This predicate holds whenever its argument represents a class-type with default
constructor.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 79

CLASSTYPE_HAS_MUTABLE
TYPE_HAS_MUTABLE_P
These predicates hold for a class-type having a mutable data member.

CLASSTYPE_NON_POD_P
This predicate holds only for class-types that are not PODs.

TYPE_HAS_NEW_OPERATOR
This predicate holds for a class-type that defines operator new.

TYPE_HAS_ARRAY_NEW_OPERATOR
This predicate holds for a class-type for which operator new[] is defined.

TYPE_OVERLOADS_CALL_EXPR
This predicate holds for class-type for which the function call operator() is
overloaded.

TYPE_OVERLOADS_ARRAY_REF
This predicate holds for a class-type that overloads operator[]

TYPE_OVERLOADS_ARROW
This predicate holds for a class-type for which operator-> is overloaded.

9.5 Declarations

This section covers the various kinds of declarations that appear in the internal represen-
tation, except for declarations of functions (represented by FUNCTION_DECL nodes), which
are described in Section 9.6 [Functions|, page 84.

9.5.1 Working with declarations
Some macros can be used with any kind of declaration. These include:

DECL_NAME
This macro returns an IDENTIFIER_NODE giving the name of the entity.

TREE_TYPE
This macro returns the type of the entity declared.

TREE_FILENAME
This macro returns the name of the file in which the entity was declared, as
a charx. For an entity declared implicitly by the compiler (like __builtin_
memcpy), this will be the string "<internal>".

TREE_LINENO
This macro returns the line number at which the entity was declared, as an
int.

DECL_ARTIFICIAL
This predicate holds if the declaration was implicitly generated by the compiler.
For example, this predicate will hold of an implicitly declared member function,

or of the TYPE_DECL implicitly generated for a class type. Recall that in C++
code like:

struct S {};
is roughly equivalent to C code like:

80

GNU Compiler Collection (GCC) Internals

struct S {};
typedef struct S S;

The implicitly generated typedef declaration is represented by a TYPE_DECL
for which DECL_ARTIFICIAL holds.

DECL_NAMESPACE_SCOPE_P

This predicate holds if the entity was declared at a namespace scope.

DECL_CLASS_SCOPE_P

This predicate holds if the entity was declared at a class scope.

DECL_FUNCTION_SCOPE_P

This predicate holds if the entity was declared inside a function body.

The various kinds of declarations include:

LABEL_DECL

CONST_DECL

These nodes are used to represent labels in function bodies. For more infor-
mation, see Section 9.6 [Functions], page 84. These nodes only appear in block
scopes.

These nodes are used to represent enumeration constants. The value of the
constant is given by DECL_INITIAL which will be an INTEGER_CST with the
same type as the TREE_TYPE of the CONST_DECL, i.e., an ENUMERAL_TYPE.

RESULT_DECL

TYPE_DECL

VAR_DECL

These nodes represent the value returned by a function. When a value is as-
signed to a RESULT_DECL, that indicates that the value should be returned, via
bitwise copy, by the function. You can use DECL_SIZE and DECL_ALIGN on a
RESULT_DECL, just as with a VAR_DECL.

These nodes represent typedef declarations. The TREE_TYPE is the type de-
clared to have the name given by DECL_NAME. In some cases, there is no asso-
ciated name.

These nodes represent variables with namespace or block scope, as well as static
data members. The DECL_SIZE and DECL_ALIGN are analogous to TYPE_SIZE
and TYPE_ALIGN. For a declaration, you should always use the DECL_SIZE and
DECL_ALIGN rather than the TYPE_SIZE and TYPE_ALIGN given by the TREE_
TYPE, since special attributes may have been applied to the variable to give it a
particular size and alignment. You may use the predicates DECL_THIS_STATIC
or DECL_THIS_EXTERN to test whether the storage class specifiers static or
extern were used to declare a variable.

If this variable is initialized (but does not require a constructor), the DECL_
INITIAL will be an expression for the initializer. The initializer should be
evaluated, and a bitwise copy into the variable performed. If the DECL_INITIAL
is the error_mark_node, there is an initializer, but it is given by an explicit
statement later in the code; no bitwise copy is required.

GCC provides an extension that allows either automatic variables, or global
variables, to be placed in particular registers. This extension is being used for

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 81

PARM_DECL

FIELD_DECL

a particular VAR_DECL if DECL_REGISTER holds for the VAR_DECL, and if DECL_
ASSEMBLER_NAME is not equal to DECL_NAME. In that case, DECL_ASSEMBLER_
NAME is the name of the register into which the variable will be placed.

Used to represent a parameter to a function. Treat these nodes similarly to VAR_
DECL nodes. These nodes only appear in the DECL_ARGUMENTS for a FUNCTION_
DECL.

The DECL_ARG_TYPE for a PARM_DECL is the type that will actually be used when
a value is passed to this function. It may be a wider type than the TREE_TYPE
of the parameter; for example, the ordinary type might be short while the
DECL_ARG_TYPE is int.

These nodes represent non-static data members. The DECL_SIZE and DECL_
ALIGN behave as for VAR_DECL nodes. The position of the field within the
parent record is specified by a combination of three attributes. DECL_FIELD_
OFFSET is the position, counting in bytes, of the DECL_OFFSET_ALIGN-bit sized
word containing the bit of the field closest to the beginning of the structure.
DECL_FIELD_BIT_OFFSET is the bit offset of the first bit of the field within this
word; this may be nonzero even for fields that are not bit-fields, since DECL_
OFFSET_ALIGN may be greater than the natural alignment of the field’s type.

If DECL_C_BIT_FIELD holds, this field is a bit-field. In a bit-field, DECL_BIT_
FIELD_TYPE also contains the type that was originally specified for it, while

DECL_TYPE may be a modified type with lesser precision, according to the
size of the bit field.

NAMESPACE_DECL

See Section 9.4.1 [Namespaces], page 76.

TEMPLATE_DECL

USING_DECL

These nodes are used to represent class, function, and variable (static data
nuﬂnber)tenqﬂate& The DECL_TEMPLATE_SPECIALIZATIONS are a TREE_LIST.
The TREE_VALUE of each node in the list is a TEMPLATE_DECLs or FUNCTION_
DECLs representing specializations (including instantiations) of this template.
Back ends can safely ignore TEMPLATE_DECLs, but should examine FUNCTION_
DECL nodes on the specializations list just as they would ordinary FUNCTION_
DECL nodes.

For a class template, the DECL_TEMPLATE_INSTANTIATIONS list contains the
instantiations. The TREE_VALUE of each node is an instantiation of the class.
The DECL_TEMPLATE_SPECIALIZATIONS contains partial specializations of the
class.

Back ends can safely ignore these nodes.

9.5.2 Internal structure

DECL nodes are represented internally as a hierarchy of structures.

82

GNU Compiler Collection (GCC) Internals

9.5.2.1 Current structure hierarchy

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

tree_decl_minimal
This is the minimal structure to inherit from in order for common DECL macros
to work. The fields it contains are a unique 1D, source location, context, and
name.

tree_decl_common
This structure inherits from struct tree_decl_minimal. It contains fields
that most DECL nodes need, such as a field to store alignment, machine mode,
size, and attributes.

tree_field_decl
This structure inherits from struct tree_decl_common. It is used to represent
FIELD_DECL.

tree_label_decl
This structure inherits from struct tree_decl_common. It is used to represent
LABEL_DECL.

tree_translation_unit_decl
This structure inherits from struct tree_decl_common. It is used to represent
TRANSLATION_UNIT_DECL.

tree_decl_with_rtl
This structure inherits from struct tree_decl_common. It contains a field to
store the low-level RTL associated with a DECL node.

tree_result_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent RESULT_DECL.

tree_const_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent CONST_DECL.

tree_parm_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent PARM_DECL.

tree_decl_with_vis
This structure inherits from struct tree_decl_with_rtl. It contains fields
necessary to store visibility information, as well as a section name and assembler
name.

tree_var_decl
This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent VAR_DECL.

tree_function_decl
This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent FUNCTION_DECL.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 83

9.5.2.2 Adding new DECL node types
Adding a new DECL tree consists of the following steps

Add a new tree code for the DECL node
For language specific DECL nodes, there is a ‘. def’ file in each frontend directory
where the tree code should be added. For DECL nodes that are part of the
middle-end, the code should be added to ‘tree.def’.

Create a new structure type for the DECL node

These structures should inherit from one of the existing structures in the lan-
guage hierarchy by using that structure as the first member.

struct tree_foo_decl

{

struct tree_decl_with_vis common;

}
Would create a structure name tree_foo_decl that inherits from struct tree_
decl_with_vis.

For language specific DECL nodes, this new structure type should go in the
appropriate ‘.h’ file. For DECL nodes that are part of the middle-end, the
structure type should go in ‘tree.h’.

Add a member to the tree structure enumerator for the node
For garbage collection and dynamic checking purposes, each DECL node struc-
ture type is required to have a unique enumerator value specified with it. For
language specific DECL nodes, this new enumerator value should go in the ap-
propriate ‘.def’ file. For DECL nodes that are part of the middle-end, the
enumerator values are specified in ‘treestruct.def’.

Update union tree_node
In order to make your new structure type usable, it must be added to union
tree_node. For language specific DECL nodes, a new entry should be added to
the appropriate ‘.h’ file of the form

struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;

For DECL nodes that are part of the middle-end, the additional member goes
directly into union tree_node in ‘tree.h’.

Update dynamic checking info
In order to be able to check whether accessing a named portion of union tree_
node is legal, and whether a certain DECL node contains one of the enumerated
DECL node structures in the hierarchy, a simple lookup table is used. This
lookup table needs to be kept up to date with the tree structure hierarchy, or
else checking and containment macros will fail inappropriately.

For language specific DECL nodes, their is an init_ts function in an appropri-
ate ‘.c’ file, which initializes the lookup table. Code setting up the table for
new DECL nodes should be added there. For each DECL tree code and enumera-
tor value representing a member of the inheritance hierarchy, the table should
contain 1 if that tree code inherits (directly or indirectly) from that member.
Thus, a FOO_DECL node derived from struct decl_with_rtl, and enumerator
value TS_FOO0_DECL, would be set up as follows

tree_contains_struct [FOO_DECL] [TS_FOO_DECL] = 1;
tree_contains_struct [FOO_DECL] [TS_DECL_WRTL] = 1;

84 GNU Compiler Collection (GCC) Internals

tree_contains_struct [FOO_DECL] [TS_DECL_COMMON] = 1;
tree_contains_struct [FOO_DECL] [TS_DECL_MINIMAL] = 1;
For DECL nodes that are part of the middle-end, the setup code goes into
[4 ?
tree.c’.

Add macros to access any new fields and flags
Each added field or flag should have a macro that is used to access it, that
performs appropriate checking to ensure only the right type of DECL nodes
access the field.
These macros generally take the following form
#define FOO_DECL_FIELDNAME (NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname

However, if the structure is simply a base class for further structures, something
like the following should be used

#define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)
#define BASE_STRUCT_FIELDNAME (NODE) \
(BASE_STRUCT_CHECK (NODE) ->base_struct.fieldname

9.6 Functions

A function is represented by a FUNCTION_DECL node. A set of overloaded functions is
sometimes represented by a OVERLOAD node.

An OVERLOAD node is not a declaration, so none of the ‘DECL_’ macros should be used on
an OVERLOAD. An OVERLQOAD node is similar to a TREE_LIST. Use OVL_CURRENT to get the
function associated with an OVERLOAD node; use OVL_NEXT to get the next OVERLOAD node
in the list of overloaded functions. The macros OVL_CURRENT and OVL_NEXT are actually
polymorphic; you can use them to work with FUNCTION_DECL nodes as well as with overloads.
In the case of a FUNCTION_DECL, OVL_CURRENT will always return the function itself, and
OVL_NEXT will always be NULL_TREE.

To determine the scope of a function, you can use the DECL_CONTEXT macro. This macro
will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace (a NAMESPACE_
DECL) of which the function is a member. For a virtual function, this macro returns the
class in which the function was actually defined, not the base class in which the virtual
declaration occurred.

If a friend function is defined in a class scope, the DECL_FRIEND_CONTEXT macro can be
used to determine the class in which it was defined. For example, in

class C { friend void f() {} };

the DECL_CONTEXT for f will be the global_namespace, but the DECL_FRIEND_CONTEXT will
be the RECORD_TYPE for C.

In C, the DECL_CONTEXT for a function maybe another function. This representation
indicates that the GNU nested function extension is in use. For details on the semantics of
nested functions, see the GCC Manual. The nested function can refer to local variables in
its containing function. Such references are not explicitly marked in the tree structure; back
ends must look at the DECL_CONTEXT for the referenced VAR_DECL. If the DECL_CONTEXT
for the referenced VAR_DECL is not the same as the function currently being processed, and
neither DECL_EXTERNAL nor DECL_STATIC hold, then the reference is to a local variable in a
containing function, and the back end must take appropriate action.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 85

9.6.1 Function Basics

The following macros and functions can be used on a FUNCTION_DECL:
DECL_MAIN_P

DECL_NAME

This predicate holds for a function that is the program entry point ::code.

This macro returns the unqualified name of the function, as an IDENTIFIER_
NODE. For an instantiation of a function template, the DECL_NAME is the unqual-
ified name of the template, not something like f<int>. The value of DECL_NAME
is undefined when used on a constructor, destructor, overloaded operator, or
type-conversion operator, or any function that is implicitly generated by the
compiler. See below for macros that can be used to distinguish these cases.

DECL_ASSEMBLER_NAME

This macro returns the mangled name of the function, also an IDENTIFIER_
NODE. This name does not contain leading underscores on systems that prefix
all identifiers with underscores. The mangled name is computed in the same
way on all platforms; if special processing is required to deal with the object
file format used on a particular platform, it is the responsibility of the back end
to perform those modifications. (Of course, the back end should not modify
DECL_ASSEMBLER_NAME itself.)

Using DECL_ASSEMBLER_NAME will cause additional memory to be allocated (for
the mangled name of the entity) so it should be used only when emitting assem-
bly code. It should not be used within the optimizers to determine whether or
not two declarations are the same, even though some of the existing optimizers
do use it in that way. These uses will be removed over time.

DECL_EXTERNAL

This predicate holds if the function is undefined.

TREE_PUBLIC

This predicate holds if the function has external linkage.

DECL_LOCAL_FUNCTION_P

This predicate holds if the function was declared at block scope, even though
it has a global scope.

DECL_ANTICIPATED

This predicate holds if the function is a built-in function but its prototype is
not yet explicitly declared.

DECL_EXTERN_C_FUNCTION_P

This predicate holds if the function is declared as an ‘extern "C"’ function.

DECL_LINKONCE_P

This macro holds if multiple copies of this function may be emitted in various
translation units. It is the respounsibility of the linker to merge the various
copies. Template instantiations are the most common example of functions
for which DECL_LINKONCE_P holds; G++ instantiates needed templates in all
translation units which require them, and then relies on the linker to remove
duplicate instantiations.

86 GNU Compiler Collection (GCC) Internals

FIXME: This macro is not yet implemented.

DECL_FUNCTION_MEMBER_P
This macro holds if the function is a member of a class, rather than a member
of a namespace.

DECL_STATIC_FUNCTION_P
This predicate holds if the function a static member function.

DECL_NONSTATIC_MEMBER_FUNCTION_P
This macro holds for a non-static member function.

DECL_CONST_MEMFUNC_P
This predicate holds for a const-member function.

DECL_VOLATILE_MEMFUNC_P
This predicate holds for a volatile-member function.

DECL_CONSTRUCTOR_P
This macro holds if the function is a constructor.

DECL_NONCONVERTING_P
This predicate holds if the constructor is a non-converting constructor.

DECL_COMPLETE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for an object of a
complete type.

DECL_BASE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for a base class sub-
object.

DECL_COPY_CONSTRUCTOR_P
This predicate holds for a function which is a copy-constructor.

DECL_DESTRUCTOR_P
This macro holds if the function is a destructor.

DECL_COMPLETE_DESTRUCTOR_P
This predicate holds if the function is the destructor for an object a complete

type.

DECL_OVERLOADED_OPERATOR_P
This macro holds if the function is an overloaded operator.

DECL_CONV_FN_P
This macro holds if the function is a type-conversion operator.

DECL_GLOBAL_CTOR_P
This predicate holds if the function is a file-scope initialization function.

DECL_GLOBAL_DTOR_P
This predicate holds if the function is a file-scope finalization function.

DECL_THUNK_P
This predicate holds if the function is a thunk.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 87

These functions represent stub code that adjusts the this pointer and then
jumps to another function. When the jumped-to function returns, control is
transferred directly to the caller, without returning to the thunk. The first
parameter to the thunk is always the this pointer; the thunk should add THUNK_
DELTA to this value. (The THUNK_DELTA is an int, not an INTEGER_CST.)

Then, if THUNK_VCALL_OFFSET (an INTEGER_CST) is nonzero the adjusted this
pointer must be adjusted again. The complete calculation is given by the fol-
lowing pseudo-code:

this += THUNK_DELTA

if (THUNK_VCALL_OFFSET)

this += (*((ptrdiff_t #**) this)) [THUNK_VCALL_OFFSET]

Finally, the thunk should jump to the location given by DECL_INITIAL; this
will always be an expression for the address of a function.

DECL_NON_THUNK_FUNCTION_P

This predicate holds if the function is not a thunk function.

GLOBAL_INIT_PRIORITY

If either DECL_GLOBAL_CTOR_P or DECL_GLOBAL_DTOR_P holds, then this gives
the initialization priority for the function. The linker will arrange that all
functions for which DECL_GLOBAL_CTOR_P holds are run in increasing order of
priority before main is called. When the program exits, all functions for which
DECL_GLOBAL_DTOR_P holds are run in the reverse order.

DECL_ARTIFICIAL

This macro holds if the function was implicitly generated by the compiler,
rather than explicitly declared. In addition to implicitly generated class member
functions, this macro holds for the special functions created to implement static
initialization and destruction, to compute run-time type information, and so
forth.

DECL_ARGUMENTS

This macro returns the PARM_DECL for the first argument to the function. Sub-
sequent PARM_DECL nodes can be obtained by following the TREE_CHAIN links.

DECL_RESULT

TREE_TYPE

This macro returns the RESULT_DECL for the function.

This macro returns the FUNCTION_TYPE or METHOD_TYPE for the function.

TYPE_RAISES_EXCEPTIONS

This macro returns the list of exceptions that a (member-)function can raise.
The returned list, if non NULL, is comprised of nodes whose TREE_VALUE repre-
sents a type.

TYPE_NOTHROW_P

This predicate holds when the exception-specification of its arguments if of the
form “()’.

DECL_ARRAY_DELETE_OPERATOR_P

This predicate holds if the function an overloaded operator deletel[].

88 GNU Compiler Collection (GCC) Internals

9.6.2 Function Bodies

A function that has a definition in the current translation unit will have a non-NULL DECL_
INITIAL. However, back ends should not make use of the particular value given by DECL_
INITIAL.

The DECL_SAVED_TREE macro will give the complete body of the function.

9.6.2.1 Statements

There are tree nodes corresponding to all of the source-level statement constructs, used
within the C and C++ frontends. These are enumerated here, together with a list of the
various macros that can be used to obtain information about them. There are a few macros
that can be used with all statements:

STMT_IS_FULL_EXPR_P
In C++, statements normally constitute “full expressions”; temporaries created
during a statement are destroyed when the statement is complete. However,
G++ sometimes represents expressions by statements; these statements will not
have STMT_IS_FULL_EXPR_P set. Temporaries created during such statements
should be destroyed when the innermost enclosing statement with STMT_IS_
FULL_EXPR_P set is exited.

Here is the list of the various statement nodes, and the macros used to access them.
This documentation describes the use of these nodes in non-template functions (including
instantiations of template functions). In template functions, the same nodes are used, but
sometimes in slightly different ways.

Many of the statements have substatements. For example, a while loop will have a body,
which is itself a statement. If the substatement is NULL_TREE, it is considered equivalent to
a statement consisting of a single ;, i.e., an expression statement in which the expression has
been omitted. A substatement may in fact be a list of statements, connected via their TREE_

CHAINs. So, you should always process the statement tree by looping over substatements,
like this:

void process_stmt (stmt)
tree stmt;

{
while (stmt)
{
switch (TREE_CODE (stmt))
{
case IF_STMT:
process_stmt (THEN_CLAUSE (stmt));
/* More processing here. */
break;
}
stmt = TREE_CHAIN (stmt);
}
}

In other words, while the then clause of an if statement in C++ can be only one statement
(although that one statement may be a compound statement), the intermediate represen-
tation will sometimes use several statements chained together.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 89

ASM_EXPR

BREAK_STMT

Used to represent an inline assembly statement. For an inline assembly state-
ment like:

asm ("mov x, y");

The ASM_STRING macro will return a STRING_CST node for "mov x, y". If
the original statement made use of the extended-assembly syntax, then ASM_
OUTPUTS, ASM_INPUTS, and ASM_CLOBBERS will be the outputs, inputs, and
clobbers for the statement, represented as STRING_CST nodes. The extended-
assembly syntax looks like:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The first string is the ASM_STRING, containing the instruction template. The
next two strings are the output and inputs, respectively; this statement has no
clobbers. As this example indicates, “plain” assembly statements are merely
a special case of extended assembly statements; they have no cv-qualifiers,
outputs, inputs, or clobbers. All of the strings will be NUL-terminated, and will
contain no embedded NUL-characters.

If the assembly statement is declared volatile, or if the statement was not
an extended assembly statement, and is therefore implicitly volatile, then the
predicate ASM_VOLATILE_P will hold of the ASM_EXPR.

Used to represent a break statement. There are no additional fields.

CASE_LABEL_EXPR

Use to represent a case label, range of case labels, or a default label. If
CASE_LOW is NULL_TREE, then this is a default label. Otherwise, if CASE_HIGH
is NULL_TREE, then this is an ordinary case label. In this case, CASE_LOW is
an expression giving the value of the label. Both CASE_LOW and CASE_HIGH
are INTEGER_CST nodes. These values will have the same type as the condition
expression in the switch statement.

Otherwise, if both CASE_LOW and CASE_HIGH are defined, the statement is a
range of case labels. Such statements originate with the extension that allows
users to write things of the form:

case 2 ... b:

The first value will be CASE_LOW, while the second will be CASE_HIGH.

CLEANUP_STMT

Used to represent an action that should take place upon exit from the enclos-
ing scope. Typically, these actions are calls to destructors for local objects,
but back ends cannot rely on this fact. If these nodes are in fact representing
such destructors, CLEANUP_DECL will be the VAR_DECL destroyed. Otherwise,
CLEANUP_DECL will be NULL_TREE. In any case, the CLEANUP_EXPR is the ex-
pression to execute. The cleanups executed on exit from a scope should be run
in the reverse order of the order in which the associated CLEANUP_STMTs were
encountered.

CONTINUE_STMT

Used to represent a continue statement. There are no additional fields.

90

CTOR_STMT

DECL_STMT

DO_STMT

GNU Compiler Collection (GCC) Internals

Used to mark the beginning (if CTOR_BEGIN_P holds) or end (if CTOR_END_P
holds of the main body of a constructor. See also SUBOBJECT for more informa-
tion on how to use these nodes.

Used to represent a local declaration. The DECL_STMT_DECL macro can be
used to obtain the entity declared. This declaration may be a LABEL_DECL,
indicating that the label declared is a local label. (As an extension, GCC
allows the declaration of labels with scope.) In C, this declaration may be a
FUNCTION_DECL, indicating the use of the GCC nested function extension. For
more information, see Section 9.6 [Functions], page 84.

Used to represent a do loop. The body of the loop is given by DO_BODY while
the termination condition for the loop is given by DO_COND. The condition for
a do-statement is always an expression.

EMPTY_CLASS_EXPR

EXPR_STMT

FOR_STMT

GOTO_EXPR

HANDLER

IF_STMT

Used to represent a temporary object of a class with no data whose address is
never taken. (All such objects are interchangeable.) The TREE_TYPE represents
the type of the object.

Used to represent an expression statement. Use EXPR_STMT_EXPR to obtain the
expression.

Used to represent a for statement. The FOR_INIT_STMT is the initialization
statement for the loop. The FOR_COND is the termination condition. The FOR_
EXPR is the expression executed right before the FOR_COND on each loop iteration;
often, this expression increments a counter. The body of the loop is given by
FOR_BODY. Note that FOR_INIT_STMT and FOR_BODY return statements, while
FOR_COND and FOR_EXPR return expressions.

Used to represent a goto statement. The GOTO_DESTINATION will usually be
a LABEL_DECL. However, if the “computed goto” extension has been used, the
GOTO_DESTINATION will be an arbitrary expression indicating the destination.
This expression will always have pointer type.

Used to represent a C++ catch block. The HANDLER_TYPE is the type of ex-
ception that will be caught by this handler; it is equal (by pointer equality) to
NULL if this handler is for all types. HANDLER_PARMS is the DECL_STMT for the
catch parameter, and HANDLER_BODY is the code for the block itself.

Used to represent an if statement. The IF_COND is the expression.

If the condition is a TREE_LIST, then the TREE_PURPOSE is a statement (usually
a DECL_STMT). Each time the condition is evaluated, the statement should be

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 91

executed. Then, the TREE_VALUE should be used as the conditional expression
itself. This representation is used to handle C++ code like this:

if (int i =7) ...
where there is a new local variable (or variables) declared within the condition.

The THEN_CLAUSE represents the statement given by the then condition, while
the ELSE_CLAUSE represents the statement given by the else condition.

LABEL_EXPR
Used to represent a label. The LABEL_DECL declared by this statement can be
obtained with the LABEL_EXPR_LABEL macro. The IDENTIFIER_NODE giving the
name of the label can be obtained from the LABEL_DECL with DECL_NAME.

RETURN_STMT
Used to represent a return statement. The RETURN_EXPR is the expression
returned; it will be NULL_TREE if the statement was just

return;

SUBOBJECT
In a constructor, these nodes are used to mark the point at which a subobject
of this is fully constructed. If, after this point, an exception is thrown before a
CTOR_STMT with CTOR_END_P set is encountered, the SUBOBJECT _CLEANUP must
be executed. The cleanups must be executed in the reverse order in which they
appear.

SWITCH_STMT
Used to represent a switch statement. The SWITCH_STMT_COND is the expres-
sion on which the switch is occurring. See the documentation for an IF_STMT
for more information on the representation used for the condition. The SWITCH_
STMT_BODY is the body of the switch statement. The SWITCH_STMT_TYPE is the
original type of switch expression as given in the source, before any compiler
conversions.

TRY_BLOCK
Used to represent a try block. The body of the try block is given by TRY_
STMTS. Each of the catch blocks is a HANDLER node. The first handler is given
by TRY_HANDLERS. Subsequent handlers are obtained by following the TREE_
CHAIN link from one handler to the next. The body of the handler is given by
HANDLER_BODY.

If CLEANUP_P holds of the TRY_BLOCK, then the TRY_HANDLERS will not be a
HANDLER node. Instead, it will be an expression that should be executed if
an exception is thrown in the try block. It must rethrow the exception after
executing that code. And, if an exception is thrown while the expression is
executing, terminate must be called.

USING_STMT
Used to represent a using directive. The namespace is given by USING_STMT_
NAMESPACE, which will be a NAMESPACE_DECL. This node is needed inside
template functions, to implement using directives during instantiation.

92 GNU Compiler Collection (GCC) Internals

WHILE_STMT
Used to represent a while loop. The WHILE_COND is the termination condition
for the loop. See the documentation for an IF_STMT for more information on
the representation used for the condition.

The WHILE_BODY is the body of the loop.

9.7 Attributes in trees

Attributes, as specified using the __attribute__ keyword, are represented internally as a
TREE_LIST. The TREE_PURPOSE is the name of the attribute, as an IDENTIFIER_NODE. The
TREE_VALUE is a TREE_LIST of the arguments of the attribute, if any, or NULL_TREE if there
are no arguments; the arguments are stored as the TREE_VALUE of successive entries in the
list, and may be identifiers or expressions. The TREE_CHAIN of the attribute is the next
attribute in a list of attributes applying to the same declaration or type, or NULL_TREE if
there are no further attributes in the list.

Attributes may be attached to declarations and to types; these attributes may be accessed
with the following macros. All attributes are stored in this way, and many also cause other
changes to the declaration or type or to other internal compiler data structures.

tree DECL_ATTRIBUTES (tree decl) [Tree Macro]
This macro returns the attributes on the declaration decl

tree TYPE_ATTRIBUTES (tree type) [Tree Macro]
This macro returns the attributes on the type type.

9.8 Expressions

The internal representation for expressions is for the most part quite straightforward. How-
ever, there are a few facts that one must bear in mind. In particular, the expression “tree”
is actually a directed acyclic graph. (For example there may be many references to the
integer constant zero throughout the source program; many of these will be represented by
the same expression node.) You should not rely on certain kinds of node being shared, nor
should rely on certain kinds of nodes being unshared.

The following macros can be used with all expression nodes:

TREE_TYPE
Returns the type of the expression. This value may not be precisely the same
type that would be given the expression in the original program.

In what follows, some nodes that one might expect to always have type bool are docu-
mented to have either integral or boolean type. At some point in the future, the C front
end may also make use of this same intermediate representation, and at this point these
nodes will certainly have integral type. The previous sentence is not meant to imply that
the C++ front end does not or will not give these nodes integral type.

Below, we list the various kinds of expression nodes. Except where noted otherwise, the
operands to an expression are accessed using the TREE_OPERAND macro. For example, to
access the first operand to a binary plus expression expr, use:

TREE_OPERAND (expr, O)

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 93

As this example indicates, the operands are zero-indexed.

All the expressions starting with OMP_ represent directives and clauses used by the
OpenMP API http://www.openmp.org/.

The table below begins with constants, moves on to unary expressions, then proceeds to
binary expressions, and concludes with various other kinds of expressions:

INTEGER_CST

REAL_CST

These nodes represent integer constants. Note that the type of these constants
is obtained with TREE_TYPE; they are not always of type int. In particular,
char constants are represented with INTEGER_CST nodes. The value of the
integer constant e is given by

((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)

+ TREE_INST_CST_LOW (e))
HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms. Both
TREE_INT_CST_HIGH and TREE_INT_CST_LOW return a HOST_WIDE_INT. The
value of an INTEGER_CST is interpreted as a signed or unsigned quantity de-
pending on the type of the constant. In general, the expression given above will
overflow, so it should not be used to calculate the value of the constant.

The variable integer_zero_node is an integer constant with value zero. Sim-
ilarly, integer_one_node is an integer constant with value one. The size_
zero_node and size_one_node variables are analogous, but have type size_t
rather than int.

The function tree_int_cst_1t is a predicate which holds if its first argument
is less than its second. Both constants are assumed to have the same signed-
ness (i.e., either both should be signed or both should be unsigned.) The full
width of the constant is used when doing the comparison; the usual rules about
promotions and conversions are ignored. Similarly, tree_int_cst_equal holds
if the two constants are equal. The tree_int_cst_sgn function returns the
sign of a constant. The value is 1, 0, or -1 according on whether the constant
is greater than, equal to, or less than zero. Again, the signedness of the con-
stant’s type is taken into account; an unsigned constant is never less than zero,
no matter what its bit-pattern.

FIXME: Talk about how to obtain representations of this constant, do compar-
isons, and so forth.

COMPLEX_CST

VECTOR_CST

These nodes are used to represent complex number constants, that is a __
complex__ whose parts are constant nodes. The TREE_REALPART and TREE_
IMAGPART return the real and the imaginary parts respectively.

These nodes are used to represent vector constants, whose parts are constant
nodes. Each individual constant node is either an integer or a double constant
node. The first operand is a TREE_LIST of the constant nodes and is accessed
through TREE_VECTOR_CST_ELTS.

http://www.openmp.org/

94

STRING_CST

PTRMEM_CST

VAR_DECL

GNU Compiler Collection (GCC) Internals

These nodes represent string-constants. The TREE_STRING_LENGTH returns the
length of the string, as an int. The TREE_STRING_POINTER is a char* contain-
ing the string itself. The string may not be NUL-terminated, and it may contain
embedded NUL characters. Therefore, the TREE_STRING_LENGTH includes the
trailing NUL if it is present.

For wide string constants, the TREE_STRING_LENGTH is the number of bytes in
the string, and the TREE_STRING_POINTER points to an array of the bytes of
the string, as represented on the target system (that is, as integers in the target
endianness). Wide and non-wide string constants are distinguished only by the
TREE_TYPE of the STRING_CST.

FIXME: The formats of string constants are not well-defined when the target
system bytes are not the same width as host system bytes.

These nodes are used to represent pointer-to-member constants. The PTRMEM_
CST_CLASS is the class type (either a RECORD_TYPE or UNION_TYPE within which

the pointer points), and the PTRMEM_CST_MEMBER is the declaration for the
pointed to object. Note that the DECL_CONTEXT for the PTRMEM_CST_MEMBER
is in general different from the PTRMEM_CST_CLASS. For example, given:

struct B { int i; };

struct D : public B {};

int D::*dp = &D::i;
The PTRMEM_CST_CLASS for &D: :1 is D, even though the DECL_CONTEXT for the
PTRMEM_CST_MEMBER is B, since B: :1i is a member of B, not D.

These nodes represent variables, including static data members. For more in-
formation, see Section 9.5 [Declarations], page 79.

NEGATE_EXPR

ABS_EXPR

These nodes represent unary negation of the single operand, for both integer
and floating-point types. The type of negation can be determined by looking
at the type of the expression.

The behavior of this operation on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

These nodes represent the absolute value of the single operand, for both integer
and floating-point types. This is typically used to implement the abs, labs and
11labs builtins for integer types, and the fabs, fabsf and fabsl builtins for
floating point types. The type of abs operation can be determined by looking
at the type of the expression.

This node is not used for complex types. To represent the modulus or complex
abs of a complex value, use the BUILT_IN_CABS, BUILT_IN_CABSF or BUILT_IN_
CABSL builtins, as used to implement the C99 cabs, cabsf and cabsl built-in
functions.

BIT_NOT_EXPR

These nodes represent bitwise complement, and will always have integral type.
The only operand is the value to be complemented.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 95

TRUTH_NOT_EXPR
These nodes represent logical negation, and will always have integral (or
boolean) type. The operand is the value being negated. The type of the
operand and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

PREDECREMENT _EXPR

PREINCREMENT_EXPR

POSTDECREMENT_EXPR

POSTINCREMENT_EXPR
These nodes represent increment and decrement expressions. The value of the
single operand is computed, and the operand incremented or decremented. In
the case of PREDECREMENT_EXPR and PREINCREMENT_EXPR, the value of the ex-
pression is the value resulting after the increment or decrement; in the case of
POSTDECREMENT_EXPR and POSTINCREMENT_EXPR is the value before the incre-
ment or decrement occurs. The type of the operand, like that of the result, will
be either integral, boolean, or floating-point.

ADDR_EXPR
These nodes are used to represent the address of an object. (These expres-
sions will always have pointer or reference type.) The operand may be another
expression, or it may be a declaration.
As an extension, GCC allows users to take the address of a label. In this case,
the operand of the ADDR_EXPR will be a LABEL_DECL. The type of such an
expression is voidx.
If the object addressed is not an lvalue, a temporary is created, and the address
of the temporary is used.

INDIRECT_REF
These nodes are used to represent the object pointed to by a pointer. The
operand is the pointer being dereferenced; it will always have pointer or refer-
ence type.

FIX_TRUNC_EXPR
These nodes represent conversion of a floating-point value to an integer. The
single operand will have a floating-point type, while the complete expression
will have an integral (or boolean) type. The operand is rounded towards zero.

FLOAT_EXPR
These nodes represent conversion of an integral (or boolean) value to a floating-
point value. The single operand will have integral type, while the complete
expression will have a floating-point type.
FIXME: How is the operand supposed to be rounded? Is this dependent on
‘-mieee’?

COMPLEX_EXPR
These nodes are used to represent complex numbers constructed from two ex-
pressions of the same (integer or real) type. The first operand is the real part
and the second operand is the imaginary part.

CONJ_EXPR
These nodes represent the conjugate of their operand.

96

GNU Compiler Collection (GCC) Internals

REALPART_EXPR
IMAGPART_EXPR

These nodes represent respectively the real and the imaginary parts of complex
numbers (their sole argument).

NON_LVALUE_EXPR

NOP_EXPR

These nodes indicate that their one and only operand is not an lvalue. A back
end can treat these identically to the single operand.

These nodes are used to represent conversions that do not require any code-
generation. For example, conversion of a char* to an int* does not require any
code be generated; such a conversion is represented by a NOP_EXPR. The single
operand is the expression to be converted. The conversion from a pointer to a
reference is also represented with a NOP_EXPR.

CONVERT_EXPR

THROW_EXPR

These nodes are similar to NOP_EXPRs, but are used in those situations where
code may need to be generated. For example, if an int* is converted to an
int code may need to be generated on some platforms. These nodes are never
used for C++-specific conversions, like conversions between pointers to different
classes in an inheritance hierarchy. Any adjustments that need to be made in
such cases are always indicated explicitly. Similarly, a user-defined conversion
is never represented by a CONVERT_EXPR; instead, the function calls are made
explicit.

These nodes represent throw expressions. The single operand is an expression
for the code that should be executed to throw the exception. However, there
is one implicit action not represented in that expression; namely the call to
__throw. This function takes no arguments. If setjmp/longjmp exceptions are
used, the function __sjthrow is called instead. The normal GCC back end uses
the function emit_throw to generate this code; you can examine this function
to see what needs to be done.

LSHIFT_EXPR
RSHIFT_EXPR

These nodes represent left and right shifts, respectively. The first operand is
the value to shift; it will always be of integral type. The second operand is
an expression for the number of bits by which to shift. Right shift should be
treated as arithmetic, i.e., the high-order bits should be zero-filled when the
expression has unsigned type and filled with the sign bit when the expression
has signed type. Note that the result is undefined if the second operand is larger
than or equal to the first operand’s type size.

BIT_IOR_EXPR
BIT_XOR_EXPR
BIT_AND_EXPR

These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise
and, respectively. Both operands will always have integral type.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 97

TRUTH_ANDIF_EXPR

TRUTH_ORIF_EXPR
These nodes represent logical and and logical or, respectively. These operators
are not strict; i.e., the second operand is evaluated only if the value of the
expression is not determined by evaluation of the first operand. The type of
the operands and that of the result are always of BOOLEAN_TYPE or INTEGER_
TYPE.

TRUTH_AND_EXPR

TRUTH_OR_EXPR

TRUTH_XOR_EXPR
These nodes represent logical and, logical or, and logical exclusive or. They are
strict; both arguments are always evaluated. There are no corresponding oper-
ators in C or C++, but the front end will sometimes generate these expressions
anyhow, if it can tell that strictness does not matter. The type of the operands
and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

PLUS_EXPR

MINUS_EXPR

MULT_EXPR
These nodes represent various binary arithmetic operations. Respectively, these
operations are addition, subtraction (of the second operand from the first) and
multiplication. Their operands may have either integral or floating type, but
there will never be case in which one operand is of floating type and the other
is of integral type.
The behavior of these operations on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

RDIV_EXPR

This node represents a floating point division operation.

TRUNC_DIV_EXPR

FLOOR_DIV_EXPR

CEIL_DIV_EXPR

ROUND_DIV_EXPR
These nodes represent integer division operations that return an integer result.
TRUNC_DIV_EXPR rounds towards zero, FLOOR_DIV_EXPR rounds towards nega-
tive infinity, CEIL_DIV_EXPR rounds towards positive infinity and ROUND_DIV_
EXPR rounds to the closest integer. Integer division in C and C++ is truncating,
i.e. TRUNC_DIV_EXPR.

The behavior of these operations on signed arithmetic overflow, when dividing
the minimum signed integer by minus one, is controlled by the flag_wrapv and
flag_trapv variables.

TRUNC_MOD_EXPR

FLOOR_MOD_EXPR

CEIL_MOD_EXPR

ROUND_MOD_EXPR
These nodes represent the integer remainder or modulus operation. The integer
modulus of two operands a and b is defined as a - (a/b) *b where the division

98

EXACT_DIV_

ARRAY_REF

GNU Compiler Collection (GCC) Internals

calculated using the corresponding division operator. Hence for TRUNC_MOD_
EXPR this definition assumes division using truncation towards zero, i.e. TRUNG_
DIV_EXPR. Integer remainder in C and C++ uses truncating division, i.e. TRUNC_
MOD_EXPR.

EXPR

The EXACT_DIV_EXPR code is used to represent integer divisions where the nu-
merator is known to be an exact multiple of the denominator. This allows the
backend to choose between the faster of TRUNC_DIV_EXPR, CEIL_DIV_EXPR and
FLOOR_DIV_EXPR for the current target.

These nodes represent array accesses. The first operand is the array; the second
is the index. To calculate the address of the memory accessed, you must scale
the index by the size of the type of the array elements. The type of these
expressions must be the type of a component of the array. The third and
fourth operands are used after gimplification to represent the lower bound and
component size but should not be used directly; call array_ref_low_bound and
array_ref_element_size instead.

ARRAY_RANGE_REF

These nodes represent access to a range (or “slice”) of an array. The operands
are the same as that for ARRAY_REF and have the same meanings. The type of
these expressions must be an array whose component type is the same as that
of the first operand. The range of that array type determines the amount of
data these expressions access.

TARGET _MEM_REF

LT_EXPR
LE_EXPR
GT_EXPR
GE_EXPR
EQ_EXPR
NE_EXPR

These nodes represent memory accesses whose address directly map to an ad-
dressing mode of the target architecture. The first argument is TMR_SYMBOL and
must be a VAR_DECL of an object with a fixed address. The second argument is
TMR_BASE and the third one is TMR_INDEX. The fourth argument is TMR_STEP
and must be an INTEGER_CST. The fifth argument is TMR_OFFSET and must
be an INTEGER_CST. Any of the arguments may be NULL if the appropriate
component does not appear in the address. Address of the TARGET_MEM_REF is
determined in the following way.
&TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET

The sixth argument is the reference to the original memory access, which is
preserved for the purposes of the RTL alias analysis. The seventh argument is
a tag representing the results of tree level alias analysis.

These nodes represent the less than, less than or equal to, greater than, greater
than or equal to, equal, and not equal comparison operators. The first and
second operand with either be both of integral type or both of floating type.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 99

The result type of these expressions will always be of integral or boolean type.
These operations return the result type’s zero value for false, and the result
type’s one value for true.

For floating point comparisons, if we honor IEEE NaNs and either operand is
NaN, then NE_EXPR always returns true and the remaining operators always
return false. On some targets, comparisons against an IEEE NaN, other than
equality and inequality, may generate a floating point exception.

ORDERED_EXPR

UNORDERED _

UNLT_EXPR
UNLE_EXPR
UNGT_EXPR
UNGE_EXPR
UNEQ_EXPR
LTGT_EXPR

EXPR

These nodes represent non-trapping ordered and unordered comparison opera-
tors. These operations take two floating point operands and determine whether
they are ordered or unordered relative to each other. If either operand is an
IEEE NaN, their comparison is defined to be unordered, otherwise the compar-
ison is defined to be ordered. The result type of these expressions will always
be of integral or boolean type. These operations return the result type’s zero
value for false, and the result type’s one value for true.

These nodes represent the unordered comparison operators. These operations
take two floating point operands and determine whether the operands are un-
ordered or are less than, less than or equal to, greater than, greater than or
equal to, or equal respectively. For example, UNLT_EXPR returns true if either
operand is an IEEE NaN or the first operand is less than the second. With the
possible exception of LTGT_EXPR, all of these operations are guaranteed not to
generate a floating point exception. The result type of these expressions will
always be of integral or boolean type. These operations return the result type’s
zero value for false, and the result type’s one value for true.

MODIFY_EXPR

INIT_EXPR

These nodes represent assignment. The left-hand side is the first operand; the
right-hand side is the second operand. The left-hand side will be a VAR_DECL,
INDIRECT_REF, COMPONENT_REF, or other lvalue

These nodes are used to represent not only assignment with ‘=" but also com-
pound assignments (like ‘+="), by reduction to ‘=" assignment. In other words,
the representation for ‘i += 3’ looks just like that for ‘i =1 + 3’

These nodes are just like MODIFY_EXPR, but are used only when a variable
is initialized, rather than assigned to subsequently. This means that we can
assume that the target of the initialization is not used in computing its own
value; any reference to the lhs in computing the rhs is undefined.

100

GNU Compiler Collection (GCC) Internals

COMPONENT _REF

These nodes represent non-static data member accesses. The first operand is
the object (rather than a pointer to it); the second operand is the FIELD_DECL
for the data member. The third operand represents the byte offset of the field,
but should not be used directly; call component_ref_field_offset instead.

COMPOUND_EXPR

COND_EXPR

CALL_EXPR

STMT_EXPR

These nodes represent comma-expressions. The first operand is an expression
whose value is computed and thrown away prior to the evaluation of the second
operand. The value of the entire expression is the value of the second operand.

These nodes represent 7 : expressions. The first operand is of boolean or integral
type. If it evaluates to a nonzero value, the second operand should be evaluated,
and returned as the value of the expression. Otherwise, the third operand is
evaluated, and returned as the value of the expression.

The second operand must have the same type as the entire expression, unless
it unconditionally throws an exception or calls a noreturn function, in which
case it should have void type. The same constraints apply to the third operand.
This allows array bounds checks to be represented conveniently as (i >= 0 &&
i<10) ?1i: abort().

As a GNU extension, the C language front-ends allow the second operand of the
?: operator may be omitted in the source. For example, x ? : 3 is equivalent
to x 7 x : 3, assuming that x is an expression without side-effects. In the
tree representation, however, the second operand is always present, possibly
protected by SAVE_EXPR if the first argument does cause side-effects.

These nodes are used to represent calls to functions, including non-static mem-
ber functions. The first operand is a pointer to the function to call; it is always
an expression whose type is a POINTER_TYPE. The second argument is a TREE_
LIST. The arguments to the call appear left-to-right in the list. The TREE_VALUE
of each list node contains the expression corresponding to that argument. (The
value of TREE_PURPOSE for these nodes is unspecified, and should be ignored.)
For non-static member functions, there will be an operand corresponding to
the this pointer. There will always be expressions corresponding to all of the
arguments, even if the function is declared with default arguments and some
arguments are not explicitly provided at the call sites.

These nodes are used to represent GCC’s statement-expression extension. The
statement-expression extension allows code like this:

int £() { return ({ int j; j =3; j +7; }); }
In other words, an sequence of statements may occur where a single expression
would normally appear. The STMT_EXPR node represents such an expression.
The STMT_EXPR_STMT gives the statement contained in the expression. The
value of the expression is the value of the last sub-statement in the body. More
precisely, the value is the value computed by the last statement nested inside
BIND_EXPR, TRY_FINALLY_EXPR, or TRY_CATCH_EXPR. For example, in:

{3 D

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 101

BIND_EXPR

LOOP_EXPR

EXIT_EXPR

the value is 3 while in:

{if) {3 D
there is no value. If the STMT_EXPR does not yield a value, it’s type will be
void.

These nodes represent local blocks. The first operand is a list of variables,
connected via their TREE_CHAIN field. These will never require cleanups. The
scope of these variables is just the body of the BIND_EXPR. The body of the
BIND_EXPR is the second operand.

These nodes represent “infinite” loops. The LOOP_EXPR_BODY represents the
body of the loop. It should be executed forever, unless an EXIT_EXPR is en-
countered.

These nodes represent conditional exits from the nearest enclosing LOOP_EXPR.
The single operand is the condition; if it is nonzero, then the loop should be
exited. An EXIT_EXPR will only appear within a LOOP_EXPR.

CLEANUP_POINT_EXPR

These nodes represent full-expressions. The single operand is an expression
to evaluate. Any destructor calls engendered by the creation of temporaries
during the evaluation of that expression should be performed immediately after
the expression is evaluated.

CONSTRUCTOR

These nodes represent the brace-enclosed initializers for a structure or array.
The first operand is reserved for use by the back end. The second operand
is a TREE_LIST. If the TREE_TYPE of the CONSTRUCTOR is a RECORD_TYPE or
UNION_TYPE, then the TREE_PURPOSE of each node in the TREE_LIST will be a
FIELD_DECL and the TREE_VALUE of each node will be the expression used to
initialize that field.

If the TREE_TYPE of the CONSTRUCTOR is an ARRAY_TYPE, then the TREE_PURPOSE
of each element in the TREE_LIST will be an INTEGER_CST or a RANGE_EXPR
of two INTEGER_CSTs. A single INTEGER_CST indicates which element of the
array (indexed from zero) is being assigned to. A RANGE_EXPR indicates an
inclusive range of elements to initialize. In both cases the TREE_VALUE is the
corresponding initializer. It is re-evaluated for each element of a RANGE_EXPR.
If the TREE_PURPOSE is NULL_TREE, then the initializer is for the next available
array element.

In the front end, you should not depend on the fields appearing in any particular
order. However, in the middle end, fields must appear in declaration order. You
should not assume that all fields will be represented. Unrepresented fields will
be set to zero.

COMPOUND_LITERAL_EXPR

These nodes represent ISO C99 compound literals. The COMPOUND_LITERAL_
EXPR_DECL_STMT is a DECL_STMT containing an anonymous VAR_DECL for the

102

SAVE_EXPR

GNU Compiler Collection (GCC) Internals

unnamed object represented by the compound literal; the DECL_INITIAL of that
VAR_DECL is a CONSTRUCTOR representing the brace-enclosed list of initializers in
the compound literal. That anonymous VAR_DECL can also be accessed directly
by the COMPOUND_LITERAL_EXPR_DECL macro.

A SAVE_EXPR represents an expression (possibly involving side-effects) that is
used more than once. The side-effects should occur only the first time the
expression is evaluated. Subsequent uses should just reuse the computed value.
The first operand to the SAVE_EXPR is the expression to evaluate. The side-
effects should be executed where the SAVE_EXPR is first encountered in a depth-
first preorder traversal of the expression tree.

TARGET_EXPR

AGGR_INIT_

A TARGET_EXPR represents a temporary object. The first operand is a VAR_
DECL for the temporary variable. The second operand is the initializer for the
temporary. The initializer is evaluated and, if non-void, copied (bitwise) into
the temporary. If the initializer is void, that means that it will perform the
initialization itself.

Often, a TARGET_EXPR occurs on the right-hand side of an assignment, or as
the second operand to a comma-expression which is itself the right-hand side
of an assignment, etc. In this case, we say that the TARGET_EXPR is “normal”;
otherwise, we say it is “orphaned”. For a normal TARGET_EXPR the temporary
variable should be treated as an alias for the left-hand side of the assignment,
rather than as a new temporary variable.

The third operand to the TARGET_EXPR, if present, is a cleanup-expression (i.e.,
destructor call) for the temporary. If this expression is orphaned, then this
expression must be executed when the statement containing this expression is
complete. These cleanups must always be executed in the order opposite to
that in which they were encountered. Note that if a temporary is created on
one branch of a conditional operator (i.e., in the second or third operand to a
COND_EXPR), the cleanup must be run only if that branch is actually executed.

See STMT_IS_FULL_EXPR_P for more information about running these cleanups.

EXPR

An AGGR_INIT_EXPR represents the initialization as the return value of a func-
tion call, or as the result of a constructor. An AGGR_INIT_EXPR will only ap-
pear as a full-expression, or as the second operand of a TARGET_EXPR. The first
operand to the AGGR_INIT_EXPR is the address of a function to call, just as in
a CALL_EXPR. The second operand are the arguments to pass that function, as
a TREE_LIST, again in a manner similar to that of a CALL_EXPR.

If AGGR_INIT_VIA_CTOR_P holds of the AGGR_INIT_EXPR, then the initialization
is via a constructor call. The address of the third operand of the AGGR_INIT_
EXPR, which is always a VAR_DECL, is taken, and this value replaces the first
argument in the argument list.

In either case, the expression is void.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 103

VA_ARG_EXPR

This node is used to implement support for the C/C++ variable argument-
list mechanism. It represents expressions like va_arg (ap, type). Its TREE_
TYPE yields the tree representation for type and its sole argument yields the
representation for ap.

OMP_PARALLEL

OMP_FOR

Represents #pragma omp parallel [clausel ... clauseN]. It has four
operands:

Operand OMP_PARALLEL_BODY is valid while in GENERIC and High GIMPLE
forms. It contains the body of code to be executed by all the threads. During
GIMPLE lowering, this operand becomes NULL and the body is emitted linearly
after OMP_PARALLEL.

Operand OMP_PARALLEL_CLAUSES is the list of clauses associated with the di-
rective.

Operand OMP_PARALLEL_FN is created by pass_lower_omp, it contains the
FUNCTION_DECL for the function that will contain the body of the parallel
region.

Operand OMP_PARALLEL_DATA_ARG is also created by pass_lower_omp. If there
are shared variables to be communicated to the children threads, this operand
will contain the VAR_DECL that contains all the shared values and variables.

Represents #pragma omp for [clausel ... clauseN]. It has 5 operands:
Operand OMP_FOR_BODY contains the loop body.

Operand OMP_FOR_CLAUSES is the list of clauses associated with the directive.
Operand OMP_FOR_INIT is the loop initialization code of the form VAR = N1.
Operand OMP_FOR_COND is the loop conditional expression of the form VAR
{<,>,<=,>=} N2.

Operand OMP_FOR_INCR is the loop index increment of the form VAR {+=,-=}
INCR.

Operand OMP_FOR_PRE_BODY contains side-effect code from operands OMP_FOR_
INIT, OMP_FOR_COND and OMP_FOR_INC. These side-effects are part of the OMP_
FOR block but must be evaluated before the start of loop body.

The loop index variable VAR must be a signed integer variable, which is implicitly
private to each thread. Bounds N1 and N2 and the increment expression INCR
are required to be loop invariant integer expressions that are evaluated without
any synchronization. The evaluation order, frequency of evaluation and side-
effects are unspecified by the standard.

OMP_SECTIONS

Represents #pragma omp sections [clausel ... clauseN].

Operand OMP_SECTIONS_BODY contains the sections body, which in turn con-
tains a set of OMP_SECTION nodes for each of the concurrent sections delimited
by #pragma omp section.

104 GNU Compiler Collection (GCC) Internals

Operand OMP_SECTIONS_CLAUSES is the list of clauses associated with the di-
rective.

OMP_SECTION
Section delimiter for OMP_SECTIONS.

OMP_SINGLE
Represents #pragma omp single.
Operand OMP_SINGLE_BODY contains the body of code to be executed by a single
thread.

Operand OMP_SINGLE_CLAUSES is the list of clauses associated with the direc-
tive.

OMP_MASTER
Represents #pragma omp master.

Operand OMP_MASTER_BODY contains the body of code to be executed by the
master thread.

OMP_ORDERED
Represents #pragma omp ordered.

Operand OMP_ORDERED_BODY contains the body of code to be executed in the
sequential order dictated by the loop index variable.

OMP_CRITICAL
Represents #pragma omp critical [name].
Operand OMP_CRITICAL_BODY is the critical section.

Operand OMP_CRITICAL_NAME is an optional identifier to label the critical sec-
tion.

OMP_RETURN
This does not represent any OpenMP directive, it is an artificial marker to
indicate the end of the body of an OpenMP. It is used by the flow graph (tree-
cfg.c) and OpenMP region building code (omp-low.c).

OMP_CONTINUE
Similarly, this instruction does not represent an OpenMP directive, it is used
by OMP_FOR and OMP_SECTIONS to mark the place where the code needs to loop
to the next iteration (in the case of OMP_FOR) or the next section (in the case
of OMP_SECTIONS).

In some cases, OMP_CONTINUE is placed right before OMP_RETURN. But if there
are cleanups that need to occur right after the looping body, it will be emitted
between OMP_CONTINUE and OMP_RETURN.

OMP_ATQOMIC
Represents #pragma omp atomic.
Operand 0 is the address at which the atomic operation is to be performed.
Operand 1 is the expression to evaluate. The gimplifier tries three alternative
code generation strategies. Whenever possible, an atomic update built-in is
used. If that fails, a compare-and-swap loop is attempted. If that also fails, a
regular critical section around the expression is used.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 105

OMP_CLAUSE

Represents clauses associated with one of the OMP_ directives. Clauses are rep-
resented by separate sub-codes defined in ‘tree.h’. Clauses codes can be one
of: OMP_CLAUSE_PRIVATE, OMP_CLAUSE_SHARED, OMP_CLAUSE_FIRSTPRIVATE,
OMP_CLAUSE_LASTPRIVATE, OMP_CLAUSE_COPYIN, OMP_CLAUSE_COPYPRIVATE,
OMP_CLAUSE_IF, OMP_CLAUSE_NUM_THREADS, OMP_CLAUSE_SCHEDULE,
OMP_CLAUSE_NOWAIT, OMP_CLAUSE_ORDERED, OMP_CLAUSE_DEFAULT, and
OMP_CLAUSE_REDUCTION. FEach code represents the corresponding OpenMP
clause.

Clauses associated with the same directive are chained together via
OMP_CLAUSE_CHAIN. Those clauses that accept a list of variables are restricted
to exactly one, accessed with OMP_CLAUSE_VAR. Therefore, multiple variables
under the same clause C need to be represented as multiple C clauses chained
together. This facilitates adding new clauses during compilation.

106 GNU Compiler Collection (GCC) Internals

Chapter 10: Analysis and Optimization of GIMPLE Trees 107

10 Analysis and Optimization of GIMPLE Trees

GCC uses three main intermediate languages to represent the program during compilation:
GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation gener-
ated by each front end. It is used to serve as an interface between the parser and optimizer.
GENERIC is a common representation that is able to represent programs written in all the
languages supported by GCC.

GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and lan-
guage independent optimizations (e.g., inlining, constant propagation, tail call elimination,
redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent,
tree based representation. However, it differs from GENERIC in that the GIMPLE gram-
mar is more restrictive: expressions contain no more than 3 operands (except function calls),
it has no control flow structures and expressions with side-effects are only allowed on the
right hand side of assignments. See the chapter describing GENERIC and GIMPLE for
more details.

This chapter describes the data structures and functions used in the GIMPLE optimiz-
ers (also known as “tree optimizers” or “middle end”). In particular, it focuses on all
the macros, data structures, functions and programming constructs needed to implement
optimization passes for GIMPLE.

10.1 GENERIC

The purpose of GENERIC is simply to provide a language-independent way of representing
an entire function in trees. To this end, it was necessary to add a few new tree codes to the
back end, but most everything was already there. If you can express it with the codes in
gcc/tree.def, it’'s GENERIC.

Early on, there was a great deal of debate about how to think about statements in a
tree IL. In GENERIC, a statement is defined as any expression whose value, if any, is
ignored. A statement will always have TREE_SIDE_EFFECTS set (or it will be discarded),
but a non-statement expression may also have side effects. A CALL_EXPR, for instance.

It would be possible for some local optimizations to work on the GENERIC form of a
function; indeed, the adapted tree inliner works fine on GENERIC, but the current compiler
performs inlining after lowering to GIMPLE (a restricted form described in the next section).
Indeed, currently the frontends perform this lowering before handing off to tree_rest_of_
compilation, but this seems inelegant.

If necessary, a front end can use some language-dependent tree codes in its GENERIC
representation, so long as it provides a hook for converting them to GIMPLE and doesn’t
expect them to work with any (hypothetical) optimizers that run before the conversion to
GIMPLE. The intermediate representation used while parsing C and C++ looks very little
like GENERIC, but the C and C++ gimplifier hooks are perfectly happy to take it as input
and spit out GIMPLE.

10.2 GIMPLE

GIMPLE is a simplified subset of GENERIC for use in optimization. The particular subset
chosen (and the name) was heavily influenced by the SIMPLE IL used by the McCAT

108 GNU Compiler Collection (GCC) Internals

compiler project at McGill University, though we have made some different choices. For
one thing, SIMPLE doesn’t support goto; a production compiler can’t afford that kind of
restriction.

GIMPLE retains much of the structure of the parse trees: lexical scopes are represented
as containers, rather than markers. However, expressions are broken down into a 3-address
form, using temporary variables to hold intermediate values. Also, control structures are
lowered to gotos.

In GIMPLE no container node is ever used for its value; if a COND_EXPR or BIND_EXPR
has a value, it is stored into a temporary within the controlled blocks, and that temporary
is used in place of the container.

The compiler pass which lowers GENERIC to GIMPLE is referred to as the ‘gimplifier’.
The gimplifier works recursively, replacing complex statements with sequences of simple
statements.

10.2.1 Interfaces

The tree representation of a function is stored in DECL_SAVED_TREE. It is lowered to GIM-
PLE by a call to gimplify_function_tree.

If a front end wants to include language-specific tree codes in the tree representation
which it provides to the back end, it must provide a definition of LANG_HOOKS_GIMPLIFY_
EXPR which knows how to convert the front end trees to GIMPLE. Usually such a hook will
involve much of the same code for expanding front end trees to RTL. This function can
return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimplifier
lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered
is known as “high GIMPLE” and consists of the IL before the pass pass_lower_cf. High
GIMPLE still contains lexical scopes and nested expressions, while low GIMPLE exposes
all of the implicit jumps for control expressions like COND_EXPR.

The C and C++ front ends currently convert directly from front end trees to GIMPLE, and
hand that off to the back end rather than first converting to GENERIC. Their gimplifier
hooks know about all the _STMT nodes and how to convert them to GENERIC forms. There
was some work done on a genericization pass which would run first, but the existence of
STMT_EXPR meant that in order to convert all of the C statements into GENERIC equivalents
would involve walking the entire tree anyway, so it was simpler to lower all the way. This
might change in the future if someone writes an optimization pass which would work better
with higher-level trees, but currently the optimizers all expect GIMPLE.

A front end which wants to use the tree optimizers (and already has some sort of whole-
function tree representation) only needs to provide a definition of LANG_HOOKS_GIMPLIFY_
EXPR, call gimplify_function_tree to lower to GIMPLE, and then hand off to tree_
rest_of_compilation to compile and output the function.

You can tell the compiler to dump a C-like representation of the GIMPLE form with the
flag ‘~fdump-tree-gimple’.

10.2.2 Temporaries

When gimplification encounters a subexpression which is too complex, it creates a new
temporary variable to hold the value of the subexpression, and adds a new statement to ini-
tialize it before the current statement. These special temporaries are known as ‘expression

Chapter 10: Analysis and Optimization of GIMPLE Trees 109

temporaries’, and are allocated using get_formal_tmp_var. The compiler tries to always
evaluate identical expressions into the same temporary, to simplify elimination of redundant
calculations.

We can only use expression temporaries when we know that it will not be reevaluated
before its value is used, and that it will not be otherwise modified'. Other temporaries can
be allocated using get_initialized_tmp_var or create_tmp_var.

Currently, an expression like a = b + 5 is not reduced any further. We tried converting it
to something like

T1 = b + 5;
a = T1;
but this bloated the representation for minimal benefit. However, a variable which must
live in memory cannot appear in an expression; its value is explicitly loaded into a temporary
first. Similarly, storing the value of an expression to a memory variable goes through a
temporary.

10.2.3 Expressions

In general, expressions in GIMPLE consist of an operation and the appropriate number of
simple operands; these operands must either be a GIMPLE rvalue (is_gimple_val), i.e. a
constant or a register variable. More complex operands are factored out into temporaries,
so that

a=b+c+d

becomes
Tl = b + c;
a=T1+d;

The same rule holds for arguments to a CALL_EXPR.

The target of an assignment is usually a variable, but can also be an INDIRECT_REF or a
compound lvalue as described below.

10.2.3.1 Compound Expressions

The left-hand side of a C comma expression is simply moved into a separate statement.

10.2.3.2 Compound Lvalues

Currently compound lvalues involving array and structure field references are not broken
down; an expression like a.b[2] = 42 is not reduced any further (though complex array
subscripts are). This restriction is a workaround for limitations in later optimizers; if we
were to convert this to

Tl = &a.b;

T1[2] = 42;

alias analysis would not remember that the reference to T1[2] came by way of a.b, so

it would think that the assignment could alias another member of a; this broke struct-
alias-1.c. Future optimizer improvements may make this limitation unnecessary.

10.2.3.3 Conditional Expressions

A C 7: expression is converted into an if statement with each branch assigning to the same
temporary. So,

L These restrictions are derived from those in Morgan 4.8.

110 GNU Compiler Collection (GCC) Internals

a=b7?c: d;
becomes
if (b)
Tl = c;
else
T1 = d;
a = T1;
Tree level if-conversion pass re-introduces ?7: expression, if appropriate. It is used to
vectorize loops with conditions using vector conditional operations.

Note that in GIMPLE, if statements are also represented using COND_EXPR, as described
below.

10.2.3.4 Logical Operators

Except when they appear in the condition operand of a COND_EXPR, logical ‘and’ and ‘or’
operators are simplified as follows: a = b && ¢ becomes

T1 = (bool)b;

if (T1)

T1 = (bool)c;
a = T1;
Note that T1 in this example cannot be an expression temporary, because it has two

different assignments.

10.2.4 Statements

Most statements will be assignment statements, represented by MODIFY_EXPR. A CALL_
EXPR whose value is ignored can also be a statement. No other C expressions can appear
at statement level; a reference to a volatile object is converted into a MODIFY_EXPR. In
GIMPLE form, type of MODIFY_EXPR is not meaningful. Instead, use type of LHS or RHS.

There are also several varieties of complex statements.

10.2.4.1 Blocks

Block scopes and the variables they declare in GENERIC and GIMPLE are expressed using
the BIND_EXPR code, which in previous versions of GCC was primarily used for the C
statement-expression extension.

Variables in a block are collected into BIND_EXPR_VARS in declaration order. Any runtime
initialization is moved out of DECL_INITIAL and into a statement in the controlled block.
When gimplifying from C or C++, this initialization replaces the DECL_STMT.

Variable-length arrays (VLAs) complicate this process, as their size often refers to vari-
ables initialized earlier in the block. To handle this, we currently split the block at that
point, and move the VLA into a new, inner BIND_EXPR. This strategy may change in the
future.

DECL_SAVED_TREE for a GIMPLE function will always be a BIND_EXPR which contains
declarations for the temporary variables used in the function.

A C++ program will usually contain more BIND_EXPRs than there are syntactic blocks in
the source code, since several C++ constructs have implicit scopes associated with them.
On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for
objects with destructors, these don’t translate into the GIMPLE form; multiple declarations
at the same level use the same BIND_EXPR.

Chapter 10: Analysis and Optimization of GIMPLE Trees 111

10.2.4.2 Statement Sequences

Multiple statements at the same nesting level are collected into a STATEMENT_LIST. State-
ment lists are modified and traversed using the interface in ‘tree-iterator.h’.

10.2.4.3 Empty Statements

Whenever possible, statements with no effect are discarded. But if they are nested within
another construct which cannot be discarded for some reason, they are instead replaced
with an empty statement, generated by build_empty_stmt. Initially, all empty statements
were shared, after the pattern of the Java front end, but this caused a lot of trouble in
practice.

An empty statement is represented as (void)O.

10.2.4.4 Loops

At one time loops were expressed in GIMPLE using LOOP_EXPR, but now they are lowered
to explicit gotos.

10.2.4.5 Selection Statements

A simple selection statement, such as the C if statement, is expressed in GIMPLE using a
void COND_EXPR. If only one branch is used, the other is filled with an empty statement.

Normally, the condition expression is reduced to a simple comparison. If it is a shortcut
(&& or ||) expression, however, we try to break up the if into multiple ifs so that the
implied shortcut is taken directly, much like the transformation done by do_jump in the
RTL expander.

A SWITCH_EXPR in GIMPLE contains the condition and a TREE_VEC of CASE_LABEL_EXPRs
describing the case values and corresponding LABEL_DECLs to jump to. The body of the
switch is moved after the SWITCH_EXPR.

10.2.4.6 Jumps
Other jumps are expressed by either GOTO_EXPR or RETURN_EXPR.

The operand of a GOTO_EXPR must be either a label or a variable containing the address
to jump to.

The operand of a RETURN_EXPR is either NULL_TREE, RESULT_DECL, or a MODIFY_EXPR
which sets the return value. It would be nice to move the MODIFY_EXPR into a separate

statement, but the special return semantics in expand_return make that difficult. It may
still happen in the future, perhaps by moving most of that logic into expand_assignment.

10.2.4.7 Cleanups

Destructors for local C++ objects and similar dynamic cleanups are represented in GIM-
PLE by a TRY_FINALLY_EXPR. TRY_FINALLY_EXPR has two operands, both of which are a
sequence of statements to execute. The first sequence is executed. When it completes the
second sequence is executed.

The first sequence may complete in the following ways:
1. Execute the last statement in the sequence and fall off the end.

2. Execute a goto statement (GOTO_EXPR) to an ordinary label outside the sequence.

112 GNU Compiler Collection (GCC) Internals

3. Execute a return statement (RETURN_EXPR).
4. Throw an exception. This is currently not explicitly represented in GIMPLE.

The second sequence is not executed if the first sequence completes by calling setjmp or
exit or any other function that does not return. The second sequence is also not executed
if the first sequence completes via a non-local goto or a computed goto (in general the
compiler does not know whether such a goto statement exits the first sequence or not, so
we assume that it doesn’t).

After the second sequence is executed, if it completes normally by falling off the end,
execution continues wherever the first sequence would have continued, by falling off the
end, or doing a goto, etc.

TRY_FINALLY_EXPR complicates the flow graph, since the cleanup needs to appear on
every edge out of the controlled block; this reduces the freedom to move code across these
edges. Therefore, the EH lowering pass which runs before most of the optimization passes
eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing the
exception is represented using RESX_EXPR.

10.2.4.8 Exception Handling

Other exception handling constructs are represented using TRY_CATCH_EXPR. TRY_CATCH_
EXPR has two operands. The first operand is a sequence of statements to execute. If
executing these statements does not throw an exception, then the second operand is ignored.
Otherwise, if an exception is thrown, then the second operand of the TRY_CATCH_EXPR is
checked. The second operand may have the following forms:

1. A sequence of statements to execute. When an exception occurs, these statements are
executed, and then the exception is rethrown.

2. A sequence of CATCH_EXPR expressions. Each CATCH_EXPR has a list of applicable ex-
ception types and handler code. If the thrown exception matches one of the caught
types, the associated handler code is executed. If the handler code falls off the bottom,
execution continues after the original TRY_CATCH_EXPR.

3. An EH_FILTER_EXPR expression. This has a list of permitted exception types, and code
to handle a match failure. If the thrown exception does not match one of the allowed
types, the associated match failure code is executed. If the thrown exception does
match, it continues unwinding the stack looking for the next handler.

Currently throwing an exception is not directly represented in GIMPLE, since it is im-
plemented by calling a function. At some point in the future we will want to add some way
to express that the call will throw an exception of a known type.

Just before running the optimizers, the compiler lowers the high-level EH constructs
above into a set of ‘goto’s, magic labels, and EH regions. Continuing to unwind at the end
of a cleanup is represented with a RESX_EXPR.

10.2.5 GIMPLE Example
struct A { AQ); "AQ); };
int i;

int gO;
void f£()

Chapter 10: Analysis and Optimization of GIMPLE Trees

{

}

A a;
intj: (-=-i, i 270 : 1);

for (int x = 42; x > 0; --x)
{
i+= g()*4 + 32;
}

becomes
void f()

{

int i.0;
int T.1;
int iftmp.2;
int T.3;
int
int
int

L B |

.4
.5;
.6;

struct A a;
int j;

__comp_ctor (&a);
try
{

e

x = 42;
goto test;
loop:;

PR TR RS R [|
I oo w
X
1o = = - 103
IS
+
=
2

test:;
if (x > 0)
goto loop;
else
goto break_;
break_:;

113

114

10.2.6 Rough GIMPLE Grammar

: FUNCTION_DECL

}
finally
{

__comp_dtor (&a);

}

function
compound-stmt :

stmt
I
I
I
|
|
|
|
I
I
block

if-stmt
switch-stmt
goto-stmt

return-stmt

return-value

resx-stmt

label-stmt

GNU Compiler Collection (GCC) Internals

DECL_SAVED_TREE -> compound-stmt

STATEMENT _LIST
members -> stmt

: block

if-stmt
switch-stmt
goto-stmt
return-stmt
resx-stmt
label-stmt
try-stmt
modify-stmt
call-stmt

: BIND_EXPR

BIND_EXPR_VARS -> chain of DECLs
BIND_EXPR_BLOCK -> BLOCK
BIND_EXPR_BODY -> compound-stmt

: COND_EXPR

op0 -> condition

opl -> compound-stmt
op2 -> compound-stmt

: SWITCH_EXPR

op0 -> val
opl -> NULL

op2 -> TREE_VEC of CASE_LABEL_EXPRs
The CASE_LABEL_EXPRs are sorted by CASE_LOW,
and default is last.

: GOTO_EXPR
opO -> LABEL_DECL

: RETURN_EXPR

| val

op0 -> return-value

NULL
RESULT_DECL
MODIFY_EXPR

opO -> RESULT_DECL

opl -> lhs

: RESX_EXPR

: LABEL_EXPR

Chapter 10: Analysis and Optimization of GIMPLE Trees

try-stmt

handler

catch-seq

modify-stmt

call-stmt

opO -> LABEL_DECL

: TRY_CATCH_EXPR
op0 -> compound-stmt
opl -> handler
TRY_FINALLY_EXPR
op0 -> compound-stmt
opl -> compound-stmt

catch-seq
EH_FILTER_EXPR
| compound-stmt

: STATEMENT_LIST
members -> CATCH_EXPR

: MODIFY_EXPR
op0 -> lhs
opl -> rhs

: CALL_EXPR
op0 -> val | OBJ_TYPE_REF
opl -> call-arg-list

call-arg-list: TREE_LIST

members -> lhs | CONST

addr-expr-arg: ID

addressable

| compref

: addr-expr-arg
| indirectref

with-size-arg: addressable

indirectref

1lhs

min-lval

bitfieldref

compref

| call-stmt

INDIRECT_REF
op0 -> val

: addressable
| bitfieldref
| WITH_SIZE_EXPR
op0 -> with-size-arg
opl -> val

ID
| indirectref

: BIT_FIELD_REF
op0 -> inner-compref
opl -> CONST
op2 -> var

inner-compref
| TARGET_MEM_REF
op0 -> ID
opl -> val
op2 -> val

115

116 GNU Compiler Collection (GCC) Internals

op3 -> CONST

op4 -> CONST
REALPART_EXPR

op0 -> inner-compref
IMAGPART_EXPR

op0 -> inner-compref

inner-compref: min-lval
| COMPONENT_REF
op0 -> inner-compref
opl -> FIELD_DECL
op2 -> val
ARRAY_REF
op0 -> inner-compref
opl -> val
op2 -> val
op3 -> val
ARRAY_RANGE_REF
op0 -> inner-compref
opl -> val
op2 -> val
op3 -> val
VIEW_CONVERT_EXPR
op0 -> inner-compref

condition : val
| RELOP
op0 -> val
opl -> val
val : ID
| CONST
rhs : lhs
| consT
| call-stmt
| ADDR_EXPR
op0 -> addr-expr-arg
| UNOP
op0 -> val
| BINOP
op0 -> val
opl -> val
| RELOP
op0 -> val
opl -> val
| COND_EXPR
op0 -> condition
opl -> val
op2 -> val

10.3 Annotations

The optimizers need to associate attributes with statements and variables during the opti-
mization process. For instance, we need to know what basic block a statement belongs to
or whether a variable has aliases. All these attributes are stored in data structures called
annotations which are then linked to the field ann in struct tree_common.

Chapter 10: Analysis and Optimization of GIMPLE Trees 117

Presently, we define annotations for statements (stmt_ann_t), variables (var_ann_t) and
SSA names (ssa_name_ann_t). Annotations are defined and documented in ‘tree-flow.h’.

10.4 Statement Operands

Almost every GIMPLE statement will contain a reference to a variable or memory location.
Since statements come in different shapes and sizes, their operands are going to be located
at various spots inside the statement’s tree. To facilitate access to the statement’s operands,
they are organized into lists associated inside each statement’s annotation. Each element
in an operand list is a pointer to a VAR_DECL, PARM_DECL or SSA_NAME tree node. This
provides a very convenient way of examining and replacing operands.

Data flow analysis and optimization is done on all tree nodes representing variables.
Any node for which SSA_VAR_P returns nonzero is considered when scanning statement
operands. However, not all SSA_VAR_P variables are processed in the same way. For the
purposes of optimization, we need to distinguish between references to local scalar variables
and references to globals, statics, structures, arrays, aliased variables, etc. The reason is
simple, the compiler can gather complete data flow information for a local scalar. On the
other hand, a global variable may be modified by a function call, it may not be possible to
keep track of all the elements of an array or the fields of a structure, etc.

The operand scanner gathers two kinds of operands: real and virtual. An operand for
which is_gimple_reg returns true is considered real, otherwise it is a virtual operand. We
also distinguish between uses and definitions. An operand is used if its value is loaded by
the statement (e.g., the operand at the RHS of an assignment). If the statement assigns a
new value to the operand, the operand is considered a definition (e.g., the operand at the
LHS of an assignment).

Virtual and real operands also have very different data flow properties. Real operands
are unambiguous references to the full object that they represent. For instance, given
{

int a, b;
a=>b
}
Since a and b are non-aliased locals, the statement a = b will have one real definition and
one real use because variable b is completely modified with the contents of variable a. Real
definition are also known as killing definitions. Similarly, the use of a reads all its bits.

In contrast, virtual operands are used with variables that can have a partial or ambiguous
reference. This includes structures, arrays, globals, and aliased variables. In these cases, we
have two types of definitions. For globals, structures, and arrays, we can determine from
a statement whether a variable of these types has a killing definition. If the variable does,
then the statement is marked as having a must definition of that variable. However, if a
statement is only defining a part of the variable (i.e. a field in a structure), or if we know
that a statement might define the variable but we cannot say for sure, then we mark that
statement as having a may definition. For instance, given

{

int a, b, *p;

118 GNU Compiler Collection (GCC) Internals

p = &b;
*p = 5;
return *p;
}

The assignment *p = 5 may be a definition of a or b. If we cannot determine statically
where p is pointing to at the time of the store operation, we create virtual definitions to
mark that statement as a potential definition site for a and b. Memory loads are similarly
marked with virtual use operands. Virtual operands are shown in tree dumps right before
the statement that contains them. To request a tree dump with virtual operands, use the
‘~vops’ option to ‘-fdump-tree’:

{

int a, b, *p;

= &b;

a = V_MAY_DEF <a>
= V_MAY_DEF

*p = 5;

VUSE <a>

VUSE

return *p;
}

Notice that V_MAY_DEF operands have two copies of the referenced variable. This indicates
that this is not a killing definition of that variable. In this case we refer to it as a may
definition or aliased store. The presence of the second copy of the variable in the V_MAY_DEF
operand will become important when the function is converted into SSA form. This will be
used to link all the non-killing definitions to prevent optimizations from making incorrect
assumptions about them.

Operands are updated as soon as the statement is finished via a call to update_stmt.
If statement elements are changed via SET_USE or SET_DEF, then no further action is re-
quired (i.e., those macros take care of updating the statement). If changes are made by
manipulating the statement’s tree directly, then a call must be made to update_stmt when
complete. Calling one of the bsi_insert routines or bsi_replace performs an implicit call
to update_stmt.

10.4.1 Operand Iterators And Access Routines

Operands are collected by ‘tree-ssa-operands.c’. They are stored inside each statement’s
annotation and can be accessed through either the operand iterators or an access routine.
The following access routines are available for examining operands:
1. SINGLE_SSA_{USE,DEF,TREE}_OPERAND: These accessors will return NULL unless
there is exactly one operand matching the specified flags. If there is exactly one
operand, the operand is returned as either a tree, def_operand_p, or use_operand_p.

tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);
use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);
def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);

2. ZERO_SSA_OPERANDS: This macro returns true if there are no operands matching the
specified flags.

Chapter 10: Analysis and Optimization of GIMPLE Trees 119

if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
return;
3. NUM_SSA_OPERANDS: This macro Returns the number of operands matching 'flags’. This
actually executes a loop to perform the count, so only use this if it is really needed.
int count = NUM_SSA_OPERANDS (stmt, flags)

If you wish to iterate over some or all operands, use the FOR_EACH_SSA_{USE,DEF,TREE}_
OPERAND iterator. For example, to print all the operands for a statement:
void
print_ops (tree stmt)
{
ssa_op_iter;
tree var;

FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)
print_generic_expr (stderr, var, TDF_SLIM);
}

How to choose the appropriate iterator:

1. Determine whether you are need to see the operand pointers, or just the trees, and
choose the appropriate macro:

Need Macro:

use_operand_p FOR_EACH_SSA_USE_OPERAND
def_operand_p FOR_EACH_SSA_DEF_OPERAND
tree FOR_EACH_SSA_TREE_OPERAND
2. You need to declare a variable of the type you are interested in, and an ssa_op_iter
structure which serves as the loop controlling variable.

3. Determine which operands you wish to use, and specify the flags of those you are
interested in. They are documented in ‘tree-ssa-operands.h’:

#define SSA_OP_USE 0x01 /* Real USE operands. */

#define SSA_OP_DEF 0x02 /* Real DEF operands. */

#define SSA_OP_VUSE 0x04 /* VUSE operands. */

#define SSA_OP_VMAYUSE 0x08 /* USE portion of V.MAY_DEFS. */
#define SSA_OP_VMAYDEF 0x10 /* DEF portion of V_.MAY _DEFS. */
#define SSA_OP_VMUSTDEF 0x20 /* V_MUST_DEF definitions. */

/* These are commonly grouped operand flags. */

#define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE | SSA_OP_VMAYUSE)

#define SSA_OP_VIRTUAL_DEFS (SSA_OP_VMAYDEF | SSA_OP_VMUSTDEF)
#define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)
#define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)
#define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)

So if you want to look at the use pointers for all the USE and VUSE operands, you would
do something like:

use_operand_p use_p;
ssa_op_iter iter;

FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))
{

process_use_ptr (use_p);

}

120 GNU Compiler Collection (GCC) Internals

The TREE macro is basically the same as the USE and DEF macros, only with the use or
def dereferenced via USE_FROM_PTR (use_p) and DEF_FROM_PTR (def_p). Since we aren’t
using operand pointers, use and defs flags can be mixed.

tree var;
ssa_op_iter iter;

FOR_EACH_SSA_TREE_QPERAND (var, stmt, iter, SSA_OP_VUSE | SSA_OP_VMUSTDEF)
{
print_generic_expr (stderr, var, TDF_SLIM);
}

V_MAY_DEFs are broken into two flags, one for the DEF portion (SSA_OP_VMAYDEF) and
one for the USE portion (SSA_OP_VMAYUSE). If all you want to look at are the V_MAY_DEFs
together, there is a fourth iterator macro for this, which returns both a def_operand_p and
a use_operand_p for each V_MAY_DEF in the statement. Note that you don’t need any flags
for this one.

use_operand_p use_p;
def_operand_p def_p;
ssa_op_iter iter;

FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
{
my_code;
}

V_MUST_DEFs are broken into two flags, one for the DEF portion (SSA_OP_VMUSTDEF) and
one for the kill portion (SSA_OP_VMUSTKILL). If all you want to look at are the V_MUST_DEFs
together, there is a fourth iterator macro for this, which returns both a def_operand_p and
a use_operand_p for each V_MUST_DEF in the statement. Note that you don’t need any flags
for this one.

use_operand_p kill_p;
def_operand_p def_p;
ssa_op_iter iter;

FOR_EACH_SSA_MUSTDEF_OPERAND (def_p, kill_p, stmt, iter)
{
my_code;
}
There are many examples in the code as well, as well as the documentation in
‘tree-ssa-operands.h’.

There are also a couple of variants on the stmt iterators regarding PHI nodes.

FOR_EACH_PHI_ARG Works exactly like FOR_EACH_SSA_USE_OPERAND, except it works over
PHI arguments instead of statement operands.
/* Look at every virtual PHI use. */
FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)
{

my_code;

}
/* Look at every real PHI use. */
FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)

my_code;

/* Look at every every PHI use. */

Chapter 10: Analysis and Optimization of GIMPLE Trees 121

FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)
my_code;

FOR_EACH_PHI_OR_STMT_{USE,DEF} works exactly like FOR_EACH_SSA_{USE,DEF}_
OPERAND, except it will function on either a statement or a PHI node. These should be used
when it is appropriate but they are not quite as efficient as the individual FOR_EACH_PHI
and FOR_EACH_SSA routines.

FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)
{

my_code;

}

FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)
{
my_code;

}

10.4.2 Immediate Uses

Immediate use information is now always available. Using the immediate use iterators, you
may examine every use of any SSA_NAME. For instance, to change each use of ssa_var to
ssa_var2 and call fold_stmt on each stmt after that is done:

use_operand_p imm_use_p;

imm_use_iterator iterator;
tree ssa_var, stmt;

FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
{
FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
SET_USE (imm_use_p, ssa_var_2);
fold_stmt (stmt);
}

There are 2 iterators which can be used. FOR_EACH_IMM_USE_FAST is used when the
immediate uses are not changed, i.e., you are looking at the uses, but not setting them.

If they do get changed, then care must be taken that things are not changed under the
iterators, so use the FOR_EACH_IMM_USE_STMT and FOR_EACH_IMM_USE_ON_STMT iterators.
They attempt to preserve the sanity of the use list by moving all the uses for a statement
into a controlled position, and then iterating over those uses. Then the optimization can
manipulate the stmt when all the uses have been processed. This is a little slower than the
FAST version since it adds a placeholder element and must sort through the list a bit for
each statement. This placeholder element must be also be removed if the loop is terminated
early. The macro BREAK_FROM_IMM_USE_SAFE is provided to do this :

FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)

{
if (stmt == last_stmt)
BREAK_FROM_SAFE_IMM_USE (iter);

FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
SET_USE (imm_use_p, ssa_var_2);
fold_stmt (stmt);
}

122 GNU Compiler Collection (GCC) Internals

There are checks in verify_ssa which verify that the immediate use list is up to date, as
well as checking that an optimization didn’t break from the loop without using this macro.
It is safe to simply "break’; from a FOR_EACH_IMM_USE_FAST traverse.

Some useful functions and macros:
1. has_zero_uses (ssa_var) : Returns true if there are no uses of ssa_var.
2. has_single_use (ssa_var) : Returns true if there is only a single use of ssa_var.

single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt) : Returns true if
there is only a single use of ssa_var, and also returns the use pointer and statement
it occurs in in the second and third parameters.

4. num_imm_uses (ssa_var) : Returns the number of immediate uses of ssa_var. It is
better not to use this if possible since it simply utilizes a loop to count the uses.

5. PHI_ARG_INDEX_FROM_USE (use_p) : Given a use within a PHI node, return the index
number for the use. An assert is triggered if the use isn’t located in a PHI node.

6. USE_STMT (use_p) : Return the statement a use occurs in.

Note that uses are not put into an immediate use list until their statement is actually
inserted into the instruction stream via a bsi_* routine.

1t is also still possible to utilize lazy updating of statements, but this should be used only
when absolutely required. Both alias analysis and the dominator optimizations currently
do this.

When lazy updating is being used, the immediate use information is out of date and
cannot be used reliably. Lazy updating is achieved by simply marking statements modified
via calls to mark_stmt_modified instead of update_stmt. When lazy updating is no longer
required, all the modified statements must have update_stmt called in order to bring them
up to date. This must be done before the optimization is finished, or verify_ssa will
trigger an abort.

This is done with a simple loop over the instruction stream:

block_stmt_iterator bsi;
basic_block bb;
FOR_EACH_BB (bb)
{
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
update_stmt_if_modified (bsi_stmt (bsi));
}

10.5 Static Single Assignment

Most of the tree optimizers rely on the data flow information provided by the Static Single
Assignment (SSA) form. We implement the SSA form as described in R. Cytron, J. Ferrante,
B. Rosen, M. Wegman, and K. Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Transactions on Programming Languages
and Systems, 13(4):451-490, October 1991.

The SSA form is based on the premise that program variables are assigned in exactly one
location in the program. Multiple assignments to the same variable create new versions of
that variable. Naturally, actual programs are seldom in SSA form initially because variables
tend to be assigned multiple times. The compiler modifies the program representation so
that every time a variable is assigned in the code, a new version of the variable is created.

Chapter 10: Analysis and Optimization of GIMPLE Trees 123

Different versions of the same variable are distinguished by subscripting the variable name
with its version number. Variables used in the right-hand side of expressions are renamed
so that their version number matches that of the most recent assignment.

We represent variable versions using SSA_NAME nodes. The renaming process in
‘tree-ssa.c’ wraps every real and virtual operand with an SSA_NAME node which contains
the version number and the statement that created the SSA_NAME. Only definitions and
virtual definitions may create new SSA_NAME nodes.

Sometimes, flow of control makes it impossible to determine what is the most recent
version of a variable. In these cases, the compiler inserts an artificial definition for that
variable called PHI function or PHI node. This new definition merges all the incoming
versions of the variable to create a new name for it. For instance,

if (...)

a_1 =5;
else if (...)
a_2 = 2;

else
a_3 = 13;

a_4 = PHI <a_1l, a_2, a_3>
return a_4;

Since it is not possible to determine which of the three branches will be taken at runtime,
we don’t know which of a_1, a_2 or a_3 to use at the return statement. So, the SSA
renamer creates a new version a_4 which is assigned the result of “merging” a_1, a_2 and
a_3. Hence, PHI nodes mean “one of these operands. I don’t know which”.

The following macros can be used to examine PHI nodes

PHI_RESULT (phi) [Macro]
Returns the SSA_NAME created by PHI node phi (i.e., phi’s LHS).

PHI_NUM_ARGS (phi) [Macro]
Returns the number of arguments in phi. This number is exactly the number of
incoming edges to the basic block holding phi.

PHI_ARG_ELT (phi, i) [Macro]
Returns a tuple representing the ith argument of phi. Each element of this tuple
contains an SSA_NAME var and the incoming edge through which var flows.

PHI_ARG_EDGE (phi, i) [Macro]
Returns the incoming edge for the ith argument of phi.

PHI_ARG_DEF (phi, i) [Macro]
Returns the SSA_NAME for the ith argument of phi.

10.5.1 Preserving the SSA form

Some optimization passes make changes to the function that invalidate the SSA property.
This can happen when a pass has added new symbols or changed the program so that vari-
ables that were previously aliased aren’t anymore. Whenever something like this happens,
the affected symbols must be renamed into SSA form again. Transformations that emit
new code or replicate existing statements will also need to update the SSA form.

124 GNU Compiler Collection (GCC) Internals

Since GCC implements two different SSA forms for register and virtual variables, keeping
the SSA form up to date depends on whether you are updating register or virtual names.
In both cases, the general idea behind incremental SSA updates is similar: when new SSA
names are created, they typically are meant to replace other existing names in the program.

For instance, given the following code:
1 LO:
2 x_1 = PHI (0, x_5)
3 if (x_1 < 10)

4 if (x_1 > 7)

5 y_2 =0

6 else

7 y_3 =x_1+ x_7
8 endif

9 x5=x_1+1

10 goto LO;

11 endif

Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
1 LO:
2 x_1 = PHI (0, x_5b)
3 if (x_1 < 10)

4 x_10 = ...

5 if (x_1> T

6 y_2 =0

7 else

8 x_11 = ...

9 y_3 =x_1+ x_7
10 endif

11 x5 =x_1+1

12 goto LO;

13 endif

We want to replace all the uses of x_1 with the new definitions of x_10 and x_11. Note
that the only uses that should be replaced are those at lines 5, 9 and 11. Also, the use of x_7
at line 9 should not be replaced (this is why we cannot just mark symbol x for renaming).

Additionally, we may need to insert a PHI node at line 11 because that is a merge point
for x_10 and x_11. So the use of x_1 at line 11 will be replaced with the new PHI node.
The insertion of PHI nodes is optional. They are not strictly necessary to preserve the
SSA form, and depending on what the caller inserted, they may not even be useful for the
optimizers.

Updating the SSA form is a two step process. First, the pass has to identify which
names need to be updated and/or which symbols need to be renamed into SSA form for
the first time. When new names are introduced to replace existing names in the program,
the mapping between the old and the new names are registered by calling register_new_
name_mapping (note that if your pass creates new code by duplicating basic blocks, the call
to tree_duplicate_bb will set up the necessary mappings automatically). On the other
hand, if your pass exposes a new symbol that should be put in SSA form for the first time,
the new symbol should be registered with mark_sym_for_renaming.

After the replacement mappings have been registered and new symbols marked for re-
naming, a call to update_ssa makes the registered changes. This can be done with an
explicit call or by creating TODO flags in the tree_opt_pass structure for your pass. There
are several TODO flags that control the behavior of update_ssa:

Chapter 10: Analysis and Optimization of GIMPLE Trees 125

e TODO_update_ssa. Update the SSA form inserting PHI nodes for newly exposed sym-
bols and virtual names marked for updating. When updating real names, only insert
PHI nodes for a real name 0_j in blocks reached by all the new and old definitions for
0_j. If the iterated dominance frontier for 0_j is not pruned, we may end up inserting
PHI nodes in blocks that have one or more edges with no incoming definition for 0_j.
This would lead to uninitialized warnings for 0_j’s symbol.

e TODO_update_ssa_no_phi. Update the SSA form without inserting any new PHI nodes
at all. This is used by passes that have either inserted all the PHI nodes themselves or
passes that need only to patch use-def and def-def chains for virtuals (e.g., DCE).

e TODO_update_ssa_full_phi. Insert PHI nodes everywhere they are needed. No prun-
ing of the IDF is done. This is used by passes that need the PHI nodes for 0_j even
if it means that some arguments will come from the default definition of 0_j’s symbol
(e.g., pass_linear_transform).

WARNING: If you need to use this flag, chances are that your pass may be doing
something wrong. Inserting PHI nodes for an old name where not all edges carry a
new replacement may lead to silent codegen errors or spurious uninitialized warnings.

e TODO_update_ssa_only_virtuals. Passes that update the SSA form on their own
may want to delegate the updating of virtual names to the generic updater. Since
FUD chains are easier to maintain, this simplifies the work they need to do. NOTE:
If this flag is used, any OLD->NEW mappings for real names are explicitly destroyed
and only the symbols marked for renaming are processed.

10.5.2 Preserving the virtual SSA form

The virtual SSA form is harder to preserve than the non-virtual SSA form mainly because
the set of virtual operands for a statement may change at what some would consider unex-
pected times. In general, any time you have modified a statement that has virtual operands,
you should verify whether the list of virtual operands has changed, and if so, mark the newly
exposed symbols by calling mark_new_vars_to_rename.

There is one additional caveat to preserving virtual SSA form. When the entire set of
virtual operands may be eliminated due to better disambiguation, a bare SMT will be
added to the list of virtual operands, to signify the non-visible aliases that the are still
being referenced. If the set of bare SMT’s may change, TODO_update_smt_usage should be
added to the todo flags.

With the current pruning code, this can only occur when constants are propagated into
array references that were previously non-constant, or address expressions are propagated
into their uses.

10.5.3 Examining SSA_NAME nodes

The following macros can be used to examine SSA_NAME nodes

SSA_NAME_DEF_STMT (var) [Macro]
Returns the statement s that creates the SSA_NAME var. If s is an empty statement
(i.e., IS_EMPTY_STMT (s) returns true), it means that the first reference to this
variable is a USE or a VUSE.

SSA_NAME_VERSION (var) [Macro]
Returns the version number of the SSA_NAME object var.

126 GNU Compiler Collection (GCC) Internals

10.5.4 Walking use-def chains

void walk_use_def_chains (var, fn, data) [Tree SSA function]
Walks use-def chains starting at the SSA_NAME node var. Calls function fn at each
reaching definition found. Function FN takes three arguments: var, its defining
statement (def_stmt) and a generic pointer to whatever state information that fn
may want to maintain (data). Function fn is able to stop the walk by returning true,
otherwise in order to continue the walk, fin should return false.

Note, that if def_stmt is a PHI node, the semantics are slightly different. For each
argument arg of the PHI node, this function will:
1. Walk the use-def chains for arg.

2. Call FN (arg, phi, data).

Note how the first argument to fn is no longer the original variable var, but the
PHI argument currently being examined. If fn wants to get at var, it should call
PHI_RESULT (phi).

10.5.5 Walking the dominator tree

void walk_dominator_tree (walk_data, bb) [Tree SSA function]
This function walks the dominator tree for the current CFG calling a set of callback
functions defined in struct dom_walk_data in ‘domwalk.h’. The call back functions
you need to define give you hooks to execute custom code at various points during
traversal:

1. Once to initialize any local data needed while processing bb and its children.
This local data is pushed into an internal stack which is automatically pushed
and popped as the walker traverses the dominator tree.

2. Once before traversing all the statements in the bb.
3. Once for every statement inside bb.

4. Once after traversing all the statements and before recursing into bb’s dominator
children.

5. It then recurses into all the dominator children of bb.

6. After recursing into all the dominator children of bb it can, optionally, traverse
every statement in bb again (i.e., repeating steps 2 and 3).

7. Once after walking the statements in bb and bb’s dominator children. At this
stage, the block local data stack is popped.

10.6 Alias analysis

Alias analysis proceeds in 4 main phases:
1. Structural alias analysis.

This phase walks the types for structure variables, and determines which of the fields
can overlap using offset and size of each field. For each field, a “subvariable” called a
“Structure field tag” (SFT) is created, which represents that field as a separate variable.
All accesses that could possibly overlap with a given field will have virtual operands
for the SF'T of that field.

Chapter 10: Analysis and Optimization of GIMPLE Trees 127

struct foo
{
int a;
int b;
}
struct foo temp;
int bar (void)
{
int tmpl, tmp2, tmp3;
SFT.0_2 = V_MUST_DEF <SFT.0_1>

temp.a = 5;
SFT.1_4 = V_MUST_DEF <SFT.1_3>
temp.b = 6;

VUSE <SFT.1_4>
tmpl_5 = temp.b;
VUSE <SFT.0_2>
tmp2_6 = temp.a;

tmp3_7 = tmpl_5 + tmp2_6;
return tmp3_7;
}
If you copy the symbol tag for a variable for some reason, you probably also want to
copy the subvariables for that variable.

2. Points-to and escape analysis.
This phase walks the use-def chains in the SSA web looking for three things:
e Assignments of the form P_i = &VAR
e Assignments of the form P_i = malloc()

e Pointers and ADDR_EXPR that escape the current function.

The concept of ‘escaping’ is the same one used in the Java world. When a pointer or an
ADDR_EXPR escapes, it means that it has been exposed outside of the current func-
tion. So, assignment to global variables, function arguments and returning a pointer
are all escape sites.

This is where we are currently limited. Since not everything is renamed into SSA, we
lose track of escape properties when a pointer is stashed inside a field in a structure,
for instance. In those cases, we are assuming that the pointer does escape.

We use escape analysis to determine whether a variable is call-clobbered. Simply put, if
an ADDR_EXPR escapes, then the variable is call-clobbered. If a pointer P_i escapes,
then all the variables pointed-to by P_i (and its memory tag) also escape.

3. Compute flow-sensitive aliases

We have two classes of memory tags. Memory tags associated with the pointed-to
data type of the pointers in the program. These tags are called “symbol memory tag”
(SMT). The other class are those associated with SSA_NAMEs, called “name memory
tag” (NMT). The basic idea is that when adding operands for an INDIRECT_REF
*P_i, we will first check whether P_i has a name tag, if it does we use it, because that
will have more precise aliasing information. Otherwise, we use the standard symbol
tag.

128 GNU Compiler Collection (GCC) Internals

In this phase, we go through all the pointers we found in points-to analysis and create
alias sets for the name memory tags associated with each pointer P_i. If P_i escapes,
we mark call-clobbered the variables it points to and its tag.

4. Compute flow-insensitive aliases

This pass will compare the alias set of every symbol memory tag and every addressable
variable found in the program. Given a symbol memory tag SMT and an addressable
variable V. If the alias sets of SMT and V conflict (as computed by may_alias_p), then
V is marked as an alias tag and added to the alias set of SMT.

For instance, consider the following function:

foo (int i)
{
int *p, *q, a, b;

if (i > 10)
p = &a;
else
q = &b;

*p 3;
*q 5;
a=D>b+ 2;
return *p;

}

After aliasing analysis has finished, the symbol memory tag for pointer p will have two
aliases, namely variables a and b. Every time pointer p is dereferenced, we want to mark
the operation as a potential reference to a and b.

foo (int i)

{
int *p, a, b;
if (i_2 > 10)
p-4 = &a;
else
p_6 = &b;
p_1 = PHI <p_4(1), p_6(2)>;
a_7 = V_MAY_DEF <a_3>;
b_8 = V_MAY_DEF <b_b5>;
*p_1 = 3;
a_9 = V_MAY_DEF <a_7>
VUSE <b_8>
a_9 = b_8 + 2;
VUSE <a_9>;
VUSE <b_8>;
return *p_1;
}

In certain cases, the list of may aliases for a pointer may grow too large. This may cause
an explosion in the number of virtual operands inserted in the code. Resulting in increased
memory consumption and compilation time.

Chapter 10: Analysis and Optimization of GIMPLE Trees 129

When the number of virtual operands needed to represent aliased loads and stores grows
too large (configurable with ‘--param max-aliased-vops’), alias sets are grouped to avoid
severe compile-time slow downs and memory consumption. The alias grouping heuristic
proceeds as follows:

1. Sort the list of pointers in decreasing number of contributed virtual operands.

2. Take the first pointer from the list and reverse the role of the memory tag and its
aliases. Usually, whenever an aliased variable Vi is found to alias with a memory tag
T, we add Vi to the may-aliases set for T. Meaning that after alias analysis, we will
have:
may-aliases(T) = { V1, V2, V3, ..., Vn }
This means that every statement that references T, will get n virtual operands for each

of the Vi tags. But, when alias grouping is enabled, we make T an alias tag and add
it to the alias set of all the Vi variables:

may-aliases(V1) = { T }
may-aliases(V2) = { T }
may-aliases(Vn) = { T }

This has two effects: (a) statements referencing T will only get a single virtual operand,
and, (b) all the variables Vi will now appear to alias each other. So, we lose alias
precision to improve compile time. But, in theory, a program with such a high level of
aliasing should not be very optimizable in the first place.

3. Since variables may be in the alias set of more than one memory tag, the grouping
done in step (2) needs to be extended to all the memory tags that have a non-empty
intersection with the may-aliases set of tag T. For instance, if we originally had these
may-aliases sets:

{vi, v2, v3 3}
{v2, va?}

may-aliases(T)
may-aliases(R)

In step (2) we would have reverted the aliases for T as:

may-aliases(V1) = { T }
may-aliases(V2) = { T }
may-aliases(V3) = { T }

But note that now V2 is no longer aliased with R. We could add R to may-aliases(V2),
but we are in the process of grouping aliases to reduce virtual operands so what we do
is add V4 to the grouping to obtain:

may-aliases(V1) = { T }
may-aliases(V2) = { T }
may-aliases(V3) = { T }
may-aliases(V4) = { T }

4. If the total number of virtual operands due to aliasing is still above the threshold set
by max-alias-vops, go back to (2).

130 GNU Compiler Collection (GCC) Internals

Chapter 11: Analysis and Representation of Loops 131

11 Analysis and Representation of Loops

GCC provides extensive infrastructure for work with natural loops, i.e., strongly connected
components of CFG with only one entry block. This chapter describes representation of
loops in GCC, both on GIMPLE and in RTL, as well as the interfaces to loop-related
analyses (induction variable analysis and number of iterations analysis).

11.1 Loop representation

This chapter describes the representation of loops in GCC, and functions that can be used to
build, modify and analyze this representation. Most of the interfaces and data structures are
declared in ‘cfgloop.h’. At the moment, loop structures are analyzed and this information
is updated only by the optimization passes that deal with loops, but some efforts are being
made to make it available throughout most of the optimization passes.

In general, a natural loop has one entry block (header) and possibly several back edges
(latches) leading to the header from the inside of the loop. Loops with several latches may
appear if several loops share a single header, or if there is a branching in the middle of the
loop. The representation of loops in GCC however allows only loops with a single latch.
During loop analysis, headers of such loops are split and forwarder blocks are created in
order to disambiguate their structures. A heuristic based on profile information is used to
determine whether the latches correspond to sub-loops or to control flow in a single loop.
This means that the analysis sometimes changes the CFG, and if you run it in the middle
of an optimization pass, you must be able to deal with the new blocks.

Body of the loop is the set of blocks that are dominated by its header, and reachable from
its latch against the direction of edges in CFG. The loops are organized in a containment
hierarchy (tree) such that all the loops immediately contained inside loop L are the children
of L in the tree. This tree is represented by the struct loops structure. The root of this
tree is a fake loop that contains all blocks in the function. Each of the loops is represented
in a struct loop structure. Each loop is assigned an index (num field of the struct loop
structure), and the pointer to the loop is stored in the corresponding field of the parray
field of the loops structure. Index of a sub-loop is always greater than the index of its
super-loop. The indices do not have to be continuous, there may be empty (NULL) entries in
the parray created by deleting loops. The index of a loop never changes. The first unused
index is stored in the num field of the loops structure.

Each basic block contains the reference to the innermost loop it belongs to (loop_father).
For this reason, it is only possible to have one struct loops structure initialized at the same
time for each CFG. It is recommended to use the global variable current_loops to contain
the struct loops structure, especially if the loop structures are updated throughout several
passes. Many of the loop manipulation functions assume that dominance information is up-
to-date.

The loops are analyzed through loop_optimizer_init function. The argument of this
function is a set of flags represented in an integer bitmask. These flags specify what other
properties of the loop structures should be calculated/enforced and preserved later:

e LOOPS_HAVE_PREHEADERS: Forwarder blocks are created in such a way that each loop
has only one entry edge, and additionally, the source block of this entry edge has only
one successor. This creates a natural place where the code can be moved out of the
loop, and ensures that the entry edge of the loop leads from its immediate super-loop.

132 GNU Compiler Collection (GCC) Internals

e LOOPS_HAVE_SIMPLE_LATCHES: Forwarder blocks are created to force the latch block
of each loop to have only one successor. This ensures that the latch of the loop does
not belong to any of its sub-loops, and makes manipulation with the loops significantly
easier. Most of the loop manipulation functions assume that the loops are in this shape.
Note that with this flag, the “normal” loop without any control flow inside and with
one exit consists of two basic blocks.

e LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS: Basic blocks and edges in the strongly
connected components that are not natural loops (have more than one entry block) are
marked with BB_IRREDUCIBLE_LOOP and EDGE_IRREDUCIBLE_LOOP flags. The flag is
not set for blocks and edges that belong to natural loops that are in such an irreducible
region (but it is set for the entry and exit edges of such a loop, if they lead to/from
this region).

e LOOPS_HAVE_MARKED_SINGLE_EXITS: If a loop has exactly one exit edge, this edge is
stored in single_exit field of the loop structure. NULL is stored there otherwise.

These properties may also be computed/enforced later, using functions create_
preheaders, force_single_succ_latches, mark_irreducible_loops and
mark_single_exit_loops.

The memory occupied by the loops structures should be freed with loop_optimizer_
finalize function.

The CFG manipulation functions in general do not update loop structures. Specialized
versions that additionally do so are provided for the most common tasks. On GIMPLE,
cleanup_tree_cfg_loop function can be used to cleanup CFG while updating the loops
structures if current_loops is set.

11.2 Loop querying

The functions to query the information about loops are declared in ‘cfgloop.h’. Some of
the information can be taken directly from the structures. loop_father field of each basic
block contains the innermost loop to that the block belongs. The most useful fields of loop
structure (that are kept up-to-date at all times) are:

e header, latch: Header and latch basic blocks of the loop.

e num_nodes: Number of basic blocks in the loop (including the basic blocks of the
sub-loops).

e depth: The depth of the loop in the loops tree, i.e., the number of super-loops of the
loop.

e outer, inner, next: The super-loop, the first sub-loop, and the sibling of the loop in
the loops tree.

e single_exit: The exit edge of the loop, if the loop has exactly one exit and the loops
were analyzed with LOOPS_HAVE_MARKED_SINGLE_EXITS.
There are other fields in the loop structures, many of them used only by some of the passes,
or not updated during CFG changes; in general, they should not be accessed directly.
The most important functions to query loop structures are:
e flow_loops_dump: Dumps the information about loops to a file.

e verify_loop_structure: Checks consistency of the loop structures.

Chapter 11: Analysis and Representation of Loops 133

loop_latch_edge: Returns the latch edge of a loop.

loop_preheader_edge: If loops have preheaders, returns the preheader edge of a loop.
flow_loop_nested_p: Tests whether loop is a sub-loop of another loop.
flow_bb_inside_loop_p: Tests whether a basic block belongs to a loop (including its
sub-loops).

find_common_loop: Finds the common super-loop of two loops.
superloop_at_depth: Returns the super-loop of a loop with the given depth.

tree_num_loop_insns, num_loop_insns: Estimates the number of insns in the loop,
on GIMPLE and on RTL.

loop_exit_edge_p: Tests whether edge is an exit from a loop.
mark_loop_exit_edges: Marks all exit edges of all loops with EDGE_LOOP_EXIT flag.

get_loop_body, get_loop_body_in_dom_order, get_loop_body_in_bfs_order:
Enumerates the basic blocks in the loop in depth-first search order in reversed CFG,
ordered by dominance relation, and breath-first search order, respectively.

get_loop_exit_edges: Enumerates the exit edges of a loop.

just_once_each_iteration_p: Returns true if the basic block is executed exactly
once during each iteration of a loop (that is, it does not belong to a sub-loop, and it
dominates the latch of the loop).

11.3 Loop manipulation

The loops tree can be manipulated using the following functions:

flow_loop_tree_node_add: Adds a node to the tree.
flow_loop_tree_node_remove: Removes a node from the tree.
add_bb_to_loop: Adds a basic block to a loop.

remove_bb_from_loops: Removes a basic block from loops.

The specialized versions of several low-level CFG functions that also update loop struc-
tures are provided:

loop_split_edge_with: Splits an edge, and places a specified RTL code on it. On
GIMPLE, the function can still be used, but the code must be NULL.

bsi_insert_on_edge_immediate_loop: Inserts code on edge, splitting it if necessary.
Only works on GIMPLE.

remove_path: Removes an edge and all blocks it dominates.

loop_commit_inserts: Commits insertions scheduled on edges, and sets loops for the
new blocks. This function can only be used on GIMPLE.

split_loop_exit_edge: Splits exit edge of the loop, ensuring that PHI node argu-
ments remain in the loop (this ensures that loop-closed SSA form is preserved). Only
useful on GIMPLE.

Finally, there are some higher-level loop transformations implemented. While some of
them are written so that they should work on non-innermost loops, they are mostly untested
in that case, and at the moment, they are only reliable for the innermost loops:

134

11.

GNU Compiler Collection (GCC) Internals

create_iv: Creates a new induction variable. Only works on GIMPLE. standard_
iv_increment_position can be used to find a suitable place for the iv increment.

duplicate_loop_to_header_edge, tree_duplicate_loop_to_header_edge: These
functions (on RTL and on GIMPLE) duplicate the body of the loop prescribed number
of times on one of the edges entering loop header, thus performing either loop unrolling
or loop peeling. can_duplicate_loop_p (can_unroll_loop_p on GIMPLE) must be
true for the duplicated loop.

loop_version, tree_ssa_loop_version: These function create a copy of a loop, and
a branch before them that selects one of them depending on the prescribed condition.
This is useful for optimizations that need to verify some assumptions in runtime (one
of the copies of the loop is usually left unchanged, while the other one is transformed
in some way).

tree_unroll_loop: Unrolls the loop, including peeling the extra iterations to make
the number of iterations divisible by unroll factor, updating the exit condition, and
removing the exits that now cannot be taken. Works only on GIMPLE.

4 Loop-closed SSA form

Throughout the loop optimizations on tree level, one extra condition is enforced on the
SSA form: No SSA name is used outside of the loop in that it is defined. The SSA form
satisfying this condition is called “loop-closed SSA form” — LCSSA. To enforce LCSSA, PHI
nodes must be created at the exits of the loops for the SSA names that are used outside of
them. Only the real operands (not virtual SSA names) are held in LCSSA, in order to save
memory.

There are various benefits of LCSSA:

Many optimizations (value range analysis, final value replacement) are interested in
the values that are defined in the loop and used outside of it, i.e., exactly those for that
we create new PHI nodes.

In induction variable analysis, it is not necessary to specify the loop in that the analysis
should be performed — the scalar evolution analysis always returns the results with
respect to the loop in that the SSA name is defined.

It makes updating of SSA form during loop transformations simpler. Without LCSSA,
operations like loop unrolling may force creation of PHI nodes arbitrarily far from
the loop, while in LCSSA, the SSA form can be updated locally. However, since we
only keep real operands in LCSSA, we cannot use this advantage (we could have local
updating of real operands, but it is not much more efficient than to use generic SSA
form updating for it as well; the amount of changes to SSA is the same).

However, it also means LCSSA must be updated. This is usually straightforward, unless
you create a new value in loop and use it outside, or unless you manipulate loop exit
edges (functions are provided to make these manipulations simple). rewrite_into_loop_
closed_ssa is used to rewrite SSA form to LCSSA, and verify_loop_closed_ssa to check
that the invariant of LCSSA is preserved.

Chapter 11: Analysis and Representation of Loops 135

11.5 Scalar evolutions

Scalar evolutions (SCEV) are used to represent results of induction variable analysis on
GIMPLE. They enable us to represent variables with complicated behavior in a sim-
ple and consistent way (we only use it to express values of polynomial induction vari-
ables, but it is possible to extend it). The interfaces to SCEV analysis are declared in
‘tree-scalar-evolution.h’. To use scalar evolutions analysis, scev_initialize must be
used. To stop using SCEV, scev_finalize should be used. SCEV analysis caches results
in order to save time and memory. This cache however is made invalid by most of the
loop transformations, including removal of code. If such a transformation is performed,
scev_reset must be called to clean the caches.

Given an SSA name, its behavior in loops can be analyzed using the analyze_scalar_
evolution function. The returned SCEV however does not have to be fully analyzed
and it may contain references to other SSA names defined in the loop. To resolve these
(potentially recursive) references, instantiate_parameters or resolve_mixers functions
must be used. instantiate_parameters is useful when you use the results of SCEV only
for some analysis, and when you work with whole nest of loops at once. It will try replacing
all SSA names by their SCEV in all loops, including the super-loops of the current loop,
thus providing a complete information about the behavior of the variable in the loop nest.
resolve_mixers is useful if you work with only one loop at a time, and if you possibly need
to create code based on the value of the induction variable. It will only resolve the SSA
names defined in the current loop, leaving the SSA names defined outside unchanged, even
if their evolution in the outer loops is known.

The SCEV is a normal tree expression, except for the fact that it may contain several
special tree nodes. One of them is SCEV_NOT_KNOWN, used for SSA names whose value cannot
be expressed. The other one is POLYNOMIAL_CHREC. Polynomial chrec has three arguments —
base, step and loop (both base and step may contain further polynomial chrecs). Type of the
expression and of base and step must be the same. A variable has evolution POLYNOMIAL_
CHREC (base, step, loop) if it is (in the specified loop) equivalent to x_1 in the following

example
while (...)
{
x_1 = phi (base, x_2);
x_2 = x_1 + step;
}

Note that this includes the language restrictions on the operations. For example, if we
compile C code and x has signed type, then the overflow in addition would cause undefined
behavior, and we may assume that this does not happen. Hence, the value with this SCEV
cannot overflow (which restricts the number of iterations of such a loop).

In many cases, one wants to restrict the attention just to affine induction variables.
In this case, the extra expressive power of SCEV is not useful, and may complicate the
optimizations. In this case, simple_iv function may be used to analyze a value — the result
is a loop-invariant base and step.

11.6 IV analysis on RTL

The induction variable on RTL is simple and only allows analysis of affine induction vari-
ables, and only in one loop at once. The interface is declared in ‘cfgloop.h’. Before

136 GNU Compiler Collection (GCC) Internals

analyzing induction variables in a loop L., iv_analysis_loop_init function must be called
on L. After the analysis (possibly calling iv_analysis_loop_init for several loops) is fin-
ished, iv_analysis_done should be called. The following functions can be used to access
the results of the analysis:

e iv_analyze: Analyzes a single register used in the given insn. If no use of the register
in this insn is found, the following insns are scanned, so that this function can be called
on the insn returned by get_condition.

e iv_analyze_result: Analyzes result of the assignment in the given insn.

e iv_analyze_expr: Analyzes a more complicated expression. All its operands are ana-
lyzed by iv_analyze, and hence they must be used in the specified insn or one of the
following insns.

The description of the induction variable is provided in struct rtx_iv. In order to
handle subregs, the representation is a bit complicated; if the value of the extend field is
not UNKNOWN, the value of the induction variable in the i-th iteration is

delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)),

with the following exception: if first_special is true, then the value in the first iteration
(when i is zero) is delta + mult * base. However, if extend is equal to UNKNOWN, then
first_special must be false, delta 0, mult 1 and the value in the i-th iteration is

subreg_{mode} (base + i * step)

The function get_iv_value can be used to perform these calculations.

11.7 Number of iterations analysis

Both on GIMPLE and on RTL, there are functions available to determine the number of
iterations of a loop, with a similar interface. In many cases, it is not possible to determine
number of iterations unconditionally — the determined number is correct only if some as-
sumptions are satisfied. The analysis tries to verify these conditions using the information
contained in the program; if it fails, the conditions are returned together with the result.
The following information and conditions are provided by the analysis:

e assumptions: If this condition is false, the rest of the information is invalid.

e noloop_assumptions on RTL, may_be_zero on GIMPLE: If this condition is true, the
loop exits in the first iteration.

e infinite: If this condition is true, the loop is infinite. This condition is only available
on RTL. On GIMPLE, conditions for finiteness of the loop are included in assumptions.

e niter_expr on RTL, niter on GIMPLE: The expression that gives number of iter-
ations. The number of iterations is defined as the number of executions of the loop
latch.

Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework
to be initialized (SCEV on GIMPLE, loop-iv on RTL). On GIMPLE, the results are stored
to struct tree_niter_desc structure. Number of iterations before the loop is exited
through a given exit can be determined using number_of_iterations_exit function. On
RTL, the results are returned in struct niter_desc structure. The corresponding function
is named check_simple_exit. There are also functions that pass through all the exits of
a loop and try to find one with easy to determine number of iterations — find_loop_niter

Chapter 11: Analysis and Representation of Loops 137

on GIMPLE and find_simple_exit on RTL. Finally, there are functions that provide the
same information, but additionally cache it, so that repeated calls to number of iterations

are not so costly — number_of_iterations_in_loop on GIMPLE and get_simple_loop_
desc on RTL.

Note that some of these functions may behave slightly differently than others — some of
them return only the expression for the number of iterations, and fail if there are some as-
sumptions. The function number_of_iterations_in_loop works only for single-exit loops,
and it returns the value for number of iterations higher by one with respect to all other
functions (i.e., it returns number of executions of the exit statement, not of the loop latch).

11.8 Data Dependency Analysis

The code for the data dependence analysis can be found in ‘tree-data-ref.c’ and its inter-
face and data structures are described in ‘tree-data-ref.h’. The function that computes
the data dependences for all the array and pointer references for a given loop is compute_
data_dependences_for_loop. This function is currently used by the linear loop transform
and the vectorization passes. Before calling this function, one has to allocate two vectors:
a first vector will contain the set of data references that are contained in the analyzed loop
body, and the second vector will contain the dependence relations between the data refer-
ences. Thus if the vector of data references is of size n, the vector containing the dependence
relations will contain n*n elements. However if the analyzed loop contains side effects, such
as calls that potentially can interfere with the data references in the current analyzed loop,
the analysis stops while scanning the loop body for data references, and inserts a single
chrec_dont_know in the dependence relation array.

The data references are discovered in a particular order during the scanning of the loop
body: the loop body is analyzed in execution order, and the data references of each state-
ment are pushed at the end of the data reference array. Two data references syntactically
occur in the program in the same order as in the array of data references. This syntactic
order is important in some classical data dependence tests, and mapping this order to the
elements of this array avoids costly queries to the loop body representation.

Three types of data references are currently handled: ARRAY_REF, INDIRECT_REF
and COMPONENT_REF. The data structure for the data reference is data_reference,
where data_reference_p is a name of a pointer to the data reference structure. The
structure contains the following elements:

e base_object_info: Provides information about the base object of the data reference
and its access functions. These access functions represent the evolution of the data
reference in the loop relative to its base, in keeping with the classical meaning of the
data reference access function for the support of arrays. For example, for a reference
a.b[i] [j], the base object is a.b and the access functions, one for each array subscript,
are: {i_init, + i_step}t_1, {j_init, +, j_step}_2.

e first_location_in_loop: Provides information about the first location accessed by
the data reference in the loop and about the access function used to represent evolution
relative to this location. This data is used to support pointers, and is not used for arrays
(for which we have base objects). Pointer accesses are represented as a one-dimensional
access that starts from the first location accessed in the loop. For example:

forl i

138

GNU Compiler Collection (GCC) Internals

for2 j
*((int *)p + i + j) = alil[jl;
The access function of the pointer access is {0, + 4B}_for2 relative top + i. The access
functions of the array are {i_init, + i_step}_forl and {j_init, +, j_step}_for2
relative to a.

Usually, the object the pointer refers to is either unknown, or we can’t prove that the
access is confined to the boundaries of a certain object.

Two data references can be compared only if at least one of these two representations
has all its fields filled for both data references.

The current strategy for data dependence tests is as follows: If both a and b are
represented as arrays, compare a.base_object and b.base_object; if they are equal,
apply dependence tests (use access functions based on base_objects). Else if both a and
b are represented as pointers, compare a.first_location and b.first_location; if
they are equal, apply dependence tests (use access functions based on first location).
However, if a and b are represented differently, only try to prove that the bases are
definitely different.

Aliasing information.

Alignment information.

The structure describing the relation between two data references is data_dependence_
relation and the shorter name for a pointer to such a structure is ddr_p. This structure
contains:

a pointer to each data reference,

a tree node are_dependent that is set to chrec_known if the analysis has proved that
there is no dependence between these two data references, chrec_dont_know if the
analysis was not able to determine any useful result and potentially there could exist
a dependence between these data references, and are_dependent is set to NULL_TREE
if there exist a dependence relation between the data references, and the description
of this dependence relation is given in the subscripts, dir_vects, and dist_vects
arrays,

a boolean that determines whether the dependence relation can be represented by a
classical distance vector,

an array subscripts that contains a description of each subscript of the data references.
Given two array accesses a subscript is the tuple composed of the access functions for
a given dimension. For example, given A[£1] [£2] [£3] and B[gl] [g2] [g3], there are
three subscripts: (f1, gl), (£f2, g2), (£3, g3).

two arrays dir_vects and dist_vects that contain classical representations of the
data dependences under the form of direction and distance dependence vectors,

an array of loops loop_nest that contains the loops to which the distance and direction
vectors refer to.

Several functions for pretty printing the information extracted by the data dependence
analysis are available: dump_ddrs prints with a maximum verbosity the details of a data
dependence relations array, dump_dist_dir_vectors prints only the classical distance and
direction vectors for a data dependence relations array, and dump_data_references prints
the details of the data references contained in a data reference array.

Chapter 11: Analysis and Representation of Loops 139

11.9 Linear loop transformations framework

Lambda is a framework that allows transformations of loops using non-singular matrix
based transformations of the iteration space and loop bounds. This allows compositions of
skewing, scaling, interchange, and reversal transformations. These transformations are often
used to improve cache behavior or remove inner loop dependencies to allow parallelization
and vectorization to take place.

To perform these transformations, Lambda requires that the loopnest be converted into
a internal form that can be matrix transformed easily. To do this conversion, the function
gcc_loopnest_to_lambda_loopnest is provided. If the loop cannot be transformed using
lambda, this function will return NULL.

Once a lambda_loopnest is obtained from the conversion function, it can be transformed
by using lambda_loopnest_transform, which takes a transformation matrix to apply. Note
that it is up to the caller to verify that the transformation matrix is legal to apply to the
loop (dependence respecting, etc). Lambda simply applies whatever matrix it is told to
provide. It can be extended to make legal matrices out of any non-singular matrix, but
this is not currently implemented. Legality of a matrix for a given loopnest can be verified
using lambda_transform_legal_p.

Given a transformed loopnest, conversion back into gce IR is done by lambda_loopnest_

to_gcc_loopnest. This function will modify the loops so that they match the transformed
loopnest.

140 GNU Compiler Collection (GCC) Internals

Chapter 12: RTL Representation 141

12 RTL Representation

Most of the work of the compiler is done on an intermediate representation called register
transfer language. In this language, the instructions to be output are described, pretty
much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that
point at other structures, and a textual form that is used in the machine description and
in printed debugging dumps. The textual form uses nested parentheses to indicate the
pointers in the internal form.

12.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors.
Expressions are the most important ones. An RTL expression (“RTX”, for short) is a C
structure, but it is usually referred to with a pointer; a type that is given the typedef name
rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an
integral object whose type is HOST_WIDE_INT; their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C
fashion, and it is written in C syntax as well. However, strings in RTL may never be null.
If you write an empty string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain contexts, these null pointers
instead of strings are valid. Within RTL code, strings are most commonly found inside
symbol_ref expressions, but they appear in other contexts in the RTL expressions that
make up machine descriptions.

In a machine description, strings are normally written with double quotes, as you would
in C. However, strings in machine descriptions may extend over many lines, which is invalid
C, and adjacent string constants are not concatenated as they are in C. Any string constant
may be surrounded with a single set of parentheses. Sometimes this makes the machine
description easier to read.

There is also a special syntax for strings, which can be useful when C code is embedded
in a machine description. Wherever a string can appear, it is also valid to write a C-style
brace block. The entire brace block, including the outermost pair of braces, is considered to
be the string constant. Double quote characters inside the braces are not special. Therefore,
if you write string constants in the C code, you need not escape each quote character with
a backslash.

A vector contains an arbitrary number of pointers to expressions. The number of elements
in the vector is explicitly present in the vector. The written form of a vector consists
of square brackets (‘[...]") surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression
code is a name defined in ‘rtl.def’, which is also (in uppercase) a C enumeration constant.
The possible expression codes and their meanings are machine-independent. The code of
an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x,
newcode).

142 GNU Compiler Collection (GCC) Internals

The expression code determines how many operands the expression contains, and what
kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what
kind of object it is. Instead, you must know from its context—from the expression code of
the containing expression. For example, in an expression of code subreg, the first operand
is to be regarded as an expression and the second operand as an integer. In an expression
of code plus, there are two operands, both of which are to be regarded as expressions. In
a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its
flags and machine mode if any, and then the operands of the expression (separated by
spaces).

Expression code names in the ‘md’ file are written in lowercase, but when they appear in C
code they are written in uppercase. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The
written form of this is (nil).

12.2 RTL Classes and Formats

The various expression codes are divided into several classes, which are represented by single
characters. You can determine the class of an RTX code with the macro GET_RTX_CLASS
(code). Currently, ‘rtl.def’ defines these classes:

RTX_0BJ An RTX code that represents an actual object, such as a register (REG) or a
memory location (MEM, SYMBOL_REF). LO_SUM) is also included; instead, SUBREG
and STRICT_LOW_PART are not in this class, but in class x.

RTX_CONST_OBJ
An RTX code that represents a constant object. HIGH is also included in this
class.

RTX_COMPARE
An RTX code for a non-symmetric comparison, such as GEU or LT.

RTX_COMM_COMPARE
An RTX code for a symmetric (commutative) comparison, such as EQ or
ORDERED.

RTX_UNARY
An RTX code for a unary arithmetic operation, such as NEG, NOT, or ABS. This
category also includes value extension (sign or zero) and conversions between
integer and floating point.

RTX_COMM_ARITH
An RTX code for a commutative binary operation, such as PLUS or AND. NE
and EQ are comparisons, so they have class <.

RTX_BIN_ARITH
An RTX code for a non-commutative binary operation, such as MINUS, DIV, or
ASHTFTRT.

Chapter 12: RTL Representation 143

RTX_BITFIELD_OPS

An RTX code for a bit-field operation. Currently only ZERO_EXTRACT and
SIGN_EXTRACT. These have three inputs and are lvalues (so they can be used
for insertion as well). See Section 12.11 [Bit-Fields], page 168.

RTX_TERNARY

RTX_INSN

RTX_MATCH

An RTX code for other three input operations. Currently only IF_THEN_ELSE
and VEC_MERGE.

An RTX code for an entire instruction: INSN, JUMP_INSN, and CALL_INSN. See
Section 12.18 [Insns|, page 177.

An RTX code for something that matches in insns, such as MATCH_DUP. These
only occur in machine descriptions.

RTX_AUTOINC

RTX_EXTRA

An RTX code for an auto-increment addressing mode, such as POST_INC.

All other RTX codes. This category includes the remaining codes used ouly in
machine descriptions (DEFINE_x*, etc.). It also includes all the codes describing
side effects (SET, USE, CLOBBER, etc.) and the non-insns that may appear on
an insn chain, such as NOTE, BARRIER, and CODE_LABEL. SUBREG is also part of
this class.

For each expression code, ‘rtl.def’ specifies the number of contained objects and their
kinds using a sequence of characters called the format of the expression code. For example,
the format of subreg is ‘ei’.

These are the most commonly used format characters:

An expression (actually a pointer to an expression).
An integer.

A wide integer.

A string.

A vector of expressions.

A few other format characters are used occasionally:

‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps.
It is used for pointers to insns.

‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps.
It is used for the line number or code number of a note insn.

‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is
equivalent to ‘s’, but when the object is read, from an ‘md’ file, the string value
of this operand may be omitted. An omitted string is taken to be the null
string.

144 GNU Compiler Collection (GCC) Internals

v ‘V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is
equivalent to ‘E’, but when the object is read from an ‘md’ file, the vector value
of this operand may be omitted. An omitted vector is effectively the same as a
vector of no elements.

B ‘B’ indicates a pointer to basic block structure.

0 ‘0" means a slot whose contents do not fit any normal category. ‘0’ slots are
not printed at all in dumps, and are often used in special ways by small parts
of the compiler.

There are macros to get the number of operands and the format of an expression code:

GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.

Some classes of RTX codes always have the same format. For example, it is safe to assume
that all comparison operations have format ee.

1 All codes of this class have format e.

<

c

2 All codes of these classes have format ee.

b

3 All codes of these classes have format eee.

i All codes of this class have formats that begin with iuueiee. See Section 12.18
[Insns|, page 177. Note that not all RTL objects linked onto an insn chain are
of class i.

)

m

X You can make no assumptions about the format of these codes.

12.3 Access to Operands

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each
of these macros takes two arguments: an expression-pointer (RTX) and an operand number
(counting from zero). Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.
XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as
a string.

Any operand can be accessed as an integer, as an expression or as a string. You must
choose the correct method of access for the kind of value actually stored in the operand.
You would do this based on the expression code of the containing expression. That is also
how you would know how many operands there are.

Chapter 12: RTL Representation 145

For example, if x is a subreg expression, you know that it has two operands which can
be correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would
get the address of the expression operand but cast as an integer; that might occasionally
be useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also
compile without error, and would return the second, integer operand cast as an expression
pointer, which would probably result in a crash when accessed. Nothing stops you from
writing XEXP (x, 28) either, but this will access memory past the end of the expression
with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC
to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements
and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in operand number
idx in exp. This value is an int.

XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand number idx
in exp. This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN
(exp, idx).

All the macros defined in this section expand into Ivalues and therefore can be used to
assign the operands, lengths and vector elements as well as to access them.

12.4 Access to Special Operands
Some RTL nodes have special annotations associated with them.
MEM

MEM_ALIAS_SET (x)

If 0, x is not in any alias set, and may alias anything. Otherwise,
x can only alias MEMs in a conflicting alias set. This value is set in
a language-dependent manner in the front-end, and should not be
altered in the back-end. In some front-ends, these numbers may
correspond in some way to types, or other language-level entities,
but they need not, and the back-end makes no such assumptions.
These set numbers are tested with alias_sets_conflict_p.

MEM_EXPR (x)
If this register is known to hold the value of some user-level dec-
laration, this is that tree node. It may also be a COMPONENT_REF,
in which case this is some field reference, and TREE_OPERAND (x,
0) contains the declaration, or another COMPONENT_REF, or null if
there is no compile-time object associated with the reference.

MEM_QOFFSET (x)
The offset from the start of MEM_EXPR as a CONST_INT rtx.

146

REG

SYMBOL_REF

GNU Compiler Collection (GCC) Internals

MEM_SIZE (x)
The size in bytes of the memory reference as a CONST_INT rtx.
This is mostly relevant for BLKmode references as otherwise the size
is implied by the mode.

MEM_ALIGN (x)
The known alignment in bits of the memory reference.

ORIGINAL_REGNO (x)
This field holds the number the register “originally” had; for a
pseudo register turned into a hard reg this will hold the old pseudo
register number.

REG_EXPR (x)
If this register is known to hold the value of some user-level decla-
ration, this is that tree node.

REG_OFFSET (x)
If this register is known to hold the value of some user-level decla-
ration, this is the offset into that logical storage.

SYMBOL_REF_DECL (x)
If the symbol_ref x was created for a VAR_DECL or a FUNCTION_
DECL, that tree is recorded here. If this value is null, then x was
created by back end code generation routines, and there is no as-
sociated front end symbol table entry.

SYMBOL_REF_DECL may also point to a tree of class ’c’, that is,
some sort of constant. In this case, the symbol_ref is an entry in
the per-file constant pool; again, there is no associated front end
symbol table entry.

SYMBOL_REF_CONSTANT (x)
If ‘CONSTANT_POOL_ADDRESS_P (x)’ is true, this is the constant
pool entry for x. It is null otherwise.

SYMBOL_REF_DATA (x)
A field of opaque type used to store SYMBOL_REF_DECL or SYMBOL_
REF_CONSTANT.

SYMBOL_REF_FLAGS (x)
In a symbol_ref, this is used to communicate various predicates
about the symbol. Some of these are common enough to be com-
puted by common code, some are specific to the target. The com-
mon bits are:

SYMBOL_FLAG_FUNCTION
Set if the symbol refers to a function.

SYMBOL_FLAG_LOCAL
Set if the symbol is local to this “module”. See TARGET_
BINDS_LOCAL_P.

Chapter 12: RTL Representation 147

SYMBOL_FLAG_EXTERNAL
Set if this symbol is not defined in this translation
unit. Note that this is not the inverse of SYMBOL_FLAG_
LOCAL.

SYMBOL_FLAG_SMALL
Set if the symbol is located in the small data section.
See TARGET_IN_SMALL_DATA_P.

SYMBOL_REF_TLS_MODEL (x)
This is a multi-bit field accessor that returns the t1ls_
model to be used for a thread-local storage symbol. Tt
returns zero for non-thread-local symbols.

SYMBOL_FLAG_HAS_BLOCK_INFO
Set if the symbol has SYMBOL_REF_BLOCK and SYMBOL_
REF_BLOCK_OFFSET fields.

SYMBOL_FLAG_ANCHOR
Set if the symbol is used as a section anchor. “Sec-
tion anchors” are symbols that have a known position
within an object_block and that can be used to ac-
cess nearby members of that block. They are used to
implement ‘~fsection-anchors’.

If this ﬂag is set, then SYMBOL_FLAG_HAS_BLOCK_INFO
will be too.

Bits beginning with SYMBOL_FLAG_MACH_DEP are available for the
target’s use.

SYMBOL_REF_BLOCK (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the ‘object_block’ structure
to which the symbol belongs, or NULL if it has not been assigned a block.

SYMBOL_REF_BLOCK_OFFSET (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the offset of x from the first
object in ‘SYMBOL_REF_BLOCK (x)’. The value is negative if x has not yet been
assigned to a block, or it has not been given an offset within that block.

12.5 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bit-fields) that are used in certain types of
expression. Most often they are accessed with the following macros, which expand into
lvalues.

CONSTANT_POOL_ADDRESS_P (x)
Nonzero in a symbol_ref if it refers to part of the current function’s constant
pool. For most targets these addresses are in a .rodata section entirely separate
from the function, but for some targets the addresses are close to the beginning
of the function. In either case GCC assumes these addresses can be addressed
directly, perhaps with the help of base registers. Stored in the unchanging field
and printed as ‘/u’.

148 GNU Compiler Collection (GCC) Internals

CONST_OR_PURE_CALL_P (x)
In a call_insn, note, or an expr_list for notes, indicates that the insn rep-
resents a call to a const or pure function. Stored in the unchanging field and
printed as ‘/u’.

INSN_ANNULLED_BRANCH_P (x)
In a jump_insn, call_insn, or insn indicates that the branch is an annulling
one. See the discussion under sequence below. Stored in the unchanging field
and printed as ‘/u’.

INSN_DELETED_P (x)
In an insn, call_insn, jump_insn, code_label, barrier, or note, nonzero if
the insn has been deleted. Stored in the volatil field and printed as ‘/v’.

INSN_FROM_TARGET_P (x)
In an insn or jump_insn or call_insn in a delay slot of a branch, indicates that
the insn is from the target of the branch. If the branch insn has INSN_ANNULLED _
BRANCH_P set, this insn will only be executed if the branch is taken. For annulled
branches with INSN_FROM_TARGET_P clear, the insn will be executed only if the
branch is not taken. When INSN_ANNULLED_BRANCH_P is not set, this insn will
always be executed. Stored in the in_struct field and printed as ‘/s’.

LABEL_PRESERVE_P (x)
In a code_label or note, indicates that the label is referenced by code or data
not visible to the RTL of a given function. Labels referenced by a non-local
goto will have this bit set. Stored in the in_struct field and printed as ‘/s’.

LABEL_REF_NONLOCAL_P (x)
In label_ref and reg_label expressions, nonzero if this is a reference to a
non-local label. Stored in the volatil field and printed as ‘/v’.

MEM_IN_STRUCT_P (x)
In mem expressions, nonzero for reference to an entire structure, union or array,
or to a component of one. Zero for references to a scalar variable or through
a pointer to a scalar. If both this flag and MEM_SCALAR_P are clear, then we
don’t know whether this mem is in a structure or not. Both flags should never
be simultaneously set. Stored in the in_struct field and printed as ‘/s’.

MEM_KEEP_ALIAS_SET_P (x)
In mem expressions, 1 if we should keep the alias set for this mem unchanged
when we access a component. Set to 1, for example, when we are already in
a non-addressable component of an aggregate. Stored in the jump field and
printed as ‘/j’.

MEM_SCALAR_P (x)
In mem expressions, nonzero for reference to a scalar known not to be a member
of a structure, union, or array. Zero for such references and for indirections
through pointers, even pointers pointing to scalar types. If both this flag and
MEM_IN_STRUCT_P are clear, then we don’t know whether this mem is in a struc-
ture or not. Both flags should never be simultaneously set. Stored in the
frame_related field and printed as ‘/f’.

Chapter 12: RTL Representation 149

MEM_VOLATILE_P (x)
In mem, asm_operands, and asm_input expressions, nonzero for volatile memory
references. Stored in the volatil field and printed as ‘/v’.

MEM_NOTRAP_P (x)
In mem, nonzero for memory references that will not trap. Stored in the call
field and printed as ‘/c’.

REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function’s value is going to be
returned. (This happens only in a hard register.) Stored in the integrated
field and printed as ‘/1i’.

REG_POINTER (x)
Nonzero in a reg if the register holds a pointer. Stored in the frame_related
field and printed as ‘/f’.

REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the user’s source
code. Zero for temporaries generated internally by the compiler. Stored in the
volatil field and printed as ‘/v’.

The same hard register may be used also for collecting the values of functions
called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

RTX_FRAME_RELATED_P (x)
Nonzero in an insn, call_insn, jump_insn, barrier, or set which is part of a
function prologue and sets the stack pointer, sets the frame pointer, or saves a
register. This flag should also be set on an instruction that sets up a temporary
register to use in place of the frame pointer. Stored in the frame_related field
and printed as ‘/f’.

In particular, on RISC targets where there are limits on the sizes of immediate
constants, it is sometimes impossible to reach the register save area directly from
the stack pointer. In that case, a temporary register is used that is near enough
to the register save area, and the Canonical Frame Address, i.e., DWARF2’s
logical frame pointer, register must (temporarily) be changed to be this tem-
porary register. So, the instruction that sets this temporary register must be
marked as RTX_FRAME_RELATED_P.

If the marked instruction is overly complex (defined in terms of what
dwarf2out_frame_debug_expr can handle), you will also have to create a
REG_FRAME_RELATED_EXPR note and attach it to the instruction. This note
should contain a simple expression of the computation performed by this
instruction, i.e., one that dwarf2out_frame_debug_expr can handle.

This flag is required for exception handling support on targets with RTL pro-
logues.

code_label, insn_list, const, or note if it resulted from an in-line function
call. Stored in the integrated field and printed as ‘/1i’.

MEM_READONLY_P (x)
Nonzero in a mem, if the memory is statically allocated and read-only.

150 GNU Compiler Collection (GCC) Internals

Read-only in this context means never modified during the lifetime of the pro-
gram, not necessarily in ROM or in write-disabled pages. A common example
of the later is a shared library’s global offset table. This table is initialized by
the runtime loader, so the memory is technically writable, but after control is
transfered from the runtime loader to the application, this memory will never
be subsequently modified.

Stored in the unchanging field and printed as ‘/u’.

SCHED_GROUP_P (x)
During instruction scheduling, in an insn, call_insn or jump_insn, indicates
that the previous insn must be scheduled together with this insn. This is
used to ensure that certain groups of instructions will not be split up by the
instruction scheduling pass, for example, use insns before a call_insn may not
be separated from the call_insn. Stored in the in_struct field and printed
as ‘/s’.

SET_IS_RETURN_P (x)
For a set, nonzero if it is for a return. Stored in the jump field and printed as
ﬁ/j 7.

SIBLING_CALL_P (x)
For a call_insn, nonzero if the insn is a sibling call. Stored in the jump field
and printed as ‘/j’.

STRING_POOL_ADDRESS_P (x)
For a symbol_ref expression, nonzero if it addresses this function’s string con-
stant pool. Stored in the frame_related field and printed as ‘/£f’.

SUBREG_PROMOTED_UNSIGNED_P (x)

Returns a value greater then zero for a subreg that has SUBREG_PROMOTED_
VAR_P nongzero if the object being referenced is kept zero-extended, zero if it
is kept sign-extended, and less then zero if it is extended some other way via
the ptr_extend instruction. Stored in the unchanging field and volatil field,
printed as ‘/u’ and ‘/v’. This macro may only be used to get the value it
may not be used to change the value. Use SUBREG_PROMOTED_UNSIGNED_SET to
change the value.

SUBREG_PROMOTED_UNSIGNED_SET (x)
Set the unchanging and volatil fields in a subreg to reflect zero, sign, or
other extension. If volatil is zero, then unchanging as nonzero means zero
extension and as zero means sign extension. If volatil is nonzero then some
other type of extension was done via the ptr_extend instruction.

SUBREG_PROMOTED_VAR_P (x)

Nonzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro
(see Section 15.5 [Storage Layout], page 304). In this case, the mode of the
subreg is the declared mode of the object and the mode of SUBREG_REG is the
mode of the register that holds the object. Promoted variables are always either
sign- or zero-extended to the wider mode on every assignment. Stored in the
in_struct field and printed as ‘/s’.

Chapter 12: RTL Representation 151

SYMBOL_REF_USED (x)
In a symbol_ref, indicates that x has been used. This is normally only used
to ensure that x is only declared external once. Stored in the used field.

SYMBOL_REF_WEAK (x)
In a symbol_ref, indicates that x has been declared weak. Stored in the
integrated field and printed as ‘/1i’.

SYMBOL_REF_FLAG (x)
In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in
the volatil field and printed as ‘/v’.
Most uses of SYMBOL_REF_FLAG are historic and may be subsumed by SYMBOL_
REF_FLAGS. Certainly use of SYMBOL_REF_FLAGS is mandatory if the target
requires more than one bit of storage.

These are the fields to which the above macros refer:

call In a mem, 1 means that the memory reference will not trap.

In an RTL dump, this flag is represented as ‘/c’.

frame_related
In an insn or set expression, 1 means that it is part of a function prologue
and sets the stack pointer, sets the frame pointer, saves a register, or sets up a
temporary register to use in place of the frame pointer.

In reg expressions, 1 means that the register holds a pointer.

In symbol_ref expressions, 1 means that the reference addresses this function’s
string constant pool.

In mem expressions, 1 means that the reference is to a scalar.

In an RTL dump, this flag is represented as ‘/f’.

in_struct

In mem expressions, it is 1 if the memory datum referred to is all or part of a
structure or array; 0 if it is (or might be) a scalar variable. A reference through
a C pointer has 0 because the pointer might point to a scalar variable. This
information allows the compiler to determine something about possible cases of
aliasing.

In reg expressions, it is 1 if the register has its entire life contained within the
test expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an object that has
had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the
innermost loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is
used for labels which are the target of non-local gotos. Such a label that would
have been deleted is replaced with a note of type NOTE_INSN_DELETED_LABEL.

In an insn during dead-code elimination, 1 means that the insn is dead code.

In an insn or jump_insn during reorg for an insn in the delay slot of a branch,
1 means that this insn is from the target of the branch.

152

integrated

Jjump

unchanging

used

volatil

GNU Compiler Collection (GCC) Internals

In an insn during instruction scheduling, 1 means that this insn must be sched-
uled as part of a group together with the previous insn.

In an RTL dump, this flag is represented as ‘/s’.

In an insn, insn_list, or const, 1 means the RTL was produced by procedure
integration.

In reg expressions, 1 means the register contains the value to be returned by
the current function. On machines that pass parameters in registers, the same
register number may be used for parameters as well, but this flag is not set on
such uses.

In symbol_ref expressions, 1 means the referenced symbol is weak.

In an RTL dump, this flag is represented as ‘/1i’.

In a mem expression, 1 means we should keep the alias set for this mem un-
changed when we access a component.

In a set, 1 means it is for a return.

In a call_insn, 1 means it is a sibling call.

In an RTL dump, this flag is represented as ‘/j’.

In reg and mem expressions, 1 means that the value of the expression never
changes.

In subreg expressions, it is 1 if the subreg references an unsigned object whose
mode has been promoted to a wider mode.

In an insn or jump_insn in the delay slot of a branch instruction, 1 means an
annulling branch should be used.

In a symbol_ref expression, 1 means that this symbol addresses something in
the per-function constant pool.

In a call_insn, note, or an expr_list of notes, 1 means that this instruction
is a call to a const or pure function.

In an RTL dump, this flag is represented as ‘/u’.

This flag is used directly (without an access macro) at the end of RTL generation
for a function, to count the number of times an expression appears in insns.
Expressions that appear more than once are copied, according to the rules for
shared structure (see Section 12.20 [Sharing], page 186).

For a reg, it is used directly (without an access macro) by the leaf register
renumbering code to ensure that each register is only renumbered once.

In a symbol_ref, it indicates that an external declaration for the symbol has
already been written.

In a mem, asm_operands, or asm_input expression, it is 1 if the memory refer-
ence is volatile. Volatile memory references may not be deleted, reordered or
combined.

In a symbol_ref expression, it is used for machine-specific purposes.

Chapter 12: RTL Representation 153

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an
internal compiler temporary.

In an insn, 1 means the insn has been deleted.

In label_ref and reg_label expressions, 1 means a reference to a non-local
label.

In an RTL dump, this flag is represented as ‘/v’.

12.6 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the C
code, machine modes are represented by an enumeration type, enum machine_mode, defined
in ‘machmode.def’. Kach RTL expression has room for a machine mode and so do certain
kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression
is written after the expression code with a colon to separate them. The letters ‘mode’ which
appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is
a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at
all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_
PER_UNIT bits (see Section 15.5 [Storage Layout], page 304).

BImode “Bit” mode represents a single bit, for predicate registers.

QImode “Quarter-Integer” mode represents a single byte treated as an integer.

HImode “Half-Integer” mode represents a two-byte integer.

PSImode “Partial Single Integer” mode represents an integer which occupies four bytes

but which doesn’t really use all four. On some machines, this is the right mode
to use for pointers.

SImode “Single Integer” mode represents a four-byte integer.

PDImode “Partial Double Integer” mode represents an integer which occupies eight bytes
but which doesn’t really use all eight. On some machines, this is the right mode
to use for certain pointers.

DImode “Double Integer” mode represents an eight-byte integer.

TImode “Tetra Integer” (7) mode represents a sixteen-byte integer.

O0Imode “Octa Integer” (?7) mode represents a thirty-two-byte integer.

QFmode “Quarter-Floating” mode represents a quarter-precision (single byte) floating

point number.

HFmode “Half-Floating” mode represents a half-precision (two byte) floating point num-
ber.
TQFmode “Three-Quarter-Floating” (?) mode represents a three-quarter-precision (three

byte) floating point number.

154

SFmode

DFmode

XFmode

SDmode

DDmode

TDmode

TFmode

CCmode

BLKmode

VO0IDmode

GNU Compiler Collection (GCC) Internals

“Single Floating” mode represents a four byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
single-precision IEEE floating point number; it can also be used for double-
precision (on processors with 16-bit bytes) and single-precision VAX and IBM

types.

“Double Floating” mode represents an eight byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
double-precision IEEE floating point number.

“Extended Floating” mode represents an IEEE extended floating point number.
This mode only has 80 meaningful bits (ten bytes). Some processors require
such numbers to be padded to twelve bytes, others to sixteen; this mode is used
for either.

“Single Decimal Floating” mode represents a four byte decimal floating point
number (as distinct from conventional binary floating point).

“Double Decimal Floating” mode represents an eight byte decimal floating point
number.

“Tetra Decimal Floating” mode represents a sixteen byte decimal floating point
number all 128 of whose bits are meaningful.

“Tetra Floating” mode represents a sixteen byte floating point number all 128
of whose bits are meaningful. One common use is the IEEE quad-precision
format.

“Condition Code” mode represents the value of a condition code, which is a
machine-specific set of bits used to represent the result of a comparison oper-
ation. Other machine-specific modes may also be used for the condition code.
These modes are not used on machines that use ccO (see see Section 15.16
[Condition Code], page 369).

“Block” mode represents values that are aggregates to which none of the other
modes apply. In RTL, only memory references can have this mode, and only if
they appear in string-move or vector instructions. On machines which have no
such instructions, BLKmode will not appear in RTL.

Void mode means the absence of a mode or an unspecified mode. For example,
RTL expressions of code const_int have mode V0IDmode because they can be
taken to have whatever mode the context requires. In debugging dumps of
RTL, VOIDmode is expressed by the absence of any mode.

QCmode, HCmode, SCmode, DCmode, XCmode, TCmode

These modes stand for a complex number represented as a pair of floating
point values. The floating point values are in QFmode, HFmode, SFmode, DFmode,
XFmode, and TFmode, respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode

These modes stand for a complex number represented as a pair of integer values.
The integer values are in QImode, HImode, SImode, DImode, TImode, and O0Imode,
respectively.

Chapter 12: RTL Representation 155

The machine description defines Pmode as a C macro which expands into the machine
mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode
on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes
corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler
will attempt to use DImode for 8-byte structures and unions, but this can be prevented by
overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler
use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type
short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few
references will soon be removed. Instead, the machine modes are divided into mode classes.
These are represented by the enumeration type enum mode_class defined in ‘machmode.h’.
The possible mode classes are:

MODE_INT Integer modes. By default these are BImode, QImode, HImode, SImode, DImode,
TImode, and OImode.

MODE_PARTIAL_INT
The “partial integer” modes, PQImode, PHImode, PSImode and PDImode.

MODE_FLOAT
Floating point modes. By default these are QFmode, HFmode, TQFmode, SFmode,
DFmode, XFmode and TFmode.

MODE_DECIMAL_FLOAT
Decimal floating point modes. By default these are SDmode, DDmode and TDmode.

MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT
Complex floating point modes. By default these are QCmode, HCmode, SCmode,
DCmode, XCmode, and TCmode.

MODE_FUNCTION
Algol or Pascal function variables including a static chain. (These are not
currently implemented).

MODE_CC Modes representing condition code values. These are CCmode plus any CC_MODE
modes listed in the ‘machine-modes.def’. See Section 14.12 [Jump Patterns],
page 259, also see Section 15.16 [Condition Code], page 369.

MODE_RANDOM
This is a catchall mode class for modes which don’t fit into the above classes.
Currently VO0IDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)
Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.

156 GNU Compiler Collection (GCC) Internals

NUM_MACHINE_MQODES
Stands for the number of machine modes available on the target machine. This
is one greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)
Returns the name of mode m as a string.

GET_MODE_CLASS (m)
Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression GET_MODE_
WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.

GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit within mode m.
This macro can only be used for modes whose bitsize is less than or equal to
HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m)
Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)
Returns the size in bytes of the subunits of a datum of mode m. This is the
same as GET_MODE_SIZE except in the case of complex modes. For them, the
unit size is the size of the real or imaginary part.

GET_MODE_NUNITS (m)
Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided
by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)
Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_
INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit
machines, these are QImode and SImode, respectively.

12.7 Constant Expression Types
The simplest RTL expressions are those that represent constant values.

(const_int i)
This type of expression represents the integer value i. i is customarily accessed
with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp,
0).

Constants generated for modes with fewer bits than HOST_WIDE_INT must be
sign extended to full width (e.g., with gen_int_mode).

Chapter 12: RTL Representation 157

There is only one expression object for the integer value zero; it is the value
of the variable constO_rtx. Likewise, the only expression for integer value one
is found in constl1_rtx, the only expression for integer value two is found in
const2_rtx, and the only expression for integer value negative one is found
in constml_rtx. Any attempt to create an expression of code const_int
and value zero, one, two or negative one will return constO_rtx, constl_rtx,
const2_rtx or constml_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_
VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_
true_rtx and constl_rtx will point to the same object. If STORE_FLAG_VALUE
is —1, const_true_rtx and constml_rtx will point to the same object.

(const_double:m addr i0 i1 ...)
Represents either a floating-point constant of mode m or an integer constant too
large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within
twice that number of bits (GCC does not provide a mechanism to represent
even larger constants). In the latter case, m will be VOIDmode.

(const_vector:m [x0 x1 ...])
Represents a vector constant. The square brackets stand for the vector contain-
ing the constant elements. x0, xI1 and so on are the const_int or const_double
elements.

The number of units in a const_vector is obtained with the macro CONST_
VECTOR_NUNITS as in CONST_VECTOR_NUNITS (v).

Individual elements in a vector constant are accessed with the macro CONST_
VECTOR_ELT as in CONST_VECTOR_ELT (v, n) where v is the vector constant
and n is the element desired.

addr is used to contain the mem expression that corresponds to the location in
memory that at which the constant can be found. If it has not been allocated
a memory location, but is on the chain of all const_double expressions in this
compilation (maintained using an undisplayed field), addr contains constO_
rtx. If it is not on the chain, addr contains ccO_rtx. addr is customarily
accessed with the macro CONST_DOUBLE_MEM and the chain field via CONST_
DOUBLE_CHATN.

If m is VOIDmode, the bits of the value are stored in i0 and il. i0 is customarily
accessed with the macro CONST_DOUBLE_LOW and il with CONST_DOUBLE_HIGH.

If the constant is floating point (regardless of its precision), then the number
of integers used to store the value depends on the size of REAL_VALUE_TYPE
(see Section 15.23 [Floating Point], page 416). The integers represent a float-
ing point number, but not precisely in the target machine’s or host machine’s
floating point format. To convert them to the precise bit pattern used by the
target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see
Section 15.21.2 [Data Output], page 388).

The macro CONSTO_RTX (mode) refers to an expression with value 0 in mode
mode. If mode mode is of mode class MODE_INT, it returns constO_rtx. If
mode mode is of mode class MODE_FLOAT, it returns a CONST_DQOUBLE expression
in mode mode. Otherwise, it returns a CONST_VECTOR expression in mode mode.

158 GNU Compiler Collection (GCC) Internals

Similarly, the macro CONST1_RTX (mode) refers to an expression with value 1 in
mode mode and similarly for CONST2_RTX. The CONST1_RTX and CONST2_RTX
macros are undefined for vector modes.

(const_string str)
Represents a constant string with value str. Currently this is used only for insn
attributes (see Section 14.19 [Insn Attributes|, page 274) since constant strings
in C are placed in memory.

(symbol_ref :mode symbol)
Represents the value of an assembler label for data. symbol is a string that
describes the name of the assembler label. If it starts with a ‘*¥’, the label is
the rest of symbol not including the ‘*’. Otherwise, the label is symbol, usually
prefixed with ¢_’.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a symbol is directly valid.

(label_ref:mode label)
Represents the value of an assembler label for code. It contains one operand,
an expression, which must be a code_label or a note of type NOTE_INSN_
DELETED_LABEL that appears in the instruction sequence to identify the place
where the label should go.

The reason for using a distinct expression type for code label references is so
that jump optimization can distinguish them.

The label_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a label is directly valid.

(const:m exp)
Represents a constant that is the result of an assembly-time arithmetic com-
putation. The operand, exp, is an expression that contains only constants
(const_int, symbol_ref and label_ref expressions) combined with plus and
minus. However, not all combinations are valid, since the assembler cannot do
arbitrary arithmetic on relocatable symbols.

m should be Pmode.

(high:m exp)
Represents the high-order bits of exp, usually a symbol_ref. The number of
bits is machine-dependent and is normally the number of bits specified in an
instruction that initializes the high order bits of a register. It is used with lo_
sum to represent the typical two-instruction sequence used in RISC machines
to reference a global memory location.

m should be Pmode.

12.8 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main
memory.

Chapter 12: RTL Representation 159

(reg:m n)

For small values of the integer n (those that are less than FIRST_PSEUDO_
REGISTER), this stands for a reference to machine register number n: a hard
register. For larger values of n, it stands for a temporary value or pseudo
register. The compiler’s strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
into memory references.

m is the machine mode of the reference. It is necessary because machines can
generally refer to each register in more than one mode. For example, a register
may contain a full word but there may be instructions to refer to it as a half
word or as a single byte, as well as instructions to refer to it as a floating point
number of various precisions.

Even for a register that the machine can access in only one mode, the mode
must always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description,
since the number of hard registers on the machine is an invariant characteristic
of the machine. Note, however, that not all of the machine registers must be
general registers. All the machine registers that can be used for storage of data
are given hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one function,
but each pseudo register is given a natural mode and is accessed only in that
mode. When it is necessary to describe an access to a pseudo register using a
nonnatural mode, a subreg expression is used.

A reg expression with a machine mode that specifies more than one word
of data may actually stand for several consecutive registers. If in addition the
register number specifies a hardware register, then it actually represents several
consecutive hardware registers starting with the specified one.

Each pseudo register number used in a function’s RTL code is represented by
a unique reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_
REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation
phase and are eliminated before the optimization phases. These represent lo-
cations in the stack frame that cannot be determined until RTL generation for
the function has been completed. The following virtual register numbers are
defined:

VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments passed
on the stack. Normally these arguments are placed there by the
caller, but the callee may have pushed some arguments that were
previously passed in registers.

When RTL generation is complete, this virtual register is replaced
by the sum of the register given by ARG_POINTER_REGNUM and the
value of FIRST_PARM_OFFSET.

160

GNU Compiler Collection (GCC) Internals

VIRTUAL_STACK_VARS_REGNUM
If FRAME _GROWS_DOWNWARD is defined to a nonzero value, this points
to immediately above the first variable on the stack. Otherwise, it
points to the first variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the reg-
ister given by FRAME_POINTER_REGNUM and the value STARTING_
FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory on the
stack immediately after the stack pointer has been adjusted by the
amount of memory desired.

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed
using push insns should always use STACK_POINTER_REGNUM).

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.

(subreg:m reg bytenum)

subreg expressions are used to refer to a register in a machine mode other than
its natural one, or to refer to one register of a multi-part reg that actually refers
to several registers.

Each pseudo-register has a natural mode. If it is necessary to operate on it
in a different mode—for example, to perform a fullword move instruction on
a pseudo-register that contains a single byte—the pseudo-register must be en-
closed in a subreg. In such a case, bytenum is zero.

Usually m is at least as narrow as the mode of reg, in which case it is restricting
consideration to only the bits of reg that are in m.

Sometimes m is wider than the mode of reg. These subreg expressions are
often called paradoxical. They are used in cases where we want to refer to an
object in a wider mode but do not care what value the additional bits have. The
reload pass ensures that paradoxical references are only made to hard registers.

The other use of subreg is to extract the individual registers of a multi-register
value. Machine modes such as DImode and TImode can indicate values longer
than a word, values which usually require two or more consecutive registers.
To access one of the registers, use a subreg with mode SImode and a bytenum
offset that says which register.

Storing in a non-paradoxical subreg has undefined results for bits belonging to
the same word as the subreg. This laxity makes it easier to generate efficient
code for such instructions. To represent an instruction that preserves all the
bits outside of those in the subreg, use strict_low_part around the subreg.

Chapter 12: RTL Representation 161

The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that byte num-
ber zero is part of the most significant word; otherwise, it is part of the least
significant word.

The compilation parameter BYTES_BIG_ENDIAN, if set to 1, says that byte num-
ber zero is the most significant byte within a word; otherwise, it is the least
significant byte within a word.

On a few targets, FLOAT_WORDS_BIG_ENDIAN disagrees with WORDS_BIG_ENDIAN.
However, most parts of the compiler treat floating point values as if they had
the same endianness as integer values. This works because they handle them
solely as a collection of integer values, with no particular numerical value. Only
real.c and the runtime libraries care about FLOAT_WORDS_BIG_ENDIAN.

Between the combiner pass and the reload pass, it is possible to have a paradox-
ical subreg which contains a mem instead of a reg as its first operand. After the
reload pass, it is also possible to have a non-paradoxical subreg which contains
a mem; this usually occurs when the mem is a stack slot which replaced a pseudo
register.

Note that it is not valid to access a DFmode value in SFmode using a subreg.
On some machines the most significant part of a DFmode value does not have
the same format as a single-precision floating value.

It is also not valid to access a single word of a multi-word value in a hard register
when less registers can hold the value than would be expected from its size. For
example, some 32-bit machines have floating-point registers that can hold an
entire DFmode value. If register 10 were such a register (subreg:SI (reg:DF
10) 4) would be invalid because there is no way to convert that reference to a
single machine register. The reload pass prevents subreg expressions such as
these from being formed.

The first operand of a subreg expression is customarily accessed with the
SUBREG_REG macro and the second operand is customarily accessed with the
SUBREG_BYTE macro.

(scratch:m)

(cc0)

This represents a scratch register that will be required for the execution of a
single instruction and not used subsequently. It is converted into a reg by either
the local register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Section 12.15 [Side
Effects], page 170).

This refers to the machine’s condition code register. It has no operands and
may not have a machine mode. There are two ways to use it:

e To stand for a complete set of condition code flags. This is best on most
machines, where each comparison sets the entire series of flags.

With this technique, (cc0) may be validly used in only two contexts: as
the destination of an assignment (in test and compare instructions) and in
comparison operators comparing against zero (const_int with value zero;
that is to say, constO_rtx).

162

(pc)

GNU Compiler Collection (GCC) Internals

e To stand for a single flag that is the result of a single condition. This is
useful on machines that have only a single flag bit, and in which comparison
instructions must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) where the
source is a comparison operator, and as the first operand of if_then_else
(in a conditional branch).

There is only one expression object of code ccO; it is the value of the variable
ccO_rtx. Any attempt to create an expression of code ccO will return ccO_rtx.

Instructions can set the condition code implicitly. On many machines, nearly
all instructions set the condition code based on the value that they compute or
store. Tt is not necessary to record these actions explicitly in the RTL because
the machine description includes a prescription for recognizing the instructions
that do so (by means of the macro NOTICE_UPDATE_CC). See Section 15.16
[Condition Code], page 369. Only instructions whose sole purpose is to set
the condition code, and instructions that use the condition code, need mention
(cc0).

On some machines, the condition code register is given a register number and
a reg is used instead of (cc0). This is usually the preferable approach if only
a small subset of instructions modify the condition code. Other machines store
condition codes in general registers; in such cases a pseudo register should be
used.

Some machines, such as the SPARC and RS/6000, have two sets of arithmetic
instructions, one that sets and one that does not set the condition code. This
is best handled by normally generating the instruction that does not set the
condition code, and making a pattern that both performs the arithmetic and
sets the condition code register (which would not be (cc0) in this case). For
examples, search for ‘addcc’ and ‘andcc’ in ‘sparc.md’.

This represents the machine’s program counter. It has no operands and may
not have a machine mode. (pc) may be validly used only in certain specific
contexts in jump instructions.

There is only one expression object of code pc; it is the value of the variable
pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by in-
crementing it, but there is no need to mention this in the RTL.

(mem:m addr alias)

This RTX represents a reference to main memory at an address represented by
the expression addr. m specifies how large a unit of memory is accessed. alias
specifies an alias set for the reference. In general two items are in different alias
sets if they cannot reference the same memory address.

The construct (mem:BLK (scratch)) is considered to alias all other memories.
Thus it may be used as a memory barrier in epilogue stack deallocation patterns.

Chapter 12: RTL Representation 163

(addressof:m reg)
This RT'X represents a request for the address of register reg. Its mode is always
Pmode. If there are any addressof expressions left in the function after CSE,
reg is forced into the stack and the addressof expression is replaced with a
plus expression for the address of its stack slot.

12.9 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for
mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or
const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)

(ss_plus:m x y)

(us_plus:m x y)
These three expressions all represent the sum of the values represented by x and
y carried out in machine mode m. They differ in their behavior on overflow of
integer modes. plus wraps round modulo the width of m; ss_plus saturates
at the maximum signed value representable in m; us_plus saturates at the
maximum unsigned value.

(lo_sum:m x y)
This expression represents the sum of x and the low-order bits of y. It is used
with high (see Section 12.7 [Constants|, page 156) to represent the typical
two-instruction sequence used in RISC machines to reference a global memory
location.

The number of low order bits is machine-dependent but is normally the number
of bits in a Pmode item minus the number of bits set by high.

m should be Pmode.

(minus:m x y)

(ss_minus:m x y)

(us_minus:m x y)
These three expressions represent the result of subtracting y from x, carried
out in mode M. Behavior on overflow is the same as for the three variants of
plus (see above).

(compare:m x y)
Represents the result of subtracting y from x for purposes of comparison. The
result is computed without overflow, as if with infinite precision.

Of course, machines can’t really subtract with infinite precision. However, they
can pretend to do so when only the sign of the result will be used, which is
the case when the result is stored in the condition code. And that is the only
way this kind of expression may validly be used: as a value to be stored in the
condition codes, either (cc0) or a register. See Section 12.10 [Comparisons],
page 166.

The mode m is not related to the modes of x and y, but instead is the mode
of the condition code value. If (cc0) is used, it is VOIDmode. Otherwise it

164

(neg:m x)

GNU Compiler Collection (GCC) Internals

is some mode in class MODE_CC, often CCmode. See Section 15.16 [Condition
Code], page 369. If m is VOIDmode or CCmode, the operation returns sufficient
information (in an unspecified format) so that any comparison operator can
be applied to the result of the COMPARE operation. For other modes in class
MODE_CC, the operation only returns a subset of this information.

Normally, x and y must have the same mode. Otherwise, compare is valid only
if the mode of x is in class MODE_INT and y is a const_int or const_double
with mode VOIDmode. The mode of x determines what mode the comparison is
to be done in; thus it must not be V0IDmode.

If one of the operands is a constant, it should be placed in the second operand
and the comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way
to know in what mode the comparison is to be performed; the comparison must
either be folded during the compilation or the first operand must be loaded into
a register while its mode is still known.

(ss_neg:m x)

These two expressions represent the negation (subtraction from zero) of the
value represented by x, carried out in mode m. They differ in the behavior
on overflow of integer modes. In the case of neg, the negation of the operand
may be a number not representable in mode m, in which case it is truncated to
m. ss_neg ensures that an out-of-bounds result saturates to the maximum or
minimum representable value.

(mult:m x y)

Represents the signed product of the values represented by x and y carried out
in machine mode m.

Some machines support a multiplication that generates a product wider than
the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))
where m is wider than the modes of x and y, which need not be the same.

For unsigned widening multiplication, use the same idiom, but with zero_
extend instead of sign_extend.

(div:m x y)

Represents the quotient in signed division of x by y, carried out in machine mode
m. If m is a floating point mode, it represents the exact quotient; otherwise,
the integerized quotient.

Some machines have division instructions in which the operands and quo-
tient widths are not all the same; you should represent such instructions using
truncate and sign_extend as in,

(truncate:ml (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)

Like div but represents unsigned division.

Chapter 12: RTL Representation 165

(mod:m x y)
(umod:m x y)
Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)

(smax:m x y)
Represents the smaller (for smin) or larger (for smax) of x and y, interpreted
as signed values in mode m. When used with floating point, if both operands
are zeros, or if either operand is NaN, then it is unspecified which of the two
operands is returned as the result.

(umin:m x y)
(umax:m x y)
Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x)
Represents the bitwise complement of the value represented by x, carried out
in mode m, which must be a fixed-point machine mode.

(and:m x y)

Represents the bitwise logical-and of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point machine mode.

(ior:m x y)
Represents the bitwise inclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(xor:m x y)
Represents the bitwise exclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(ashift:m x ¢)

(ss_ashift:m x ¢)
These two expressions represent the result of arithmetically shifting x left by ¢
places. They differ in their behavior on overflow of integer modes. An ashift
operation is a plain shift with no special behavior in case of a change in the sign
bit; ss_ashift saturates to the minimum or maximum representable value if
any of the bits shifted out differs from the final sign bit.

x have mode m, a fixed-point machine mode. ¢ be a fixed-point mode or be a
constant with mode VOIDmode; which mode is determined by the mode called
for in the machine description entry for the left-shift instruction. For example,
on the VAX, the mode of ¢ is QImode regardless of m.

(1shiftrt:m x ¢)

(ashiftrt:m x c¢)
Like ashift but for right shift. Unlike the case for left shift, these two opera-
tions are distinct.

(rotate:m x ¢)
(rotatert:m x c¢)
Similar but represent left and right rotate. If ¢ is a constant, use rotate.

166 GNU Compiler Collection (GCC) Internals

(abs:m x)
Represents the absolute value of x, computed in mode m.

(sqrt:m x)
Represents the square root of x, computed in mode m. Most often m will be a
floating point mode.

(ffs:m x)
Represents one plus the index of the least significant 1-bit in x, represented as
an integer of mode m. (The value is zero if x is zero.) The mode of x need
not be m; depending on the target machine, various mode combinations may

be valid.

(clz:m x)
Represents the number of leading 0-bits in x, represented as an integer of mode
m, starting at the most significant bit position. If x is zero, the value is de-
termined by CLZ_DEFINED_VALUE_AT_ZERO. Note that this is one of the few
expressions that is not invariant under widening. The mode of x will usually
be an integer mode.

(ctz:m x)
Represents the number of trailing 0-bits in x, represented as an integer of mode
m, starting at the least significant bit position. If x is zero, the value is de-
termined by CTZ_DEFINED_VALUE_AT_ZERO. Except for this case, ctz(x) is
equivalent to £fs(x) - 1. The mode of x will usually be an integer mode.

(popcount :m x)
Represents the number of 1-bits in x, represented as an integer of mode m. The
mode of x will usually be an integer mode.

(parity:m x)
Represents the number of 1-bits modulo 2 in x, represented as an integer of
mode m. The mode of x will usually be an integer mode.

12.10 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a
machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_
VALUE (see Section 15.29 [Misc|, page 423) if the relation holds, or zero if it does not, for
comparison operators whose results have a ‘MODE_INT’ mode, FLOAT_STORE_FLAG_VALUE
(see Section 15.29 [Misc], page 423) if the relation holds, or zero if it does not, for comparison
operators that return floating-point values, and a vector of either VECTOR_STORE_FLAG_
VALUE (see Section 15.29 [Misc], page 423) if the relation holds, or of zeros if it does not, for
comparison operators that return vector results. The mode of the comparison operation is
independent of the mode of the data being compared. If the comparison operation is being
tested (e.g., the first operand of an if_then_else), the mode must be VOIDmode.

There are two ways that comparison operations may be used. The comparison operators
may be used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_
int 0)). Such a construct actually refers to the result of the preceding instruction in which
the condition codes were set. The instruction setting the condition code must be adjacent
to the instruction using the condition code; only note insns may separate them.

Chapter 12: RTL Representation 167

Alternatively, a comparison operation may directly compare two data objects. The mode
of the comparison is determined by the operands; they must both be valid for a common
machine mode. A comparison with both operands constant would be invalid as the machine
mode could not be deduced from it, but such a comparison should never exist in RTL due
to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation
is identical to (eq x y). Usually only one style of comparisons is supported on a particular
machine, but the combine pass will try to merge the operations to produce the eq shown
in case it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce differ-
ent results for the same pair of integer values: for example, 1 is signed greater-than —1 but
not unsigned greater-than, because —1 when regarded as unsigned is actually Oxffffffff
which is greater than 1.

The signed comparisons are also used for floating point values. Floating point comparisons
are distinguished by the machine modes of the operands.

(eq:m x y)
STORE_FLAG_VALUE if the values represented by x and y are equal, otherwise 0.

(ne:m x y)
STORE_FLAG_VALUE if the values represented by x and y are not equal, otherwise
0.

(gt:mx y)
STORE_FLAG_VALUE if the x is greater than y. If they are fixed-point, the com-
parison is done in a signed sense.

(gtu:m x y)
Like gt but does unsigned comparison, on fixed-point numbers only.

(Qt:m x y)
(1tu:m x y)
Like gt and gtu but test for “less than”.

(ge:m x y)
(geu:m x y)
Like gt and gtu but test for “greater than or equal”.

(le:mx y)
(leu:m x y)
Like gt and gtu but test for “less than or equal”.

(if _then_else cond then else)
This is not a comparison operation but is listed here because it is always used in
conjunction with a comparison operation. To be precise, cond is a comparison
expression. This expression represents a choice, according to cond, between the
value represented by then and the one represented by else.

On most machines, 1f_then_else expressions are valid only to express condi-
tional jumps.

168 GNU Compiler Collection (GCC) Internals

(cond [testl valuel test2 value2 ...] default)
Similar to if_then_else, but more general. Each of testl, test2, ... is per-
formed in turn. The result of this expression is the value corresponding to the
first nonzero test, or default if none of the tests are nonzero expressions.

This is currently not valid for instruction patterns and is supported only for
insn attributes. See Section 14.19 [Insn Attributes|, page 274.

12.11 Bit-Fields

Special expression codes exist to represent bit-field instructions.

(sign_extract:m loc size pos)
This represents a reference to a sign-extended bit-field contained or starting in
loc (a memory or register reference). The bit-field is size bits wide and starts
at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the
memory unit pos counts from.

If loc is in memory, its mode must be a single-byte integer mode. If loc is in a
register, the mode to use is specified by the operand of the insv or extv pattern
(see Section 14.9 [Standard Names], page 236) and is usually a full-word integer
mode, which is the default if none is specified.

The mode of pos is machine-specific and is also specified in the insv or extv
pattern.

The mode m is the same as the mode that would be used for loc if it were a
register.

A sign_extract can not appear as an lvalue, or part thereof, in RTL.

(zero_extract:m loc size pos)
Like sign_extract but refers to an unsigned or zero-extended bit-field. The
same sequence of bits are extracted, but they are filled to an entire word with
zeros instead of by sign-extension.
Unlike sign_extract, this type of expressions can be lvalues in RTL; they may
appear on the left side of an assignment, indicating insertion of a value into the
specified bit-field.

12.12 Vector Operations

All normal RTL expressions can be used with vector modes; they are interpreted as operat-
ing on each part of the vector independently. Additionally, there are a few new expressions
to describe specific vector operations.

(vec_merge:m vecl vec2 items)
This describes a merge operation between two vectors. The result is a vector of
mode m; its elements are selected from either vecl or vec2. Which elements are
selected is described by items, which is a bit mask represented by a const_int;
a zero bit indicates the corresponding element in the result vector is taken from
vec2 while a set bit indicates it is taken from vecl.

(vec_select:m vecl selection)
This describes an operation that selects parts of a vector. vecl is the source
vector, selection is a parallel that contains a const_int for each of the sub-

Chapter 12: RTL Representation 169

parts of the result vector, giving the number of the source subpart that should
be stored into it.

(vec_concat:m vecl vec2)
Describes a vector concat operation. The result is a concatenation of the vectors
vecl and vec2; its length is the sum of the lengths of the two inputs.

(vec_duplicate:m vec)
This operation converts a small vector into a larger one by duplicating the input
values. The output vector mode must have the same submodes as the input
vector mode, and the number of output parts must be an integer multiple of
the number of input parts.

12.13 Conversions

All conversions between machine modes must be represented by explicit conversion oper-
ations. For example, an expression which is the sum of a byte and a full word cannot be
written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two
operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a
conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than one
way of converting from a given starting mode to the desired final mode. The conversion
operation code says how to do it.

For all conversion operations, x must not be V0IDmode because the mode in which to do
the conversion would not be known. The conversion must either be done at compile-time
or x must be placed into a register.

(sign_extend:m x)
Represents the result of sign-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(zero_extend:m x)
Represents the result of zero-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(float_extend:m x)
Represents the result of extending the value x to machine mode m. m must be
a floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a fixed-point mode and x a fixed-point value of a mode wider than m.

(ss_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
signed saturation in the case of overflow. Both m and the mode of x must be
fixed-point modes.

170 GNU Compiler Collection (GCC) Internals

(us_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
unsigned saturation in the case of overflow. Both m and the mode of x must
be fixed-point modes.

(float_truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a floating point mode and x a floating point value of a mode wider than m.

(float:m x)
Represents the result of converting fixed point value x, regarded as signed, to
floating point mode m.

(unsigned_float:m x)
Represents the result of converting fixed point value x, regarded as unsigned,
to floating point mode m.

(fix:m x)
When m is a fixed point mode, represents the result of converting floating point
value x to mode m, regarded as signed. How rounding is done is not specified, so
this operation may be used validly in compiling C code only for integer-valued
operands.

(unsigned_fix:m x)
Represents the result of converting floating point value x to fixed point mode
m, regarded as unsigned. How rounding is done is not specified.

(fix:m x)
When m is a floating point mode, represents the result of converting floating
point value x (valid for mode m) to an integer, still represented in floating point
mode m, by rounding towards zero.

12.14 Declarations

Declaration expression codes do not represent arithmetic operations but rather state asser-
tions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))
This expression code is used in only one context: as the destination operand
of a set expression. In addition, the operand of this expression must be a
non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register which is
meaningful in mode n, but is not part of mode m, is not to be altered. Normally,
an assignment to such a subreg is allowed to have undefined effects on the rest
of the register when m is less than a word.

12.15 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instruc-
tions never produce values; they are meaningful only for their side effects on the state of
the machine. Special expression codes are used to represent side effects.

Chapter 12: RTL Representation 171

The body of an instruction is always one of these side effect codes; the codes described
above, which represent values, appear only as the operands of these.

(set 1val x)

(return)

Represents the action of storing the value of x into the place represented by
Ival. lval must be an expression representing a place that can be stored in: reg
(or subreg, strict_low_part or zero_extract), mem, pc, parallel, or ccO.

If Ival is a reg, subreg or mem, it has a machine mode; then x must be valid
for that mode.

If Ival is a reg whose machine mode is less than the full width of the register,
then it means that the part of the register specified by the machine mode is
given the specified value and the rest of the register receives an undefined value.
Likewise, if Ival is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an undefined way.

If Ival is a strict_low_part of a subreg, then the part of the register specified
by the machine mode of the subreg is given the value x and the rest of the
register is not changed.

If Ival is a zero_extract, then the referenced part of the bit-field (a memory or
register reference) specified by the zero_extract is given the value x and the
rest of the bit-field is not changed. Note that sign_extract can not appear in
Ival.

If Ival is (cc0), it has no machine mode, and x may be either a compare
expression or a value that may have any mode. The latter case represents
a “test” instruction. The expression (set (cc0) (reg:m n)) is equivalent to
(set (cc0) (compare (reg:m n) (const_int 0))). Use the former expres-
sion to save space during the compilation.

If Ival is a parallel, it is used to represent the case of a function returning a
structure in multiple registers. Fach element of the parallel is an expr_list
whose first operand is a reg and whose second operand is a const_int repre-
senting the offset (in bytes) into the structure at which the data in that register
corresponds. The first element may be null to indicate that the structure is also
passed partly in memory.

If Ival is (pc), we have a jump instruction, and the possibilities for x are very
limited. It may be a label_ref expression (unconditional jump). It may be an
if_then_else (conditional jump), in which case either the second or the third
operand must be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may also be a mem
or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns
are used to represent jumps through branch tables.

If Ival is neither (cc0) nor (pc), the mode of Ival must not be V0IDmode and
the mode of x must be valid for the mode of Ival

Ival is customarily accessed with the SET_DEST macro and x with the SET_SRC
macro.

As the sole expression in a pattern, represents a return from the current func-
tion, on machines where this can be done with one instruction, such as VAXen.

172

GNU Compiler Collection (GCC) Internals

On machines where a multi-instruction “epilogue” must be executed in order
to return from the function, returning is done by jumping to a label which
precedes the epilogue, and the return expression code is never used.

Inside an if_then_else expression, represents the value to be placed in pc to
return to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc)
(return)), but the latter form is never used.

(call function nargs)

Represents a function call. function is a mem expression whose address is the
address of the function to be called. nargs is an expression which can be used
for two purposes: on some machines it represents the number of bytes of stack
argument; on others, it represents the number of argument registers.

Each machine has a standard machine mode which function must have. The
machine description defines macro FUNCTION_MODE to expand into the requisite
mode name. The purpose of this mode is to specify what kind of addressing
is allowed, on machines where the allowed kinds of addressing depend on the
machine mode being addressed.

(clobber x)

Represents the storing or possible storing of an unpredictable, undescribed value
into x, which must be a reg, scratch, parallel or mem expression.

One place this is used is in string instructions that store standard values into
particular hard registers. It may not be worth the trouble to describe the values
that are stored, but it is essential to inform the compiler that the registers will
be altered, lest it attempt to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)) or (mem:BLK (scratch)), it means that all
memory locations must be presumed clobbered. If x is a parallel, it has the
same meaning as a parallel in a set expression.

Note that the machine description classifies certain hard registers as “call-
clobbered”. All function call instructions are assumed by default to clobber
these registers, so there is no need to use clobber expressions to indicate this
fact. Also, each function call is assumed to have the potential to alter any
memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression
whose arguments are reg or match_scratch (see Section 14.4 [RTL Template],
page 201) expressions, the combiner phase can add the appropriate clobber
expressions to an insn it has constructed when doing so will cause a pattern to
be matched.

This feature can be used, for example, on a machine that whose multiply and
add instructions don’t use an MQ register but which has an add-accumulate
instruction that does clobber the MQ register. Similarly, a combined instruction
might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other
side effects, the register allocator guarantees that the register is unoccupied
both before and after that insn. However, the reload phase may allocate a

Chapter 12: RTL Representation 173

(use x)

register used for one of the inputs unless the ‘&’ constraint is specified for the
selected alternative (see Section 14.8.4 [Modifiers|, page 217). You can clobber
either a specific hard register, a pseudo register, or a scratch expression; in
the latter two cases, GCC will allocate a hard register that is available there
for use as a temporary.

For instructions that require a temporary register, you should use scratch
instead of a pseudo-register because this will allow the combiner phase to add
the clobber when required. You do this by coding (clobber (match_scratch
..)). If you do clobber a pseudo register, use one which appears nowhere
else—generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel:
when one of the input operands of the insn is also clobbered by the insn. In
this case, using the same pseudo register in the clobber and elsewhere in the
insn produces the expected results.

Represents the use of the value of x. It indicates that the value in x at this
point in the program is needed, even though it may not be apparent why this
is so. Therefore, the compiler will not attempt to delete previous instructions
whose only effect is to store a value in x. x must be a reg expression.

In some situations, it may be tempting to add a use of a register in a parallel
to describe a situation where the value of a special register will modify the
behavior of the instruction. An hypothetical example might be a pattern for
an addition that can either wrap around or use saturating addition depending
on the value of a special control register:

(parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)
(reg:SI 4)]1 0))
(use (reg:SI 1))]1)

This will not work, several of the optimizers only look at expressions locally; it
is very likely that if you have multiple insns with identical inputs to the unspec,
they will be optimized away even if register 1 changes in between.

This means that use can only be used to describe that the register is live. You
should think twice before adding use statements, more often you will want to
use unspec instead. The use RTX is most commonly useful to describe that
a fixed register is implicitly used in an insn. It is also safe to use in patterns
where the compiler knows for other reasons that the result of the whole pattern
is variable, such as ‘movmemm’ or ‘call’ patterns.

During the reload phase, an insn that has a use as pattern can carry a reg_equal
note. These use insns will be deleted before the reload phase exits.

During the delayed branch scheduling phase, x may be an insn. This indicates
that x previously was located at this place in the code and its data dependencies
need to be taken into account. These use insns will be deleted before the delayed
branch scheduling phase exits.

(parallel [x0 x1 ...])

Represents several side effects performed in parallel. The square brackets stand
for a vector; the operand of parallel is a vector of expressions. x0, xI and so

174

GNU Compiler Collection (GCC) Internals

on are individual side effect expressions—expressions of code set, call, return,
clobber or use.

“In parallel” means that first all the values used in the individual side-effects are
computed, and second all the actual side-effects are performed. For example,
(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))1)

says unambiguously that the values of hard register 1 and the memory location
addressed by it are interchanged. In both places where (reg:SI 1) appears as
a memory address it refers to the value in register 1 before the execution of the
insn.

It follows that it is incorrect to use parallel and expect the result of one set
to be available for the next one. For example, people sometimes attempt to
represent a jump-if-zero instruction this way:

(parallel [(set (ccO) (reg:SI 34))
(set (pc) (if_then_else
(eq (cc0) (const_int 0))
(label_ref ...)
(pc)ND
But this is incorrect, because it says that the jump condition depends on the
condition code value before this instruction, not on the new value that is set by
this instruction.

Peephole optimization, which takes place together with final assembly code
output, can produce insns whose patterns consist of a parallel whose elements
are the operands needed to output the resulting assembler code—often reg, mem
or constant expressions. This would not be well-formed RTL at any other stage
in compilation, but it is ok then because no further optimization remains to be
done. However, the definition of the macro NOTICE_UPDATE_CC, if any, must
deal with such insns if you define any peephole optimizations.

(cond_exec [cond exprl)

Represents a conditionally executed expression. The expr is executed only if
the cond is nonzero. The cond expression must not have side-effects, but the
expr may very well have side-effects.

(sequence [insns ...])

Represents a sequence of insns. Each of the insns that appears in the vector is
suitable for appearing in the chain of insns, so it must be an insn, jump_insn,
call_insn, code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation. It
represents the sequence of insns that result from a define_expand before those
insns are passed to emit_insn to insert them in the chain of insns. When
actually inserted, the individual sub-insus are separated out and the sequence
is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside
in its delay slots are grouped together into a sequence. The insn requiring the
delay slot is the first insn in the vector; subsequent insns are to be placed in
the delay slot.

Chapter 12: RTL Representation 175

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a
branch insn should be used that will conditionally annul the effect of the insns
in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn
is from the target of the branch and should be executed only if the branch is
taken; otherwise the insn should be executed only if the branch is not taken.
See Section 14.19.7 [Delay Slots], page 281.

These expression codes appear in place of a side effect, as the body of an insn, though
strictly speaking they do not always describe side effects as such:

(asm_input s)
Represents literal assembler code as described by the string s.

(unspec [operands ...] index)

(unspec_volatile [operands ...] index)
Represents a machine-specific operation on operands. index selects between
multiple machine-specific operations. unspec_volatile is used for volatile op-
erations and operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or
inside an expression.

(addr_vec:m [1r0 1r1 ...])
Represents a table of jump addresses. The vector elements Ir0, etc., are label_
ref expressions. The mode m specifies how much space is given to each address;
normally m would be Pmode.

(addr_diff_vec:m base [1r0 1rl ...] min max flags)
Represents a table of jump addresses expressed as offsets from base. The vector
elements Ir0, etc., are label_ref expressions and so is base. The mode m
specifies how much space is given to each address-difference. min and max are
set up by branch shortening and hold a label with a minimum and a maximum
address, respectively. flags indicates the relative position of base, min and max
to the containing insn and of min and max to base. See rtl.def for details.

(prefetch:m addr rw locality)
Represents prefetch of memory at address addr. Operand rw is 1 if the
prefetch is for data to be written, 0 otherwise; targets that do not support
write prefetches should treat this as a normal prefetch. Operand locality
specifies the amount of temporal locality; 0 if there is none or 1, 2, or 3 for
increasing levels of temporal locality; targets that do not support locality hints
should ignore this.

This insn is used to minimize cache-miss latency by moving data into a cache
before it is accessed. It should use only non-faulting data prefetch instructions.

12.16 Embedded Side-Effects on Addresses

Six special side-effect expression codes appear as memory addresses.

(pre_dec:m x)
Represents the side effect of decrementing x by a standard amount and repre-
sents also the value that x has after being decremented. x must be a reg or

176 GNU Compiler Collection (GCC) Internals

mem, but most machines allow only a reg. m must be the machine mode for
pointers on the machine in use. The amount x is decremented by is the length
in bytes of the machine mode of the containing memory reference of which this
expression serves as the address. Here is an example of its use:

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and
use the result to address a DFmode value.

(pre_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)
Represents the same side effect as pre_dec but a different value. The value
represented here is the value x has before being decremented.

(post_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_modify:m x y)
Represents the side effect of setting x to y and represents x before x is modified.
x must be a reg or mem, but most machines allow only a reg. m must be the
machine mode for pointers on the machine in use.

The expression y must be one of three forms:
(plus:m x z), (minus:m x z), or (plus:m x i),

where z is an index register and i is a constant.

Here is an example of its use:
(mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)
(reg:SI 48))))
This says to modify pseudo register 42 by adding the contents of pseudo register
48 to it, after the use of what ever 42 points to.

(pre_modify:m x expr)
Similar except side effects happen before the use.

These embedded side effect expressions must be used with care. Instruction patterns may
not use them. Until the ‘f1low’ pass of the compiler, they may occur only to represent pushes
onto the stack. The ‘flow’ pass finds cases where registers are incremented or decremented
in one instruction and used as an address shortly before or after; these cases are then
transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an
insn, the original value of the register is used. Uses of the register outside of an address are
not permitted within the same insn as a use in an embedded side effect expression because
such insns behave differently on different machines and hence must be treated as ambiguous
and disallowed.

An instruction that can be represented with an embedded side effect could also be rep-
resented using parallel containing an additional set to describe how the address register
is altered. This is not done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as additional parallel
stores would require doubling the number of entries in the machine description.

Chapter 12: RTL Representation 177

12.17 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler
instruction. It is used to represent an asm statement with arguments. An asm statement
with a single output operand, like this:
asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));
is represented using a single asm_operands RTX which represents the value that is stored
in outputvar:
(set rtx-for-outputvar
(asm_operands "foo %1,%2,%0" "a" 0
[rtx-for-addition-result rtx-for-+*z]
[(asm_input:m1 "g")
(asm_input:m2 "di")1))
Here the operands of the asm_operands RTX are the assembler template string, the output-
operand’s constraint, the index-number of the output operand among the output operands
specified, a vector of input operand RTX’s, and a vector of input-operand modes and
constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s
inside of a parallel. Kach set contains a asm_operands; all of these share the same
assembler template and vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index number, which is 0, 1,
... for successive output operands.

12.18 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called
insns. Insns are expressions with special codes that are used for no other purpose. Some
insns are actual instructions; others represent dispatch tables for switch statements; others
represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that dis-
tinguishes it from all other insns in the current function (after delayed branch scheduling,
copies of an insn with the same id-number may be present in multiple places in a function,
but these copies will always be identical and will only appear inside a sequence), and chain
pointers to the preceding and following insns. These three fields occupy the same position
in every insn, independent of the expression code of the insn. They could be accessed with
XEXP and XINT, but instead three special macros are always used:

INSN_UID (i)
Accesses the unique id of insn i.
PREV_INSN (1)
Accesses the chain pointer to the insn preceding i. If i is the first insn, this is
a null pointer.
NEXT_INSN (i)
Accesses the chain pointer to the insn following i. If i is the last insn, this is a
null pointer.
The first insn in the chain is obtained by calling get_insns; the last insn is the result
of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and
PREV_INSN pointers must always correspond: if insn is not the first insn,

178 GNU Compiler Collection (GCC) Internals

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,
PREV_INSN (NEXT_INSN (insn)) == insn

is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions,
which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns
is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules
apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence
expressions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN
(insn)) is the insn containing the sequence expression, as is the value of PREV_INSN
(NEXT_INSN (insn)) if insn is the last insn in the sequence expression. You can use these
expressions to find the containing sequence expression.

Every insn has one of the following six expression codes:

insn The expression code insn is used for instructions that do not jump and do not
do function calls. sequence expressions are always contained in insns with code
insn even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory
ones listed above. These four are described in a table below.

jump_insn
The expression code jump_insn is used for instructions that may jump (or,
more generally, may contain label_ref expressions). If there is an instruction
to return from the current function, it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field JUMP_LABEL which is defined once jump
optimization has completed.

For simple conditional and unconditional jumps, this field contains the code_
label to which this insn will (possibly conditionally) branch. In a more complex
jump, JUMP_LABEL records one of the labels that the insn refers to; the only
way to find the others is to scan the entire body of the insn. In an addr_vec,
JUMP_LABEL is NULL_RTX.

Return insns count as jumps, but since they do not refer to any labels, their
JUMP_LABEL is NULL_RTX.

call_insn

The expression code call_insn is used for instructions that may do function
calls. It is important to distinguish these instructions because they imply that
certain registers and memory locations may be altered unpredictably.
call_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which contains
a list (chain of expr_list expressions) containing use and clobber expressions
that denote hard registers and MEMs used or clobbered by the called function.
A MEM generally points to a stack slots in which arguments passed to the
libcall by reference (see Section 15.10.7 [Register Arguments], page 345) are

Chapter 12: RTL Representation 179

code_label

barrier

note

stored. If the argument is caller-copied (see Section 15.10.7 [Register Argu-
ments|, page 345), the stack slot will be mentioned in CLOBBER and USE entries;
if it’s callee-copied, only a USE will appear, and the MEM may point to addresses
that are not stack slots.

CLOBBERed registers in this list augment registers specified in CALL_USED_
REGISTERS (see Section 15.7.1 [Register Basics]|, page 317).

A code_label insn represents a label that a jump insn can jump to. It con-
tains two special fields of data in addition to the three standard ones. CODE_
LABEL_NUMBER is used to hold the label number, a number that identifies this
label uniquely among all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘Ln’ where n is the label number.

When a code_label appears in an RTL expression, it normally appears within
a label_ref which represents the address of the label, as a number.

Besides as a code_label, a label can also be represented as a note of type
NOTE_INSN_DELETED_LABEL.

The field LABEL_NUSES is only defined once the jump optimization phase is
completed. It contains the number of times this label is referenced in the
current function.

The field LABEL_KIND differentiates four different types of labels: LABEL_
NORMAL, LABEL_STATIC_ENTRY, LABEL_GLOBAL_ENTRY, and LABEL_WEAK_ENTRY.
The only labels that do not have type LABEL_NORMAL are alternate entry points
to the current function. These may be static (visible only in the containing
translation unit), global (exposed to all translation units), or weak (global,
but can be overridden by another symbol with the same name).

Much of the compiler treats all four kinds of label identically. Some of it needs
to know whether or not a label is an alternate entry point; for this purpose,
the macro LABEL_ALT_ENTRY_P is provided. It is equivalent to testing whether
‘LABEL_KIND (label) == LABEL_NORMAL’. The only place that cares about the
distinction between static, global, and weak alternate entry points, besides the
front-end code that creates them, is the function output_alternate_entry_
point, in ‘final.c’.

To set the kind of a label, use the SET_LABEL_KIND macro.

Barriers are placed in the instruction stream when control cannot flow past
them. They are placed after unconditional jump instructions to indicate that
the jumps are unconditional and after calls to volatile functions, which do
not return (e.g., exit). They contain no information beyond the three standard
fields.

note insns are used to represent additional debugging and declarative informa-
tion. They contain two nonstandard fields, an integer which is accessed with
the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

180

GNU Compiler Collection (GCC) Internals

If NOTE_LINE_NUMBER is positive, the note represents the position of a source
line and NOTE_SOURCE_FILE is the source file name that the line came from.
These notes control generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one
of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED
Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.

NOTE_INSN_DELETED_LABEL
This marks what used to be a code_label, but was not used for
other purposes than taking its address and was transformed to mark
that no code jumps to it.

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END
These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output of
debugging information.

NOTE_INSN_EH_REGION_BEG

NOTE_INSN_EH_REGION_END
These types of notes indicate the position of the beginning and end
of a level of scoping for exception handling. NOTE_BLOCK_NUMBER
identifies which CODE_LABEL or note of type NOTE_INSN_DELETED_
LABEL is associated with the given region.

NOTE_INSN_LOOP_BEG

NOTE_INSN_LOOP_END
These types of notes indicate the position of the beginning and end
of a while or for loop. They enable the loop optimizer to find
loops quickly.

NOTE_INSN_LOOP_CONT
Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP
This note indicates the place in a loop where the exit test begins
for those loops in which the exit test has been duplicated. This
position becomes another virtual start of the loop when considering
loop invariants.

NOTE_INSN_FUNCTION_BEG
Appears at the start of the function body, after the function pro-
logue.

NOTE_INSN_FUNCTION_END
Appears near the end of the function body, just before the label that
return statements jump to (on machine where a single instruction
does not suffice for returning). This note may be deleted by jump
optimization.

Chapter 12: RTL Representation 181

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for
various purposes.

The common subexpression elimination pass sets the mode of an insn to QImode when it
is the first insn in a block that has already been processed.

The second Haifa scheduling pass, for targets that can multiple issue, sets the mode of
an insn to TImode when it is believed that the instruction begins an issue group. That is,
when the instruction cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)

An expression for the side effect performed by this insn. This must be one of the
following codes: set, call, use, clobber, return, asm_input, asm_output,
addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel,
cond_exec, or sequence. If it is a parallel, each element of the parallel
must be one these codes, except that parallel expressions cannot be nested
and addr_vec and addr_diff_vec are not permitted inside a parallel expres-
sion.

INSN_CODE (i)
An integer that says which pattern in the machine description matches this
insn, or —1 if the matching has not yet been attempted.

Such matching is never attempted and this field remains —1 on an insn whose
pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_
vec expression.

Matching is also never attempted on insns that result from an asm state-
ment. These contain at least one asm_operands expression. The function
asm_noperands returns a non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic
representation that locates the pattern in the ‘md’ file as some small positive or
negative offset from a named pattern.

LOG_LINKS (i)
A list (chain of insn_list expressions) giving information about dependencies
between instructions within a basic block. Neither a jump nor a label may come
between the related insns.

REG_NQTES (1)
A list (chain of expr_list and insn_list expressions) giving miscellaneous
information about the insn. It is often information pertaining to the registers
used in this insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has two
operands: the first is an insn, and the second is another insn_list expression (the next one
in the chain). The last insn_list in the chain has a null pointer as second operand. The
significant thing about the chain is which insns appear in it (as first operands of insn_list
expressions). Their order is not significant.

182 GNU Compiler Collection (GCC) Internals

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow
only adds links for those data dependencies which can be used for instruction combination.
For each insn, the flow analysis pass adds a link to insns which store into registers values
that are used for the first time in this insn. The instruction scheduling pass adds extra
links so that every dependence will be represented. Links represent data dependencies,
antidependencies and output dependencies; the machine mode of the link distinguishes
these three types: antidependencies have mode REG_DEP_ANTI, output dependencies have
mode REG_DEP_QUTPUT, and data dependencies have mode VOIDmode.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes
expr_list expressions in addition to insn_list expressions. There are several kinds of
register notes, which are distinguished by the machine mode, which in a register note is
really understood as being an enum reg_note. The first operand op of the note is data
whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the
macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn,
they may say something about an output of an insn, or they may create a linkage between
two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately
after this insn would not affect the future behavior of the program.

It does not follow that the register op has no useful value after this insn since
op is not necessarily modified by this insn. Rather, no subsequent instruction
uses the contents of op.

REG_UNUSED
The register op being set by this insn will not be used in a subsequent insn.
This differs from a REG_DEAD note, which indicates that the value in an input
will not be used subsequently. These two notes are independent; both may be
present for the same register.

REG_INC The register op is incremented (or decremented; at this level there is no dis-
tinction) by an embedded side effect inside this insn. This means it appears in
a post_inc, pre_inc, post_dec or pre_dec expression.

REG_NONNEG
The register op is known to have a nonnegative value when this insn is reached.
This is used so that decrement and branch until zero instructions, such as the
m68k dbra, can be matched.

The REG_NONNEG note is added to insns only if the machine description has a
‘decrement_and_branch_until_zero’ pattern.

REG_NO_CONFLICT
This insn does not cause a conflict between op and the item being set by this
insn even though it might appear that it does. In other words, if the destination
register and op could otherwise be assigned the same register, this insn does
not prevent that assignment.

Chapter 12: RTL Representation 183

REG_LABEL

Insns with this note are usually part of a block that begins with a clobber insn
specifying a multi-word pseudo register (which will be the output of the block),
a group of insns that each set one word of the value and have the REG_NO_
CONFLICT note attached, and a final insn that copies the output to itself with
an attached REG_EQUAL note giving the expression being computed. This block
is encapsulated with REG_LIBCALL and REG_RETVAL notes on the first and last
insns, respectively.

This insn uses op, a code_label or a note of type NOTE_INSN_DELETED_LABEL,
but is not a jump_insn, or it is a jump_insn that required the label to be held
in a register. The presence of this note allows jump optimization to be aware
that op is, in fact, being used, and flow optimization to build an accurate flow
graph.

REG_CROSSING_JUMP

REG_SETJMP

This insn is an branching instruction (either an unconditional jump or an indi-
rect jump) which crosses between hot and cold sections, which could potentially
be very far apart in the executable. The presence of this note indicates to other
optimizations that this this branching instruction should not be “collapsed” into
a simpler branching construct. It is used when the optimization to partition
basic blocks into hot and cold sections is turned on.

Appears attached to each CALL_INSN to setjmp or a related function.

The following notes describe attributes of outputs of an insn:

REG_EQUIV
REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that
that register will be equal to op at run time; the scope of this equivalence differs
between the two types of notes. The value which the insn explicitly copies into
the register may look different from op, but they will be equal at run time. If
the output of the single set is a strict_low_part expression, the note refers
to the register that is contained in SUBREG_REG of the subreg expression.

For REG_EQUIV, the register is equivalent to op throughout the entire function,
and could validly be replaced in all its occurrences by op. (“Validly” here refers
to the data flow of the program; simple replacement may make some insns
invalid.) For example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note
of this kind records that the register is equivalent to the stack slot where the
parameter was passed. Although in this case the register may be set by other
insns, it is still valid to replace the register by the stack slot throughout the
function.

A REG_EQUIV note is also used on an instruction which copies a register param-
eter into a pseudo-register at entry to a function, if there is a stack slot where

184 GNU Compiler Collection (GCC) Internals

that parameter could be stored. Although other insns may set the pseudo-
register, it is valid for the compiler to replace the pseudo-register by stack slot
throughout the function, provided the compiler ensures that the stack slot is
properly initialized by making the replacement in the initial copy instruction as
well. This is used on machines for which the calling convention allocates stack
space for register parameters. See REG_PARM_STACK_SPACE in Section 15.10.6
[Stack Arguments], page 343.

In the case of REG_EQUAL, the register that is set by this insn will be equal
to op at run time at the end of this insn but not necessarily elsewhere in the
function. In this case, op is typically an arithmetic expression. For example,
when a sequence of insns such as a library call is used to perform an arithmetic
operation, this kind of note is attached to the insn that produces or copies the
final value.

These two notes are used in different ways by the compiler passes. REG_EQUAL
is used by passes prior to register allocation (such as common subexpression
elimination and loop optimization) to tell them how to think of that value.
REG_EQUIV notes are used by register allocation to indicate that there is an
available substitute expression (either a constant or a mem expression for the
location of a parameter on the stack) that may be used in place of a register if
insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note
and are not useful to the early optimization passes and pseudo registers that
are equivalent to a memory location throughout their entire life, which is not
detected until later in the compilation, all equivalences are initially indicated
by an attached REG_EQUAL note. In the early stages of register allocation, a
REG_EQUAL note is changed into a REG_EQUIV note if op is a constant and the
insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_
EQUAL notes and passes subsequent to register allocation need only check for
REG_EQUIV notes.

These notes describe linkages between insns. They occur in pairs: one insn has one of a
pair of notes that points to a second insn, which has the inverse note pointing back to the
first insn.

REG_RETVAL
This insn copies the value of a multi-insn sequence (for example, a library call),
and op is the first insn of the sequence (for a library call, the first insn that was
generated to set up the arguments for the library call).

Loop optimization uses this note to treat such a sequence as a single opera-
tion for code motion purposes and flow analysis uses this note to delete such
sequences whose results are dead.

A REG_EQUAL note will also usually be attached to this insn to provide the
expression being computed by the sequence.

These notes will be deleted after reload, since they are no longer accurate or
useful.

Chapter 12: RTL Representation 185

REG_LIBCALL
This is the inverse of REG_RETVAL: it is placed on the first insn of a multi-insn
sequence, and it points to the last one.

These notes are deleted after reload, since they are no longer useful or accurate.

REG_CC_SETTER

REG_CC_USER
On machines that use cc0, the insns which set and use ccO set and use ccO are
adjacent. However, when branch delay slot filling is done, this may no longer
be true. In this case a REG_CC_USER note will be placed on the insn setting ccO
to point to the insn using ccO and a REG_CC_SETTER note will be placed on the
insn using ccO to point to the insn setting ccO.

These values are only used in the LOG_LINKS field, and indicate the type of dependency
that each link represents. Links which indicate a data dependence (a read after write
dependence) do not use any code, they simply have mode V0IDmode, and are printed without
any descriptive text.

REG_DEP_ANTI
This indicates an anti dependence (a write after read dependence).

REG_DEP_QUTPUT
This indicates an output dependence (a write after write dependence).

These notes describe information gathered from gcov profile data. They are stored in the
REG_NOTES field of an insn as an expr_list.

REG_BR_PROB
This is used to specify the ratio of branches to non-branches of a branch insn
according to the profile data. The value is stored as a value between 0 and
REG_BR_PROB_BASE; larger values indicate a higher probability that the
branch will be taken.

REG_BR_PRED
These notes are found in JUMP insns after delayed branch scheduling has taken
place. They indicate both the direction and the likelihood of the JUMP. The
format is a bitmask of ATTR_FLAG_* values.

REG_FRAME_RELATED_EXPR
This is used on an RTX_FRAME_RELATED_P insn wherein the attached ex-
pression is used in place of the actual insn pattern. This is done in cases where
the pattern is either complex or misleading.

For convenience, the machine mode in an insn_list or expr_list is printed using these
symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the
first operand of an insn_list is assumed to be an insn and is printed in debugging dumps
as the insn’s unique id; the first operand of an expr_list is printed in the ordinary way as
an expression.

186 GNU Compiler Collection (GCC) Internals

12.19 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must
satisfy special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:
(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being
passed to the subroutine, fm is a machine mode (which must equal as the definition of the
FUNCTION_MODE macro in the machine description) and addr represents the address of the
subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire
body of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned
in a hard register. If this register’s number is r, then the body of the call insn looks like
this:

(set (reg:m r)
(call (mem:fm addr) nbytes))
This RTL expression makes it clear (to the optimizer passes) that the appropriate register
receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine
the address of a place to store the value. So the call insn itself does not “return” any value,
and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to contain
the return address. call_insn insns on these machines should have a body which is a
parallel that contains both the call expression and clobber expressions that indicate
which registers are destroyed. Similarly, if the call instruction requires some register other
than the stack pointer that is not explicitly mentioned in its RTL, a use subexpression
should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration
macro CALL_USED_REGISTERS (see Section 15.7.1 [Register Basics], page 317) and, with the
exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate
which registers contain inputs to the function. Similarly, if registers other than those
in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single
clobber follow immediately after the call to indicate which registers.

12.20 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist
two distinct objects representing the same value. In other cases, it makes an opposite
assumption: that no RTL expression object of a certain kind appears in more than one
place in the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe
global variables and external functions, and a few standard objects such as small integer
constants, no RTL objects are common to two functions.

Chapter 12: RTL Representation 187

e FEach pseudo-register has only a single reg object to represent it, and therefore only a
single machine mode.

e For any symbolic label, there is only one symbol_ref object referring to it.
e All const_int expressions with equal values are shared.

e There is only one pc expression.

e There is only one ¢cO expression.

e There is only one const_double expression with value 0 for each floating point mode.
Likewise for values 1 and 2.

e There is only one const_vector expression with value 0 for each vector mode, be it
an integer or a double constant vector.

e No label_ref or scratch appears in more than one place in the RTL structure; in
other words, it is safe to do a tree-walk of all the insns in the function and assume that
each time a label_ref or scratch is seen it is distinct from all others that are seen.

e Ounly one mem object is normally created for each static variable or stack slot, so these
objects are frequently shared in all the places they appear. However, separate but equal
objects for these variables are occasionally made.

e When a single asm statement has multiple output operands, a distinct asm_operands
expression is made for each output operand. However, these all share the vector which
contains the sequence of input operands. This sharing is used later on to test whether
two asm_operands expressions come from the same statement, so all optimizations
must carefully preserve the sharing if they copy the vector at all.

e No RTL object appears in more than one place in the RTL structure except as described
above. Many passes of the compiler rely on this by assuming that they can modify
RTL objects in place without unwanted side-effects on other insns.

e During initial RTL generation, shared structure is freely introduced. After all the RTL
for a function has been generated, all shared structure is copied by unshare_all_rtl
in ‘emit-rtl.c’, after which the above rules are guaranteed to be followed.

e During the combiner pass, shared structure within an insn can exist temporarily. How-
ever, the shared structure is copied before the combiner is finished with the insn. This
is done by calling copy_rtx_if_shared, which is a subroutine of unshare_all_rt1.

12.21 Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream,
and returns a single RTL object. This routine is defined in ‘read-rtl.c’. It is not available
in the compiler itself, only the various programs that generate the compiler back end from
the machine description.

People frequently have the idea of using RTL stored as text in a file as an interface
between a language front end and the bulk of GCC. This idea is not feasible.

GCC was designed to use RTL internally only. Correct RTL for a given program is
very dependent on the particular target machine. And the RTL does not contain all the
information about the program.

The proper way to interface GCC to a new language front end is with the “tree” data
structure, described in the files ‘tree.h’ and ‘tree.def’. The documentation for this struc-
ture (see Chapter 9 [Trees], page 69) is incomplete.

188 GNU Compiler Collection (GCC) Internals

Chapter 13: Control Flow Graph 189

13 Control Flow Graph

A control flow graph (CFG) is a data structure built on top of the intermediate code
representation (the RTL or tree instruction stream) abstracting the control flow behavior
of a function that is being compiled. The CFG is a directed graph where the vertices
represent basic blocks and edges represent possible transfer of control flow from one basic
block to another. The data structures used to represent the control flow graph are defined
in ‘basic-block.h’.

13.1 Basic Blocks

A basic block is a straight-line sequence of code with only one entry point and only one
exit. In GCC, basic blocks are represented using the basic_block data type.

Two pointer members of the basic_block structure are the pointers next_bb and prev_
bb. These are used to keep doubly linked chain of basic blocks in the same order as the
underlying instruction stream. The chain of basic blocks is updated transparently by the
provided API for manipulating the CFG. The macro FOR_EACH_BB can be used to visit
all the basic blocks in lexicographical order. Dominator traversals are also possible using
walk_dominator_tree. Given two basic blocks A and B, block A dominates block B if A
is always executed before B.

The BASIC_BLOCK array contains all basic blocks in an unspecified order. Each basic_
block structure has a field that holds a unique integer identifier index that is the index of
the block in the BASIC_BLOCK array. The total number of basic blocks in the function is
n_basic_blocks. Both the basic block indices and the total number of basic blocks may
vary during the compilation process, as passes reorder, create, duplicate, and destroy basic
blocks. The index for any block should never be greater than last_basic_block.

Special basic blocks represent possible entry and exit points of a function. These blocks
are called ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR. These blocks do not contain any code,
and are not elements of the BASIC_BLOCK array. Therefore they have been assigned unique,
negative index numbers.

Each basic_block also contains pointers to the first instruction (the head) and the last
instruction (the tail) or end of the instruction stream contained in a basic block. In fact,
since the basic_block data type is used to represent blocks in both major intermediate
representations of GCC (tree and RTL), there are pointers to the head and end of a basic
block for both representations.

For RTL, these pointers are rtx head, end. In the RTL function representation, the head
pointer always points either to a NOTE_INSN_BASIC_BLOCK or to a CODE_LABEL, if present.
In the RTL representation of a function, the instruction stream contains not only the “real”
instructions, but also notes. Any function that moves or duplicates the basic blocks needs to
take care of updating of these notes. Many of these notes expect that the instruction stream
consists of linear regions, making such updates difficult. The NOTE_INSN_BASIC_BLOCK note
is the only kind of note that may appear in the instruction stream contained in a basic block.
The instruction stream of a basic block always follows a NOTE_INSN_BASIC_BLOCK, but zero
or more CODE_LABEL nodes can precede the block note. A basic block ends by control flow
instruction or last instruction before following CODE_LABEL or NOTE_INSN_BASIC_BLOCK. A
CODE_LABEL cannot appear in the instruction stream of a basic block.

190 GNU Compiler Collection (GCC) Internals

In addition to notes, the jump table vectors are also represented as “pseudo-instructions”
inside the insn stream. These vectors never appear in the basic block and should always be
placed just after the table jump instructions referencing them. After removing the table-
jump it is often difficult to eliminate the code computing the address and referencing the
vector, so cleaning up these vectors is postponed until after liveness analysis. Thus the
jump table vectors may appear in the insn stream unreferenced and without any purpose.
Before any edge is made fall-thru, the existence of such construct in the way needs to be
checked by calling can_fallthru function.

For the tree representation, the head and end of the basic block are being pointed to by
the stmt_list field, but this special tree should never be referenced directly. Instead, at
the tree level abstract containers and iterators are used to access statements and expressions
in basic blocks. These iterators are called block statement iterators (BSIs). Grep for “bsi
in the various ‘tree-x*’ files. The following snippet will pretty-print all the statements of
the program in the GIMPLE representation.

FOR_EACH_BB (bb)

{
block_stmt_iterator sij;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
print_generic_stmt (stderr, stmt, 0);
}
}
13.2 Edges

Edges represent possible control flow transfers from the end of some basic block A to the
head of another basic block B. We say that A is a predecessor of B, and B is a successor
of A. Edges are represented in GCC with the edge data type. Each edge acts as a link
between two basic blocks: the src member of an edge points to the predecessor basic block
of the dest basic block. The members preds and succs of the basic_block data type
point to type-safe vectors of edges to the predecessors and successors of the block.

When walking the edges in an edge vector, edge iterators should be used. Edge iterators
are constructed using the edge_iterator data structure and several methods are available
to operate on them:

ei_start This function initializes an edge_iterator that points to the first edge in a
vector of edges.

ei_last This function initializes an edge_iterator that points to the last edge in a
vector of edges.

ei_end_p This predicate is true if an edge_iterator represents the last edge in an edge
vector.

ei_one_before_end_p
This predicate is true if an edge_iterator represents the second last edge in
an edge vector.

ei_next This function takes a pointer to an edge_iterator and makes it point to the
next edge in the sequence.

Chapter 13: Control Flow Graph 191

ei_prev This function takes a pointer to an edge_iterator and makes it point to the
previous edge in the sequence.

ei_edge This function returns the edge currently pointed to by an edge_iterator.

ei_safe_safe
This function returns the edge currently pointed to by an edge_iterator,
but returns NULL if the iterator is pointing at the end of the sequence. This
function has been provided for existing code makes the assumption that a NULL
edge indicates the end of the sequence.

The convenience macro FOR_EACH_EDGE can be used to visit all of the edges in a sequence
of predecessor or successor edges. It must not be used when an element might be removed
during the traversal, otherwise elements will be missed. Here is an example of how to use
the macro:

edge e;
edge_iterator ei;

FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e—>flags & EDGE_FALLTHRU)
break;

}

There are various reasons why control flow may transfer from one block to another. One
possibility is that some instruction, for example a CODE_LABEL, in a linearized instruction
stream just always starts a new basic block. In this case a fall-thru edge links the basic
block to the first following basic block. But there are several other reasons why edges may
be created. The flags field of the edge data type is used to store information about the
type of edge we are dealing with. Each edge is of one of the following types:

Jump No type flags are set for edges corresponding to jump instructions. These edges
are used for unconditional or conditional jumps and in RTL also for table jumps.
They are the easiest to manipulate as they may be freely redirected when the
flow graph is not in SSA form.

fall-thru Fall-thru edges are present in case where the basic block may continue exe-
cution to the following one without branching. These edges have the EDGE_
FALLTHRU flag set. Unlike other types of edges, these edges must come into
the basic block immediately following in the instruction stream. The function
force_nonfallthru is available to insert an unconditional jump in the case
that redirection is needed. Note that this may require creation of a new basic
block.

exception handling
Exception handling edges represent possible control transfers from a trapping
instruction to an exception handler. The definition of “trapping” varies. In C++,
only function calls can throw, but for Java, exceptions like division by zero or
segmentation fault are defined and thus each instruction possibly throwing this
kind of exception needs to be handled as control flow instruction. Exception
edges have the EDGE_ABNORMAL and EDGE_EH flags set.

192 GNU Compiler Collection (GCC) Internals

When updating the instruction stream it is easy to change possibly trapping
instruction to non-trapping, by simply removing the exception edge. The op-
posite conversion is difficult, but should not happen anyway. The edges can be
eliminated via purge_dead_edges call.

In the RTL representation, the destination of an exception edge is specified
by REG_EH_REGION note attached to the insn. In case of a trapping call the
EDGE_ABNORMAL_CALL flag is set too. In the tree representation, this extra flag
is not set.

In the RTL representation, the predicate may_trap_p may be used to check
whether instruction still may trap or not. For the tree representation, the
tree_could_trap_p predicate is available, but this predicate only checks for
possible memory traps, as in dereferencing an invalid pointer location.

sibling calls
Sibling calls or tail calls terminate the function in a non-standard way and thus
an edge to the exit must be present. EDGE_SIBCALL and EDGE_ABNORMAL are
set in such case. These edges only exist in the RTL representation.

computed jumps

Computed jumps contain edges to all labels in the function referenced from
the code. All those edges have EDGE_ABNORMAL flag set. The edges used to
represent computed jumps often cause compile time performance problems,
since functions consisting of many taken labels and many computed jumps may
have very dense flow graphs, so these edges need to be handled with special
care. During the earlier stages of the compilation process, GCC tries to avoid
such dense flow graphs by factoring computed jumps. For example, given the
following series of jumps,

goto *x;

[...]1]

goto *x;

[...]1]

goto *x;

[...1]
factoring the computed jumps results in the following code sequence which has
a much simpler flow graph:

goto y;
[...]1]

goto y;
[...]1]

goto y;
L...]

y:
goto *x;
However, the classic problem with this transformation is that it has a runtime
cost in there resulting code: An extra jump. Therefore, the computed jumps
are un-factored in the later passes of the compiler. Be aware of that when

Chapter 13: Control Flow Graph 193

you work on passes in that area. There have been numerous examples already
where the compile time for code with unfactored computed jumps caused some
serious headaches.

nonlocal goto handlers
GCC allows nested functions to return into caller using a goto to a label passed
to as an argument to the callee. The labels passed to nested functions contain
special code to cleanup after function call. Such sections of code are referred to
as “nonlocal goto receivers”. If a function contains such nonlocal goto receivers,
an edge from the call to the label is created with the EDGE_ABNORMAL and EDGE_
ABNORMAL_CALL flags set.

function entry points

By definition, execution of function starts at basic block 0, so there is always
an edge from the ENTRY_BLOCK_PTR to basic block 0. There is no tree repre-
sentation for alternate entry points at this moment. In RTL, alternate entry
points are specified by CODE_LABEL with LABEL_ALTERNATE_NAME defined. This
feature is currently used for multiple entry point prologues and is limited to
post-reload passes only. This can be used by back-ends to emit alternate pro-
logues for functions called from different contexts. In future full support for
multiple entry functions defined by Fortran 90 needs to be implemented.

function exits
In the pre-reload representation a function terminates after the last instruction
in the insn chain and no explicit return instructions are used. This corresponds
to the fall-thru edge into exit block. After reload, optimal RTL epilogues are
used that use explicit (conditional) return instructions that are represented by
edges with no flags set.

13.3 Profile information

In many cases a compiler must make a choice whether to trade speed in one part of code
for speed in another, or to trade code size for code speed. In such cases it is useful to know
information about how often some given block will be executed. That is the purpose for
maintaining profile within the flow graph. GCC can handle profile information obtained
through profile feedback, but it can also estimate branch probabilities based on statics and
heuristics.

The feedback based profile is produced by compiling the program with instrumentation,
executing it on a train run and reading the numbers of executions of basic blocks and edges
back to the compiler while re-compiling the program to produce the final executable. This
method provides very accurate information about where a program spends most of its time
on the train run. Whether it matches the average run of course depends on the choice
of train data set, but several studies have shown that the behavior of a program usually
changes just marginally over different data sets.

When profile feedback is not available, the compiler may be asked to attempt to predict
the behavior of each branch in the program using a set of heuristics (see ‘predict.def’
for details) and compute estimated frequencies of each basic block by propagating the
probabilities over the graph.

194 GNU Compiler Collection (GCC) Internals

Each basic_block contains two integer fields to represent profile information: frequency
and count. The frequency is an estimation how often is basic block executed within a
function. It is represented as an integer scaled in the range from 0 to BB_FREQ_BASE. The
most frequently executed basic block in function is initially set to BB_FREQ_BASE and the
rest of frequencies are scaled accordingly. During optimization, the frequency of the most
frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance
by cross-jumping optimization), so scaling sometimes has to be performed multiple times.

The count contains hard-counted numbers of execution measured during training runs
and is nonzero only when profile feedback is available. This value is represented as the
host’s widest integer (typically a 64 bit integer) of the special type gcov_type.

Most optimization passes can use only the frequency information of a basic block, but a
few passes may want to know hard execution counts. The frequencies should always match
the counts after scaling, however during updating of the profile information numerical error
may accumulate into quite large errors.

Each edge also contains a branch probability field: an integer in the range from 0 to
REG_BR_PROB_BASE. It represents probability of passing control from the end of the src
basic block to the dest basic block, i.e. the probability that control will flow along this
edge. The EDGE_FREQUENCY macro is available to compute how frequently a given edge is
taken. There is a count field for each edge as well, representing same information as for a
basic block.

The basic block frequencies are not represented in the instruction stream, but in the RTL
representation the edge frequencies are represented for conditional jumps (via the REG_BR_
PROB macro) since they are used when instructions are output to the assembly file and the
flow graph is no longer maintained.

The probability that control flow arrives via a given edge to its destination basic block
is called reverse probability and is not directly represented, but it may be easily computed
from frequencies of basic blocks.

Updating profile information is a delicate task that can unfortunately not be easily in-
tegrated with the CFG manipulation API. Many of the functions and hooks to modify
the CFG, such as redirect_edge_and_branch, do not have enough information to easily
update the profile, so updating it is in the majority of cases left up to the caller. It is
difficult to uncover bugs in the profile updating code, because they manifest themselves
only by producing worse code, and checking profile consistency is not possible because of
numeric error accumulation. Hence special attention needs to be given to this issue in each
pass that modifies the CFG.

It is important to point out that REG_BR_PROB_BASE and BB_FREQ_BASE are both set low
enough to be possible to compute second power of any frequency or probability in the flow
graph, it is not possible to even square the count field, as modern CPUs are fast enough to
execute $2°32$ operations quickly.

13.4 Maintaining the CFG

An important task of each compiler pass is to keep both the control flow graph and all profile
information up-to-date. Reconstruction of the control flow graph after each pass is not an
option, since it may be very expensive and lost profile information cannot be reconstructed
at all.

Chapter 13: Control Flow Graph 195

GCC has two major intermediate representations, and both use the basic_block and
edge data types to represent control flow. Both representations share as much of the CFG
maintenance code as possible. For each representation, a set of hooks is defined so that
each representation can provide its own implementation of CFG manipulation routines when
necessary. These hooks are defined in ‘cfghooks.h’. There are hooks for almost all common
CFG manipulations, including block splitting and merging, edge redirection and creating
and deleting basic blocks. These hooks should provide everything you need to maintain and
manipulate the CFG in both the RTL and tree representation.

At the moment, the basic block boundaries are maintained transparently when modifying
instructions, so there rarely is a need to move them manually (such as in case someone
wants to output instruction outside basic block explicitly). Often the CFG may be better
viewed as integral part of instruction chain, than structure built on the top of it. However,
in principle the control flow graph for the tree representation is not an integral part of
the representation, in that a function tree may be expanded without first building a flow
graph for the tree representation at all. This happens when compiling without any tree
optimization enabled. When the tree optimizations are enabled and the instruction stream
is rewritten in SSA form, the CFG is very tightly coupled with the instruction stream. In
particular, statement insertion and removal has to be done with care. In fact, the whole
tree representation can not be easily used or maintained without proper maintenance of
the CFG simultaneously.

In the RTL representation, each instruction has a BLOCK_FOR_INSN value that represents
pointer to the basic block that contains the instruction. In the tree representation, the
function bb_for_stmt returns a pointer to the basic block containing the queried statement.

When changes need to be applied to a function in its tree representation, block statement
iterators should be used. These iterators provide an integrated abstraction of the flow
graph and the instruction stream. Block statement iterators iterators are constructed using
the block_stmt_iterator data structure and several modifier are available, including the
following;:

bsi_start
This function initializes a block_stmt_iterator that points to the first non-
empty statement in a basic block.

bsi_last This function initializes a block_stmt_iterator that points to the last state-
ment in a basic block.

bsi_end_p
This predicate is true if a block_stmt_iterator represents the end of a basic
block.

bsi_next This function takes a block_stmt_iterator and makes it point to its successor.

bsi_prev This function takes a block_stmt_iterator and makes it point to its prede-
Cessor.

bsi_insert_after
This function inserts a statement after the block_stmt_iterator passed in.
The final parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

196 GNU Compiler Collection (GCC) Internals

bsi_insert_before
This function inserts a statement before the block_stmt_iterator passed in.
The final parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

bsi_remove
This function removes the block_stmt_iterator passed in and rechains the
remaining statements in a basic block, if any.

In the RTL representation, the macros BB_HEAD and BB_END may be used to get the
head and end rtx of a basic block. No abstract iterators are defined for traversing the
insn chain, but you can just use NEXT_INSN and PREV_INSN instead. See See Section 12.18
[Insns], page 177.

Usually a code manipulating pass simplifies the instruction stream and the flow of control,
possibly eliminating some edges. This may for example happen when a conditional jump is
replaced with an unconditional jump, but also when simplifying possibly trapping instruc-
tion to non-trapping while compiling Java. Updating of edges is not transparent and each
optimization pass is required to do so manually. However only few cases occur in practice.
The pass may call purge_dead_edges on a given basic block to remove superfluous edges,
if any.

Another common scenario is redirection of branch instructions, but this is best modeled as
redirection of edges in the control flow graph and thus use of redirect_edge_and_branch is
preferred over more low level functions, such as redirect_jump that operate on RTL chain
only. The CFG hooks defined in ‘cfghooks.h’ should provide the complete API required
for manipulating and maintaining the CFG.

It is also possible that a pass has to insert control flow instruction into the middle of a
basic block, thus creating an entry point in the middle of the basic block, which is impossible
by definition: The block must be split to make sure it only has one entry point, i.e. the
head of the basic block. The CFG hook split_block may be used when an instruction in
the middle of a basic block has to become the target of a jump or branch instruction.

For a global optimizer, a common operation is to split edges in the flow graph and insert
instructions on them. In the RTL representation, this can be easily done using the insert_
insn_on_edge function that emits an instruction “on the edge”, caching it for a later
commit_edge_insertions call that will take care of moving the inserted instructions off
the edge into the instruction stream contained in a basic block. This includes the creation
of new basic blocks where needed. In the tree representation, the equivalent functions
are bsi_insert_on_edge which inserts a block statement iterator on an edge, and bsi_
commit_edge_inserts which flushes the instruction to actual instruction stream.

While debugging the optimization pass, an verify_flow_info function may be useful to
find bugs in the control flow graph updating code.

Note that at present, the representation of control flow in the tree representation is
discarded before expanding to RTL. Long term the CFG should be maintained and “ex-
panded” to the RTL representation along with the function tree itself.

13.5 Liveness information

Liveness information is useful to determine whether some register is “live” at given point
of program, i.e. that it contains a value that may be used at a later point in the program.

Chapter 13: Control Flow Graph 197

This information is used, for instance, during register allocation, as the pseudo registers
only need to be assigned to a unique hard register or to a stack slot if they are live. The
hard registers and stack slots may be freely reused for other values when a register is dead.

The liveness information is stored partly in the RTL instruction stream and partly in the
flow graph. Local information is stored in the instruction stream: Each instruction may
contain REG_DEAD notes representing that the value of a given register is no longer needed,
or REG_UNUSED notes representing that the value computed by the instruction is never used.
The second is useful for instructions computing multiple values at once.

Global liveness information is stored in the control flow graph. Each basic block contains
two bitmaps, global_live_at_start and global_live_at_end representing liveness of
each register at the entry and exit of the basic block. The file flow.c contains functions
to compute liveness of each register at any given place in the instruction stream using this
information.

Liveness is expensive to compute and thus it is desirable to keep it up to date during
code modifying passes. This can be easily accomplished using the flags field of a basic
block. Functions modifying the instruction stream automatically set the BB_DIRTY flag
of a modifies basic block, so the pass may simply useclear_bb_flags before doing any
modifications and then ask the data flow module to have liveness updated via the update_
life_info_in_dirty_blocks function.

This scheme works reliably as long as no control flow graph transformations are done.
The task of updating liveness after control flow graph changes is more difficult as normal
iterative data flow analysis may produce invalid results or get into an infinite cycle when
the initial solution is not below the desired one. Only simple transformations, like splitting
basic blocks or inserting on edges, are safe, as functions to implement them already know
how to update liveness information locally.

198 GNU Compiler Collection (GCC) Internals

Chapter 14: Machine Descriptions 199

14 Machine Descriptions

A machine description has two parts: a file of instruction patterns (‘.md’ file) and a C
header file of macro definitions.

The *.md’ file for a target machine contains a pattern for each instruction that the target
machine supports (or at least each instruction that is worth telling the compiler about).
It may also contain comments. A semicolon causes the rest of the line to be a comment,
unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.

14.1 Overview of How the Machine Description is Used

There are three main conversions that happen in the compiler:
1. The front end reads the source code and builds a parse tree.
2. The parse tree is used to generate an RTL insn list based on named instruction patterns.

3. The insn list is matched against the RTL templates to produce assembler code.

For the generate pass, only the names of the insns matter, from either a named define_
insn or a define_expand. The compiler will choose the pattern with the right name and
apply the operands according to the documentation later in this chapter, without regard
for the RTL template or operand constraints. Note that the names the compiler looks for
are hard-coded in the compiler—it will ignore unnamed patterns and patterns with names
it doesn’t know about, but if you don’t provide a named pattern it needs, it will abort.

If a define_insn is used, the template given is inserted into the insn list. If a define_
expand is used, one of three things happens, based on the condition logic. The condition
logic may manually create new insns for the insn list, say via emit_insn(), and invoke DONE.
For certain named patterns, it may invoke FAIL to tell the compiler to use an alternate way
of performing that task. If it invokes neither DONE nor FAIL, the template given in the
pattern is inserted, as if the define_expand were a define_insn.

Once the insn list is generated, various optimization passes convert, replace, and rearrange
the insns in the insn list. This is where the define_split and define_peephole patterns
get used, for example.

Finally, the insn list’s RTL is matched up with the RTL templates in the define_insn
patterns, and those patterns are used to emit the final assembly code. For this purpose,
each named define_insn acts like it’s unnamed, since the names are ignored.

14.2 Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in
later, operand constraints that restrict how the pieces can be filled in, and an output pattern
or C code to generate the assembler output, all wrapped up in a define_insn expression.

A define_insn is an RTL expression containing four or five operands:

1. An optional name. The presence of a name indicate that this instruction pattern can
perform a certain standard job for the RTL-generation pass of the compiler. This pass
knows certain names and will use the instruction patterns with those names, if the
names are defined in the machine description.

200

GNU Compiler Collection (GCC) Internals

The absence of a name is indicated by writing an empty string where the name should
go. Nameless instruction patterns are never used for generating RTL code, but they
may permit several simpler insns to be combined later on.

Names that are not thus known and used in RTL-generation have no effect; they are
equivalent to no name at all.

For the purpose of debugging the compiler, you may also specify a name beginning
with the ‘*’ character. Such a name is used only for identifying the instruction in RTL
dumps; it is entirely equivalent to having a nameless pattern for all other purposes.

The RTL template (see Section 14.4 [RTL Template], page 201) is a vector of incomplete
RTL expressions which show what the instruction should look like. It is incomplete
because it may contain match_operand, match_operator, and match_dup expressions
that stand for operands of the instruction.

If the vector has only one element, that element is the template for the instruction
pattern. If the vector has multiple elements, then the instruction pattern is a parallel
expression containing the elements described.

A condition. This is a string which contains a C expression that is the final test to
decide whether an insn body matches this pattern.

For a named pattern, the condition (if present) may not depend on the data in the insn
being matched, but only the target-machine-type flags. The compiler needs to test these
conditions during initialization in order to learn exactly which named instructions are
available in a particular run.

For nameless patterns, the condition is applied only when matching an individual insn,
and only after the insn has matched the pattern’s recognition template. The insn’s
operands may be found in the vector operands. For an insn where the condition has
once matched, it can’t be used to control register allocation, for example by excluding
certain hard registers or hard register combinations.

The output template: a string that says how to output matching insns as assembler
code. ‘%’ in this string specifies where to substitute the value of an operand. See
Section 14.5 [Output Template], page 204.

When simple substitution isn’t general enough, you can specify a piece of C code to
compute the output. See Section 14.6 [Output Statement], page 206.

Optionally, a vector containing the values of attributes for insns matching this pattern.
See Section 14.19 [Insn Attributes|, page 274.

14.3 Example of define_insn

Here is an actual example of an instruction pattern, for the 68000/68020.

(define_insn "tstsi"
[(set (cc0)

(match_operand:SI O "general_operand" "rm"))]

My

if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return \"tstl %0\";
return \"cmpl #0,%0\";
iR

Chapter 14: Machine Descriptions 201

This can also be written using braced strings:

(define_insn "tstsi"
[(set (cc0)

(match_operand:SI O "general_operand" "rm"))]
nn

¢ if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return "tstl %0";
return "cmpl #0,%0";
b
This is an instruction that sets the condition codes based on the value of a general

operand. It has no condition, so any insn whose RTL description has the form shown may
be handled according to this pattern. The name ‘tstsi’ means “test a SImode value” and
tells the RTL generation pass that, when it is necessary to test such a value, an insn to do
so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to
return based on the kind of operand and the specific type of CPU for which code is being
generated.

“"rm"’ is an operand constraint. Its meaning is explained below.

14.4 RTL Template

The RTL template is used to define which insns match the particular pattern and how to
find their operands. For named patterns, the RTL template also says how to construct an
insn from specified operands.

Construction involves substituting specified operands into a copy of the template. Match-
ing involves determining the values that serve as the operands in the insn being matched.
Both of these activities are controlled by special expression types that direct matching and
substitution of the operands.

(match_operand:m n predicate constraint)
This expression is a placeholder for operand number n of the insn. When
constructing an insn, operand number n will be substituted at this point. When
matching an insn, whatever appears at this position in the insn will be taken
as operand number n; but it must satisfy predicate or this instruction pattern
will not match at all.

Operand numbers must be chosen consecutively counting from zero in each
instruction pattern. There may be only one match_operand expression in the
pattern for each operand number. Usually operands are numbered in the order
of appearance in match_operand expressions. In the case of a define_expand,
any operand numbers used only in match_dup expressions have higher values
than all other operand numbers.

predicate is a string that is the name of a function that accepts two arguments,
an expression and a machine mode. See Section 14.7 [Predicates], page 207.
During matching, the function will be called with the putative operand as the
expression and m as the mode argument (if m is not specified, VOIDmode will be
used, which normally causes predicate to accept any mode). If it returns zero,
this instruction pattern fails to match. predicate may be an empty string; then

202

GNU Compiler Collection (GCC) Internals

it means no test is to be done on the operand, so anything which occurs in this
position is valid.

Most of the time, predicate will reject modes other than m—but not always.
For example, the predicate address_operand uses m as the mode of memory
ref that the address should be valid for. Many predicates accept const_int
nodes even though their mode is VO0IDmode.

constraint controls reloading and the choice of the best register class to use for
a value, as explained later (see Section 14.8 [Constraints], page 211). If the
constraint would be an empty string, it can be omitted.

People are often unclear on the difference between the constraint and the predi-
cate. The predicate helps decide whether a given insn matches the pattern. The
constraint plays no role in this decision; instead, it controls various decisions in
the case of an insn which does match.

(match_scratch:m n constraint)

This expression is also a placeholder for operand number n and indicates that
operand must be a scratch or reg expression.

When matching patterns, this is equivalent to
(match_operand:m n "scratch_operand" pred)
but, when generating RTL, it produces a (scratch:m) expression.
If the last few expressions in a parallel are clobber expressions whose

operands are either a hard register or match_scratch, the combiner can add
or delete them when necessary. See Section 12.15 [Side Effects], page 170.

(match_dup n)

This expression is also a placeholder for operand number n. It is used when the
operand needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the operand is sub-
stituted into the insn being constructed. But in matching, match_dup behaves
differently. It assumes that operand number n has already been determined by
a match_operand appearing earlier in the recognition template, and it matches
only an identical-looking expression.

Note that match_dup should not be used to tell the compiler that a particular
register is being used for two operands (example: add that adds one register to
another; the second register is both an input operand and the output operand).
Use a matching constraint (see Section 14.8.1 [Simple Constraints|, page 212)
for those. match_dup is for the cases where one operand is used in two places
in the template, such as an instruction that computes both a quotient and a
remainder, where the opcode takes two input operands but the RTL template
has to refer to each of those twice; once for the quotient pattern and once for
the remainder pattern.

(match_operator:m n predicate [operands...])

This pattern is a kind of placeholder for a variable RTL expression code.
When constructing an insn, it stands for an RTL expression whose expression
code is taken from that of operand n, and whose operands are constructed from
the patterns operands.

Chapter 14: Machine Descriptions 203

When matching an expression, it matches an expression if the function predi-
cate returns nonzero on that expression and the patterns operands match the
operands of the expression.

Suppose that the function commutative_operator is defined as follows, to
match any expression whose operator is one of the commutative arithmetic
operators of RTL and whose mode is mode:
int
commutative_integer_operator (x, mode)
rtx x;
enum machine_mode mode;

{
enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) != mode)
return O;
return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|| code == EQ || code == NE);
}
Then the following pattern will match any RTL expression consisting of a com-
mutative operator applied to two general operands:

(match_operator:SI 3 '"commutative_operator"
[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")])
Here the vector [operands . ..] contains two patterns because the expressions
to be matched all contain two operands.

When this pattern does match, the two operands of the commutative operator
are recorded as operands 1 and 2 of the insn. (This is done by the two instances
of match_operand.) Operand 3 of the insn will be the entire commutative
expression: use GET_CODE (operands[3]) to see which commutative operator
was used.

The machine mode m of match_operator works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched “has”
that mode.

When constructing an insn, argument 3 of the gen-function will specify the
operation (i.e. the expression code) for the expression to be made. It should
be an RTL expression, whose expression code is copied into a new expression
whose operands are arguments 1 and 2 of the gen-function. The subexpressions
of argument 3 are not used; only its expression code matters.

When match_operator is used in a pattern for matching an insn, it usually best
if the operand number of the match_operator is higher than that of the actual
operands of the insn. This improves register allocation because the register
allocator often looks at operands 1 and 2 of insns to see if it can do register
tying.

There is no way to specify constraints in match_operator. The operand of
the insn which corresponds to the match_operator never has any constraints
because it is never reloaded as a whole. However, if parts of its operands are
matched by match_operand patterns, those parts may have constraints of their
own.

204

GNU Compiler Collection (GCC) Internals

(match_op_dup:m n[operands...])

Like match_dup, except that it applies to operators instead of operands. When
constructing an insn, operand number n will be substituted at this point. But in
matching, match_op_dup behaves differently. It assumes that operand number
n has already been determined by a match_operator appearing earlier in the
recognition template, and it matches only an identical-looking expression.

(match_parallel n predicate [subpat...])

This pattern is a placeholder for an insn that consists of a parallel expression
with a variable number of elements. This expression should only appear at the
top level of an insn pattern.

When constructing an insn, operand number n will be substituted at this point.
When matching an insn, it matches if the body of the insn is a parallel
expression with at least as many elements as the vector of subpat expressions
in the match_parallel, if each subpat matches the corresponding element of
the parallel, and the function predicate returns nonzero on the parallel
that is the body of the insn. It is the responsibility of the predicate to validate
elements of the parallel beyond those listed in the match_parallel.

A typical use of match_parallel is to match load and store multiple expres-
sions, which can contain a variable number of elements in a parallel. For
example,

(define_insn ""
[(match_parallel O "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))1)]

"loadm 0,0,%1,%2")

This example comes from ‘a29k.md’. The function load_multiple_operation
is defined in ‘a29k.c’ and checks that subsequent elements in the parallel are
the same as the set in the pattern, except that they are referencing subsequent
registers and memory locations.

An insn that matches this pattern might look like:

(parallel
[(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21)
(mem:SI (plus:SI (reg:SI 100)
(const_int 4))))
(set (reg:SI 22)
(mem:SI (plus:SI (reg:SI 100)
(const_int 8))))1)

(match_par_dup n [subpat...])

Like match_op_dup, but for match_parallel instead of match_operator.

Chapter 14: Machine Descriptions 205

14.5 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for an
instruction pattern. Most of the template is a fixed string which is output literally. The
character ‘%’ is used to specify where to substitute an operand; it can also be used to identify
places where different variants of the assembler require different syntax.

In the simplest case, a ‘%’ followed by a digit n says to output operand n at that point in
the string.

‘% followed by a letter and a digit says to output an operand in an alternate fashion.
Four letters have standard, built-in meanings described below. The machine description
macro PRINT_OPERAND can define additional letters with nonstandard meanings.

‘hcdigit’ can be used to substitute an operand that is a constant value without the
syntax that normally indicates an immediate operand.

‘dndigit’ is like ‘%cdigit’ except that the value of the constant is negated before print-
ing.

‘hadigit’ can be used to substitute an operand as if it were a memory reference, with
the actual operand treated as the address. This may be useful when outputting a “load
address” instruction, because often the assembler syntax for such an instruction requires
you to write the operand as if it were a memory reference.

‘hldigit’ is used to substitute a label_ref into a jump instruction.

‘%=" outputs a number which is unique to each instruction in the entire compilation. This
is useful for making local labels to be referred to more than once in a single template that
generates multiple assembler instructions.

‘% followed by a punctuation character specifies a substitution that does not use an
operand. Ounly one case is standard: ‘%%’ outputs a ‘%’ into the assembler code. Other
nonstandard cases can be defined in the PRINT_OPERAND macro. You must also define
which punctuation characters are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the in-
structions, with ‘\;” between them.

When the RTL contains two operands which are required by constraint to match each
other, the output template must refer only to the lower-numbered operand. Matching
operands are not always identical, and the rest of the compiler arranges to put the proper
RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following ‘%’ is to distinguish between
different assembler languages for the same machine; for example, Motorola syntax versus
MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while
MIT syntax does not. For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in
Motorola syntax. The same file of patterns is used for both kinds of output syntax, but
the character sequence ‘%.’ is used in each place where Motorola syntax wants a period.
The PRINT_OPERAND macro for Motorola syntax defines the sequence to output a period;
the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler
to first split the insn, and then output the resulting instructions separately. This helps
eliminate redundancy in the output templates. If you have a define_insn that needs
to emit multiple assembler instructions, and there is an matching define_split already

206 GNU Compiler Collection (GCC) Internals

defined, then you can simply use # as the output template instead of writing an output
template that emits the multiple assembler instructions.

If the macro ASSEMBLER_DIALECT is defined, you can use construct of the form
‘{option0|optionlloption2}’ in the templates. These describe multiple variants of
assembler language syntax. See Section 15.21.7 [Instruction Output], page 402.

14.6 C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code for
all the cases that are recognized by a single instruction pattern. For example, the opcodes
may depend on the kinds of operands; or some unfortunate combinations of operands may
require extra machine instructions.

If the output control string starts with a ‘@, then it is actually a series of templates, each
on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates
correspond to the pattern’s constraint alternatives (see Section 14.8.2 [Multi-Alternative],
page 216). For example, if a target machine has a two-address add instruction ‘addr’ to
add into a register and another ‘addm’ to add a register to memory, you might write this
pattern:

(define_insn "addsi3"
[(set (match_operand:SI O "general_operand" "=r,m")
(plus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "g,r")))]

II@
addr %2,%0
addm %2,%0")

If the output control string starts with a ‘*’, then it is not an output template but rather a
piece of C program that should compute a template. It should execute a return statement
to return the template-string you want. Most such templates use C string literals, which
require doublequote characters to delimit them. To include these doublequote characters in
the string, prefix each one with ‘\’.

If the output control string is written as a brace block instead of a double-quoted string,
it is automatically assumed to be C code. In that case, it is not necessary to put in a leading
asterisk, or to escape the doublequotes surrounding C string literals.

The operands may be found in the array operands, whose C data type is rtx [].

It is very common to select different ways of generating assembler code based on whether
an immediate operand is within a certain range. Be careful when doing this, because the
result of INTVAL is an integer on the host machine. If the host machine has more bits in an
int than the target machine has in the mode in which the constant will be used, then some
of the bits you get from INTVAL will be superfluous. For proper results, you must carefully
disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute
more of them, using the subroutine output_asm_insn. This receives two arguments: a
template-string and a vector of operands. The vector may be operands, or it may be
another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this

Chapter 14: Machine Descriptions 207

is so, the C code can test the variable which_alternative, which is the ordinal number of
the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and
‘clrmem’ for memory locations. Here is how a pattern could use which_alternative to
choose between them:

(define_insn ""

[(set (match_operand:SI O "general_operand" "=r,m")
(comst_int 0))]

{
return (which_alternative ==

? "clrreg /40" : "clrmem %0");
1))

The example above, where the assembler code to generate was solely determined by the
alternative, could also have been specified as follows, having the output control string start
with a ‘@

(define_insn ""

[(set (match_operand:SI O "general_operand" "=r,m")
(const_int 0))]

|I@
clrreg %0
clrmem %0")

14.7 Predicates

A predicate determines whether a match_operand or match_operator expression matches,
and therefore whether the surrounding instruction pattern will be used for that combination
of operands. GCC has a number of machine-independent predicates, and you can define
machine-specific predicates as needed. By convention, predicates used with match_operand
have names that end in ‘_operand’, and those used with match_operator have names that
end in ‘_operator’.

All predicates are Boolean functions (in the mathematical sense) of two arguments: the
RTL expression that is being considered at that position in the instruction pattern, and
the machine mode that the match_operand or match_operator specifies. In this section,
the first argument is called op and the second argument mode. Predicates can be called
from C as ordinary two-argument functions; this can be useful in output templates or other
machine-specific code.

Operand predicates can allow operands that are not actually acceptable to the hard-
ware, as long as the constraints give reload the ability to fix them up (see Section 14.8
[Constraints|, page 211). However, GCC will usually generate better code if the predicates
specify the requirements of the machine instructions as closely as possible. Reload cannot
fix up operands that must be constants (“immediate operands”); you must use a predicate
that allows only constants, or else enforce the requirement in the extra condition.

Most predicates handle their mode argument in a uniform manner. If mode is V0IDmode
(unspecified), then op can have any mode. If mode is anything else, then op must have the
same mode, unless op is a CONST_INT or integer CONST_DOUBLE. These RTL expressions
always have V0IDmode, so it would be counterproductive to check that their mode matches.

208 GNU Compiler Collection (GCC) Internals

Instead, predicates that accept CONST_INT and/or integer CONST_DOUBLE check that the
value stored in the constant will fit in the requested mode.

Predicates with this behavior are called normal. genrecog can optimize the instruction
recognizer based on knowledge of how normal predicates treat modes. It can also diagnose
certain kinds of common errors in the use of normal predicates; for instance, it is almost
always an error to use a normal predicate without specifying a mode.

Predicates that do something different with their mode argument are called special. The
generic predicates address_operand and pmode_register_operand are special predicates.
genrecog does not do any optimizations or diagnosis when special predicates are used.

14.7.1 Machine-Independent Predicates

These are the generic predicates available to all back ends. They are defined in ‘recog.c’.
The first category of predicates allow only constant, or immediate, operands.

immediate_operand [Function]
This predicate allows any sort of constant that fits in mode. It is an appropriate
choice for instructions that take operands that must be constant.

const_int_operand [Function]
This predicate allows any CONST_INT expression that fits in mode. It is an appropriate
choice for an immediate operand that does not allow a symbol or label.

const_double_operand [Function]
This predicate accepts any CONST_DOUBLE expression that has exactly mode. If mode
is VOIDmode, it will also accept CONST_INT. It is intended for immediate floating point
constants.

The second category of predicates allow only some kind of machine register.

register_operand [Function]
This predicate allows any REG or SUBREG expression that is valid for mode. It is often
suitable for arithmetic instruction operands on a RISC machine.

pmode_register_operand [Function]
This is a slight variant on register_operand which works around a limitation in the
machine-description reader.
(match_operand n "pmode_register_operand" constraint)
means exactly what

(match_operand:P n "register_operand" constraint)

would mean, if the machine-description reader accepted ‘:P’ mode suffixes. Unfor-
tunately, it cannot, because Pmode is an alias for some other mode, and might vary
with machine-specific options. See Section 15.29 [Misc|, page 423.

scratch_operand [Function]
This predicate allows hard registers and SCRATCH expressions, but not pseudo-
registers. It is wused internally by match_scratch; it should not be wused
directly.

The third category of predicates allow only some kind of memory reference.

Chapter 14: Machine Descriptions 209

memory_operand [Function]
This predicate allows any valid reference to a quantity of mode mode in memory,
as determined by the weak form of GO_IF_LEGITIMATE_ADDRESS (see Section 15.14
[Addressing Modes], page 364).

address_operand [Function]
This predicate is a little unusual; it allows any operand that is a valid expression
for the address of a quantity of mode mode, again determined by the weak form of
GO_IF_LEGITIMATE_ADDRESS. To first order, if ‘(mem:mode (exp))’ is acceptable to
memory_operand, then exp is acceptable to address_operand. Note that exp does
not necessarily have the mode mode.

indirect_operand [Function]
This is a stricter form of memory_operand which allows only memory references with
a general_operand as the address expression. New uses of this predicate are dis-
couraged, because general_operand is very permissive, so it’s hard to tell what an
indirect_operand does or does not allow. If a target has different requirements
for memory operands for different instructions, it is better to define target-specific
predicates which enforce the hardware’s requirements explicitly.

push_operand [Function]
This predicate allows a memory reference suitable for pushing a value onto the stack.
This will be a MEM which refers to stack_pointer_rtx, with a side-effect in its address
expression (see Section 12.16 [Incdec], page 175); which one is determined by the
STACK_PUSH_CODE macro (see Section 15.10.1 [Frame Layout], page 333).

pop_operand [Function]
This predicate allows a memory reference suitable for popping a value off the stack.
Again, this will be a MEM referring to stack_pointer_rtx, with a side-effect in its
address expression. However, this time STACK_POP_CODE is expected.

The fourth category of predicates allow some combination of the above operands.

nonmemory_operand [Function]
This predicate allows any immediate or register operand valid for mode.

nonimmediate_operand [Function]
This predicate allows any register or memory operand valid for mode.

general_operand [Function]
This predicate allows any immediate, register, or memory operand valid for mode.

Finally, there is one generic operator predicate.
comparison_operator [Function]

This predicate matches any expression which performs an arithmetic comparison in
mode; that is, COMPARISON_P is true for the expression code.

210

GNU Compiler Collection (GCC) Internals

14.7.2 Defining Machine-Specific Predicates

Many machines have requirements for their operands that cannot be expressed precisely
using the generic predicates. You can define additional predicates using define_predicate
and define_special_predicate expressions. These expressions have three operands:

e The name of the predicate, as it will be referred to in match_operand or match_
operator expressions.

e An RTL expression which evaluates to true if the predicate allows the operand op, false
if it does not. This expression can only use the following RTL codes:

MATCH_OPERAND

MATCH_CODE

MATCH_TEST

AND
IOR
NOT

When written inside a predicate expression, a MATCH_OPERAND expression
evaluates to true if the predicate it names would allow op. The operand
number and constraint are ignored. Due to limitations in genrecog, you
can only refer to generic predicates and predicates that have already been
defined.

This expression evaluates to true if op or a specified subexpression of op
has one of a given list of RTX codes.

The first operand of this expression is a string constant containing a
comma-separated list of RTX code names (in lower case). These are the
codes for which the MATCH_CODE will be true.

The second operand is a string constant which indicates what subexpres-
sion of op to examine. If it is absent or the empty string, op itself is
examined. Otherwise, the string constant must be a sequence of digits
and/or lowercase letters. Each character indicates a subexpression to ex-
tract from the current expression; for the first character this is op, for the
second and subsequent characters it is the result of the previous character.
A digit n extracts ‘XEXP (e, n)’; a letter I extracts ‘XVECEXP (e, 0, n)’
where n is the alphabetic ordinal of I (0 for ‘a’, 1 for ’b’, and so on). The
MATCH_CODE then examines the RTX code of the subexpression extracted
by the complete string. It is not possible to extract components of an
rtvec that is not at position 0 within its RTX object.

This expression has one operand, a string constant containing a C expres-
sion. The predicate’s arguments, op and mode, are available with those
names in the C expression. The MATCH_TEST evaluates to true if the C
expression evaluates to a nonzero value. MATCH_TEST expressions must not
have side effects.

IF_THEN_ELSE

The basic ‘MATCH_’ expressions can be combined using these logical opera-
tors, which have the semantics of the C operators ‘&&’, ‘I|’, ‘!’, and ‘7 :’

Chapter 14: Machine Descriptions 211

respectively. As in Common Lisp, you may give an AND or IOR expres-
sion an arbitrary number of arguments; this has exactly the same effect as
writing a chain of two-argument AND or IOR expressions.

e An optional block of C code, which should execute ‘return true’ if the predicate is
found to match and ‘return false’ if it does not. It must not have any side effects.
The predicate arguments, op and mode, are available with those names.

If a code block is present in a predicate definition, then the RTL expression must
evaluate to true and the code block must execute ‘return true’ for the predicate to
allow the operand. The RTL expression is evaluated first; do not re-check anything in
the code block that was checked in the RTL expression.

The program genrecog scans define_predicate and define_special_predicate ex-
pressions to determine which RTX codes are possibly allowed. You should always make this
explicit in the RTL predicate expression, using MATCH_OPERAND and MATCH_CODE.

Here is an example of a simple predicate definition, from the IA64 machine description:

;3 True if op is a SYMBOL_REF which refers to the sdata section.
(define_predicate "small_addr_symbolic_operand"
(and (match_code "symbol_ref")
(match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))

And here is another, showing the use of the C block.

;3 True if op is a register operand that is (or could be) a GR reg.
(define_predicate "gr_register_operand"

(match_operand O "register_operand")
{

unsigned int regno;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);

regno = REGNO (op);
return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
b

Predicates written with define_predicate automatically include a test that mode is
V0IDmode, or op has the same mode as mode, or op is a CONST_INT or CONST_DOUBLE. They
do not check specifically for integer CONST_DQUBLE, nor do they test that the value of either
kind of constant fits in the requested mode. This is because target-specific predicates that
take constants usually have to do more stringent value checks anyway. If you need the
exact same treatment of CONST_INT or CONST_DQUBLE that the generic predicates provide,
use a MATCH_OPERAND subexpression to call const_int_operand, const_double_operand,
or immediate_operand.

Predicates written with define_special_predicate do not get any automatic mode
checks, and are treated as having special mode handling by genrecog.

The program genpreds is responsible for generating code to test predicates. It also writes
a header file containing function declarations for all machine-specific predicates. It is not
necessary to declare these predicates in ‘cpu-protos.h’.

212 GNU Compiler Collection (GCC) Internals

14.8 Operand Constraints

Each match_operand in an instruction pattern can specify constraints for the operands
allowed. The constraints allow you to fine-tune matching within the set of operands allowed
by the predicate.

Constraints can say whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may have. Constraints
can also require two operands to match.

14.8.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind
of operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except
the first. This enables each alternative for different operands to be visually
aligned in the machine description even if they have different number of con-
straints and modifiers.

m A memory operand is allowed, with any kind of address that the machine sup-
ports in general.

o) A memory operand is allowed, but only if the address is offsettable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.

For example, an address which is constant is offsettable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-offsets supported by the machine); but an
autoincrement or autodecrement address is not offsettable. More complicated
indirect /indexed addresses may or may not be offsettable depending on the
other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand,
the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the
target machine has predecrement addressing) and ‘>’ (if the target machine has
preincrement addressing).

A A memory operand that is not offsettable. In other words, anything that would
fit the ‘m’ constraint but not the ‘o’ constraint.

<’ A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.

&7 A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.

T A register operand is allowed provided that it is in a general register.

i An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time or
later.

Chapter 14: Machine Descriptions 213

4I7’ ‘J’, 4K77 .

CO’7 £177 £277 L

An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use ‘n’ rather than ‘i’.

P

Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, ‘I’ is defined to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine
(on which the compiler is running).

An immediate floating operand (expression code const_double or
const_vector) is allowed.

‘G’ and ‘H’” may be defined in a machine-dependent fagshion to permit immediate
floating operands in particular ranges of values.

An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use ‘s’ instead of ‘i’? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between —128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a ‘moveq’ instruction. We
arrange for this to happen by defining the letter ‘K’ to mean “any integer outside
the range —128 to 127”7, and then specifying ‘Ks’ in the operand constraints.

Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

Any operand whatsoever is allowed, even if it does not satisfy general_
operand. This is normally used in the constraint of a match_scratch when
certain alternatives will not actually require a scratch register.

CQ?

An operand that matches the specified operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.

This number is allowed to be more than a single digit. If multiple digits are en-
countered consecutively, they are interpreted as a single decimal integer. There
is scant chance for ambiguity, since to-date it has never been desirable that
‘10’ be interpreted as matching either operand 1 or operand 0. Should this be
desired, one can use multiple alternatives instead.

This is called a matching constraint and what it really means is that the as-
sembler has only a single operand that fills two roles considered separate in the

214

GNU Compiler Collection (GCC) Internals

RTL insn. For example, an add insn has two input operands and one output
operand in the RTL, but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.

For operands to match in a particular case usually means that they are identical-
looking RTL expressions. But in a few special cases specific kinds of dissimi-
larity are allowed. For example, *x as an input operand will match *x++ as an
output operand. For proper results in such cases, the output template should
always use the output-operand’s number when printing the operand.

An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.

‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

other-letters

Other letters can be defined in machine-dependent fashion to stand for par-
ticular classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’
are defined on the 68000/68020 to stand for data, address and floating point
registers.

In order to have valid assembler code, each operand must satisfy its constraint. But a
failure to do so does not prevent the pattern from applying to an insn. Instead, it directs
the compiler to modify the code so that the constraint will be satisfied. Usually this is done
by copying an operand into a register.

Contrast, therefore, the two instruction patterns that follow:

(define_insn
[(set (match_operand:SI O "general_operand" "=r")
(plus:SI (match_dup 0)
(match_operand:SI 1 "general_operand" "r")))]

II"‘H)

which has two operands, one of which must appear in two places, and

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r")
(plus:SI (match_operand:SI 1 "general_operand" "O")
(match_operand:SI 2 "general_operand" "r")))]

u‘.‘n)

which has three operands, two of which are required by a constraint to be identical. If we

are considering an insn of the form

(insn n prev next
(set (reg:SI 3)

Chapter 14: Machine Descriptions 215

(plus:SI (reg:SI 6) (reg:SI 109)))
L)
the first pattern would not apply at all, because this insn does not contain two identical
subexpressions in the right place. The pattern would say, “That does not look like an
add instruction; try other patterns”. The second pattern would say, “Yes, that’s an add
instruction, but there is something wrong with it”. It would direct the reload pass of the
compiler to generate additional insns to make the constraint true. The results might look
like this:
(insn n2 prev n

(set (reg:SI 3) (reg:SI 6))
o)

(insn n n2 next
(set (reg:SI 3)
(plus:SI (reg:SI 3) (reg:SI 109)))
L)

It is up to you to make sure that each operand, in each pattern, has constraints that
can handle any RTL expression that could be present for that operand. (When multiple
alternatives are in use, each pattern must, for each possible combination of operand expres-
sions, have at least one alternative which can handle that combination of operands.) The
constraints don’t need to allow any possible operand—when this is the case, they do not
constrain—but they must at least point the way to reloading any possible operand so that
it will fit.

e If the constraint accepts whatever operands the predicate permits, there is no problem:
reloading is never necessary for this operand.

For example, an operand whose constraints permit everything except registers is safe
provided its predicate rejects registers.

An operand whose predicate accepts only constant values is safe provided its constraints
include the letter ‘i’. If any possible constant value is accepted, then nothing less than
‘1’ will do; if the predicate is more selective, then the constraints may also be more
selective.

e Any operand expression can be reloaded by copying it into a register. So if an operand’s
constraints allow some kind of register, it is certain to be safe. It need not permit all
classes of registers; the compiler knows how to copy a register into another register of
the proper class in order to make an instruction valid.

e A nonoffsettable memory reference can be reloaded by copying the address into a
register. So if the constraint uses the letter ‘o’, all memory references are taken care
of.

e A constant operand can be reloaded by allocating space in memory to hold it as preini-
tialized data. Then the memory reference can be used in place of the constant. So if
the constraint uses the letters ‘o’ or ‘m’, constant operands are not a problem.

e If the constraint permits a constant and a pseudo register used in an insn was not
allocated to a hard register and is equivalent to a constant, the register will be replaced
with the constant. If the predicate does not permit a constant and the insn is re-
recognized for some reason, the compiler will crash. Thus the predicate must always
recognize any objects allowed by the constraint.

216 GNU Compiler Collection (GCC) Internals

If the operand’s predicate can recognize registers, but the constraint does not permit
them, it can make the compiler crash. When this operand happens to be a register, the
reload pass will be stymied, because it does not know how to copy a register temporarily
into memory.

If the predicate accepts a unary operator, the constraint applies to the operand. For
example, the MIPS processor at ISA level 3 supports an instruction which adds two registers
in SImode to produce a DImode result, but only if the registers are correctly sign extended.
This predicate for the input operands accepts a sign_extend of an SImode register. Write
the constraint to indicate the type of register that is required for the operand of the sign_
extend.

14.8.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For ex-
ample, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the first alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative.
Here is how it is done for fullword logical-or on the 68000:

(define_insn "iorsi3"
[(set (match_operand:SI O "general_operand" "=m,d")
(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]
L)

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it must
match operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data register)
for operand 0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=" and ‘%’ in the constraints
apply to all the alternatives; their meaning is explained in the next section (see Section 14.8.3
[Class Preferences], page 217).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes first is chosen. These
choices can be altered with the ‘?” and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code for writing the assembler code can use the variable which_alternative,

Chapter 14: Machine Descriptions 217

which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1
for the second alternative, etc.). See Section 14.6 [Output Statement], page 206.

14.8.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which
kind of hardware register a pseudo register is best allocated to. The compiler examines the
constraints that apply to the insns that use the pseudo register, looking for the machine-
dependent letters such as ‘d’ and ‘a’ that specify classes of registers. The pseudo register
is put in whichever class gets the most “votes”. The constraint letters ‘g’ and ‘r’ also vote:
they vote in favor of a general register. The machine description says which registers are
considered general.

Of course, on some machines all registers are equivalent, and no register classes are
defined. Then none of this complexity is relevant.

14.8.4 Constraint Modifier Characters

Here are constraint modifier characters.

=’ Means that this operand is write-only for this instruction: the previous value

is discarded and replaced by output data.

4 Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs
to know which operands are inputs to the instruction and which are outputs
from it. ‘=’ identifies an output; ‘+’ identifies an operand that is both input and
output; all other operands are assumed to be input only.

If you specify ‘=" or ‘+’ in a constraint, you put it in the first character of the
constraint string.

‘&’ Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modified before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is used as an input operand
or as part of any memory address.

‘& applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires ‘&’ while others do
not. See, for example, the ‘movdf’ insn of the 68000.

An input operand can be tied to an earlyclobber operand if its only use as an
input occurs before the early result is written. Adding alternatives of this form
often allows GCC to produce better code when only some of the inputs can be
affected by the earlyclobber. See, for example, the ‘mulsi3’ insn of the ARM.

‘&’ does not obviate the need to write ‘=’.

A Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands fit the constraints. This is often
used in patterns for addition instructions that really have only two operands:
the result must go in one of the arguments. Here for example, is how the 68000
halfword-add instruction is defined:

218 GNU Compiler Collection (GCC) Internals

(define_insn "addhi3"
[(set (match_operand:HI O "general_operand" "=m,r")
(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "di,g")))]

L)
GCC can only handle one commutative pair in an asm; if you use more, the
compiler may fail. Note that you need not use the modifier if the two alterna-
tives are strictly identical; this would only waste time in the reload pass. The
modifier is not operational after register allocation, so the result of define_
peephole2 and define_splits performed after reload cannot rely on ‘%4’ to
make the intended insn match.

‘# Says that all following characters, up to the next comma, are to be ignored as
a counstraint. They are significant only for choosing register preferences.

fx’ Says that the following character should be ignored when choosing register
preferences. ‘*’” has no effect on the meaning of the constraint as a constraint,
and no effect on reloading.

Here is an example: the 68000 has an instruction to sign-extend a halfword
in a data register, and can also sign-extend a value by copying it into an ad-
dress register. While either kind of register is acceptable, the constraints on
an address-register destination are less strict, so it is best if register allocation
makes an address register its goal. Therefore, ‘¥’ is used so that the ‘d’ con-
straint letter (for data register) is ignored when computing register preferences.

(define_insn "extendhisi2"
[(set (match_operand:SI O "general_operand" "=*d,a")
(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]
)

14.8.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments,
since they will convey meaning more readily to people reading your code. Failing that, use
the constraint letters that usually have very similar meanings across architectures. The
most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose registers
respectively; see Section 14.8.1 [Simple Constraints], page 212), and ‘I’, usually the letter
indicating the most common immediate-constant format.

Each architecture defines additional constraints. These constraints are used by the com-
piler itself for instruction generation, as well as for asm statements; therefore, some of the
constraints are not particularly useful for asm. Here is a summary of some of the machine-
dependent constraints available on some particular machines; it includes both constraints
that are useful for asm and constraints that aren’t. The compiler source file mentioned in
the table heading for each architecture is the definitive reference for the meanings of that
architecture’s constraints.

ARM family—‘config/arm/arm.h’
f Floating-point register

W VFP floating-point register

Chapter 14: Machine Descriptions 219

Uv

Uy
Uq

One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or
10.0

Floating-point constant that would satisfy the constraint ‘F’ if it
were negated

Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

Integer in the range —4095 to 4095

Integer that satisfies constraint ‘I’ when inverted (ones comple-
ment)

Integer that satisfies constraint ‘I’ when negated (twos comple-
ment)

Integer in the range 0 to 32

A memory reference where the exact address is in a single register
(“m” is preferable for asm statements)

An item in the constant pool
A symbol in the text segment of the current file

A memory reference suitable for VFP load/store insns
(reg+constant offset)

A memory reference suitable for iWMMXt load/store instructions.

A memory reference suitable for the ARMv4 ldrsb instruction.

AVR family—‘config/avr/constraints.md’

1
a

d

[T e o o

M

Registers from r0 to r15
Registers from r16 to r23
Registers from r16 to r31

Registers from r24 to r31. These registers can be used in ‘adiw’
command

Pointer register (r26-r31)

Base pointer register (r28-r31)

Stack pointer register (SPH:SPL)
Temporary register r(

Register pair X (r27:126)

Register pair Y (r29:r28)

Register pair Z (r31:r30)

Constant greater than —1, less than 64
Constant greater than —64, less than 1

220

0w o = = &= XN

G

GNU Compiler Collection (GCC) Internals

Constant integer 2

Constant integer 0

Constant that fits in 8 bits
Constant integer —1
Constant integer 8, 16, or 24
Constant integer 1

A floating point constant 0.0

CRX Architecture—‘config/crx/crx.h’

b

P X" g H R P

G

Registers from r0 to rl4 (registers without stack pointer)
Register r16 (64-bit accumulator lo register)

Register r17 (64-bit accumulator hi register)

Register pair r16-r17. (64-bit accumulator lo-hi pair)
Constant that fits in 3 bits

Constant that fits in 4 bits

Constant that fits in b bits

Constant that is one of -1, 4, -4, 7, 8, 12, 16, 20, 32, 48

Floating point constant that is legal for store immediate

PowerPC and IBM RS6000— ‘config/rs6000/rs6000.h’

b
f

v

Qa5

(&) H N

=

Address base register

Floating point register

Vector register

‘MQ’, ‘CTR’, or ‘LINK’ register

‘MQ’ register

‘CTR’ register

‘LINK’ register

‘CR’ register (condition register) number 0
‘CR’ register (condition register)

‘FPMEM’ stack memory for FPR-GPR transfers
Signed 16-bit constant

Unsigned 16-bit constant shifted left 16 bits (use ‘L’ instead for
SImode constants)

Unsigned 16-bit constant
Signed 16-bit constant shifted left 16 bits

Chapter 14: Machine Descriptions 221

=] Q Y o =2 =

a A4 v W™

Constant larger than 31

Exact power of 2

Zero

Constant whose negation is a signed 16-bit constant

Floating point constant that can be loaded into a register with one
instruction per word

Memory operand that is an offset from a register (‘m’ is preferable
for asm statements)

AIX TOC entry
Constant suitable as a 64-bit mask operand
Constant suitable as a 32-bit mask operand

System V Release 4 small data area reference

MorphoTech family— ‘config/mt/mt .h’

e =< o H

N
0
P

Constant for an arithmetic insn (16-bit signed integer).
The constant 0.
Constant, for a logical insn (16-bit zero-extended integer).

A constant that can be loaded with 1ui (i.e. the bottom 16 bits are
z€ero).

A constant that takes two words to load (i.e. not matched by I, K,
or L).

Negative 16-bit constants other than -65536.
A 15-bit signed integer constant.
A positive 16-bit constant.

Intel 386—‘config/i386/constraints.md’

R

Legacy register—the eight integer registers available on all 1386
processors (a, b, c, d, si, di, bp, sp).

Any register accessible as r1l. In 32-bit mode, a, b, ¢, and d; in
64-bit mode, any integer register.

Any register accessible as rh: a, b, ¢, and d.

Any register that can be used as the index in a base+index memory
access: that is, any general register except the stack pointer.

The a register.
The b register.
The c register.

The 4 register.

222

Q @@ o = = -0 =" 4o H o=

(0]

GNU Compiler Collection (GCC) Internals

The si register.
The di register.

The a and d registers, as a pair (for instructions that return half
the result in one and half in the other).

Any 80387 floating-point (stack) register.

Top of 80387 floating-point stack (%st(0)).

Second from top of 80387 floating-point stack (%st(1)).
Any MMX register.

Any SSE register.

Any SSE2 register.

Integer constant in the range 0 ... 31, for 32-bit shifts.
Integer constant in the range 0 ... 63, for 64-bit shifts.
Signed 8-bit integer constant.

OxFF or OxFFFF, for andsi as a zero-extending move.

0, 1, 2, or 3 (shifts for the lea instruction).

Unsigned 8-bit integer constant (for in and out instructions).
Integer constant in the range 0 ... 127, for 128-bit shifts.
Standard 80387 floating point constant.

Standard SSE floating point constant.

32-bit signed integer constant, or a symbolic reference known to
fit that range (for immediate operands in sign-extending x86-64
instructions).

32-bit unsigned integer constant, or a symbolic reference known to
fit that range (for immediate operands in zero-extending x86-64
instructions).

Intel IA-6/—‘config/ia64/ia64.h’

a
b

[

General register rO to r3 for addl instruction
Branch register

Predicate register (‘c’ as in “conditional”)
Application register residing in M-unit
Application register residing in I-unit
Floating-point register

Memory operand. Remember that ‘m’ allows postincrement and
postdecrement which require printing with ‘%Pn’ on TA-64. Use ‘S’
to disallow postincrement and postdecrement.

Chapter 14: Machine Descriptions 223

—

n ® o0 v o = = > =N 4

Floating-point constant 0.0 or 1.0

14-bit signed integer constant

22-bit signed integer constant

8-bit signed integer constant for logical instructions

8-bit adjusted signed integer constant for compare pseudo-ops
6-bit unsigned integer constant for shift counts

9-bit signed integer constant for load and store postincrements
The constant zero

0 or —1 for dep instruction

Non-volatile memory for floating-point loads and stores
Integer constant in the range 1 to 4 for shladd instruction

Memory operand except postincrement and postdecrement

FRV—‘config/frv/frv.h’

a
b

C

Register in the class ACC_REGS (accO to acc7).

Register in the class EVEN_ACC_REGS (accO to acc7).

Register in the class CC_REGS (fccO to fcc3 and iccO to ice3).
Register in the class GPR_REGS (gr0 to gr63).

Register in the class EVEN_REGS (gr0 to gr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

Register in the class FPR_REGS (fr0 to fr63).

Register in the class FEVEN_REGS (£r0 to £r63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

Register in the class LR_REG (the 1r register).

Register in the class QUAD_REGS (gr2 to gr63). Register numbers
not divisible by 4 are excluded not in the class but through the use
of a machine mode larger than 8 bytes.

Register in the class ICC_REGS (iccO to icc3).
Register in the class FCC_REGS (fccO to fcc3).
Register in the class ICR_REGS (cc4 to cc7).
Register in the class FCR_REGS (ccO to cc3).

Register in the class QUAD_FPR_REGS (fr0 to £r63). Register num-
bers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.

224

=2 =2 044 H @ Q W o= N

o

GNU Compiler Collection (GCC) Internals

Register in the class SPR_REGS (lcr and 1r).
Register in the class QUAD_ACC_REGS (accO to acc7).
Register in the class ACCG_REGS (accg0 to accg7).
Register in the class CR_REGS (ccO to cc7).

Floating point constant zero

6-bit signed integer constant

10-bit signed integer constant

16-bit signed integer constant

16-bit unsigned integer constant

12-bit signed integer constant that is negative—i.e. in the range of
—2048 to —1

Constant zero

12-bit signed integer constant that is greater than zero—i.e. in the
range of 1 to 2047.

Blackfin family—‘config/bfin/bfin.h’

a
d

Z

< o wWw = o = O

Hh

o Q

P register

D register

A call clobbered P register.
Even-numbered D register
Odd-numbered D register
Accumulator register.
Even-numbered accumulator register.
Odd-numbered accumulator register.
I register

B register

M register

Registers used for circular buffering, i.e. I, B, or L registers.
The CC register.

LTO or LTT1.

LCO or LC1.

LBO or LB1.

Any D, P, B, M, T or L register.

Additional registers typically used only in prologues and epilogues:
RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.

Chapter 14: Machine Descriptions 225

Ksh
Kuh
Ks7
Ku7
Kub
Ks4
Ks3
Ku3
Pn
M1
M2
J

L

H

Q

Any register except accumulators or CC.

Signed 16 bit integer (in the range -32768 to 32767)
Unsigned 16 bit integer (in the range 0 to 65535)
Signed 7 bit integer (in the range -64 to 63)
Unsigned 7 bit integer (in the range 0 to 127)
Unsigned 5 bit integer (in the range 0 to 31)
Signed 4 bit integer (in the range -8 to 7)

Signed 3 bit integer (in the range -3 to 4)

Unsigned 3 bit integer (in the range 0 to 7)
Constant n, where n is a single-digit constant in the range 0 to 4.
Constant 255.

Constant 65535.

An integer constant with exactly a single bit set.

An integer constant with all bits set except exactly one.

Any SYMBOL_REF.

M32C—‘config/m32c/m32c.c’

Rsp
Rfb
Rsb

Rcr

Rcl

ROw
Riw
R2w
R3w

RO2
R13
Rdi
Rhl
R23
Raa
Raw

Ral

‘$sp’, ‘$fb’, ‘$sb’.
Any control register, when they’re 16 bits wide (nothing if control
registers are 24 bits wide)

Any control register, when they’re 24 bits wide.

$r0, $r1, $r2, $r3.

$r0 or $r2, or $r2r0 for 32 bit values.

$r1 or $r3, or $r3rl for 32 bit values.

A register that can hold a 64 bit value.

$r0 or $rl (registers with addressable high/low bytes)
$r2 or $r3

Address registers

Address registers when they’re 16 bits wide.

Address registers when they’re 24 bits wide.

226

Rqi
Rad
Rsi
Rhi
Rhc
Rra

Rfl

Rpi

Rpa

Is3
IS1
ISs2
102
In4d
Inb
In6
IM2
I1lb
Ilw
Sd
Sa
Si
Ss
St
Ss
S1

GNU Compiler Collection (GCC) Internals

Registers that can hold QI values.

Registers that can be used with displacements ($a0, $al, $sb).
Registers that can hold 32 bit values.

Registers that can hold 16 bit values.

Registers chat can hold 16 bit values, including all control registers.
$r0 through R1, plus $a0 and $al.

The flags register.

The memory-based pseudo-registers $mem0 through $mem15.

Registers that can hold pointers (16 bit registers for r8c, m16¢; 24
bit registers for m32cm, m32c).

Matches multiple registers in a PARALLEL to form a larger regis-
ter. Used to match function return values.

8.7

-128 ... 127

-32768 ... 32767

0...65535

8...-lorl1...8

-16 ... -1lor1 ... 16

32 ...-1lorl1 ... 32

-65536 ... -1

An 8 bit value with exactly one bit set.

A 16 bit value with exactly one bit set.

The common src/dest memory addressing modes.
Memory addressed using $a0 or $al.

Memory addressed with immediate addresses.
Memory addressed using the stack pointer ($sp).
Memory addressed using the frame base register ($b).
Memory addressed using the small base register ($sb).

$rih

MIPS—‘config/mips/constraints.md’

d

An address register. This is equivalent to r unless generating
MIPS16 code.

A floating-point register (if available).
The hi register.

Chapter 14: Machine Descriptions 227

1 The 1o register.
X The hi and lo registers.
c A register suitable for use in an indirect jump. This will always be

$25 for ‘-mabicalls’.

y Equivalent to r; retained for backwards compatibility.

Z A floating-point condition code register.

I A signed 16-bit constant (for arithmetic instructions).

J Integer zero.

K An unsigned 16-bit constant (for logic instructions).

L A signed 32-bit constant in which the lower 16 bits are zero. Such

constants can be loaded using lui.

M A constant that cannot be loaded using lui, addiu or ori.
N A constant in the range -65535 to -1 (inclusive).

0 A signed 15-bit constant.

P A constant in the range 1 to 65535 (inclusive).

G Floating-point zero.

R An address that can be used in a non-macro load or store.

Motorola 68020— ‘config/m68k/constraints.md’

a Address register

d Data register

f 68881 floating-point register, if available
I Integer in the range 1 to 8

16-bit signed number

Signed number whose magnitude is greater than 0x80
Integer in the range —8 to —1

Signed number whose magnitude is greater than 0x100
Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
16 (for rotate using swap)

Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
Numbers that mov3q can handle

Floating point constant that is not a 68881 constant

Operands that satisfy 'm’ when -mpcrel is in effect

H nn Q@ ® Y o =2 = - XN 4G

Operands that satisfy ’s’ when -mpcrel is not in effect

228

Cs

Ci

co

Cj
Cmvq
Capsw
Cmvz
Cmvs
Ap

Ac

GNU Compiler Collection (GCC) Internals

Address register indirect addressing mode
Register offset addressing

const_call_operand

symbol_ref or const

const_int

const_int 0

Range of signed numbers that don’t fit in 16 bits
Integers valid for mvq

Integers valid for a moveq followed by a swap
Integers valid for mvz

Integers valid for mvs

push_operand

Non-register operands allowed in clr

Motorola 68HC11 & 68HC12 families— ‘config/m68hc11/m68hcil.h’

a

& o QQ @ o

N

w o = = & oo w =

Register ‘a’

Register ‘b’

Register ‘d’

An 8-bit register

Temporary soft register _.tmp

A soft register _.d1 to _.d31

Stack pointer register

Register ‘x’

Register ‘y’

Pseudo register ‘z” (replaced by ‘x’ or ‘y’ at the end)
An address register: x, y or z

An address register: x or y

Register pair (x:d) to form a 32-bit value
Constants in the range —65536 to 65535
Constants whose 16-bit low part is zero
Constant integer 1 or —1

Constant integer 16

Constants in the range —8 to 2

Chapter 14: Machine Descriptions 229

SPARC—‘config/sparc/sparc.h’

f

o m 2 O

= < A

Y

Floating-point register on the SPARC-V8 architecture and lower
floating-point register on the SPARC-V9 architecture.

Floating-point register. It is equivalent to ‘f’ on the SPARC-V8
architecture and contains both lower and upper floating-point reg-
isters on the SPARC-V9 architecture.

Floating-point condition code register.

Lower floating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.

Floating-point register. It is only valid on the SPARC-V9 architec-
ture when the Visual Instruction Set is available.

64-bit global or out register for the SPARC-V8+ architecture.
Signed 13-bit constant
Zero

32-bit constant with the low 12 bits clear (a constant that can be
loaded with the sethi instruction)

A constant in the range supported by movcc instructions
A constant in the range supported by movrcc instructions

Same as ‘K’, except that it verifies that bits that are not in the
lower 32-bit range are all zero. Must be used instead of ‘K’ for
modes wider than SImode

The constant 4096
Floating-point zero
Signed 13-bit constant, sign-extended to 32 or 64 bits

Floating-point constant whose integral representation can be moved
into an integer register using a single sethi instruction

Floating-point constant whose integral representation can be moved
into an integer register using a single mov instruction

Floating-point constant whose integral representation can be moved
into an integer register using a high/lo_sum instruction sequence

Memory address aligned to an 8-byte boundary
Even register
Memory address for ‘e’ constraint registers

Vector zero

TMS320C3z/Clz—‘config/c4x/c4x.h’

a

Auxiliary (address) register (ar0-arT7)

230

O

e o Q9 W +h

<

M

b

o0 o0 = =2 " 4 H @D @ N

= v X

U

GNU Compiler Collection (GCC) Internals

Stack pointer register (sp)

Standard (32-bit) precision integer register
Extended (40-bit) precision register (r0-r11)
Block count register (bk)

Extended (40-bit) precision low register (r0-r7)
Extended (40-bit) precision register (r0-rl)
Extended (40-bit) precision register (r2-r3)
Repeat count register (rc)

Index register (ir0-irl)

Status (condition code) register (st)

Data page register (dp)

Floating-point zero

Immediate 16-bit floating-point constant
Signed 16-bit constant

Signed 8-bit constant

Signed 5-bit constant

Unsigned 16-bit constant

Unsigned 8-bit constant

Ones complement of unsigned 16-bit constant
High 16-bit constant (32-bit constant with 16 L.SBs zero)

Indirect memory reference with signed 8-bit or index register dis-
placement

Indirect memory reference with unsigned 5-bit displacement
Indirect memory reference with 1 bit or index register displacement
Direct memory reference

Symbolic address

S/390 and zSeries— ‘config/s390/s390.h’

a

o H O H

Address register (general purpose register except r0)
Condition code register

Data register (arbitrary general purpose register)
Floating-point register

Unsigned 8-bit constant (0-255)

Unsigned 12-bit constant (0-4095)

Chapter 14: Machine Descriptions 231

wn

< = < A

Signed 16-bit constant (—32768-32767)
Value appropriate as displacement.

(0..4095)
for short displacement

(-524288..524287)
for long displacement

Constant integer with a value of Ox7HiHHf.

Multiple letter constraint followed by 4 parameter letters.

0..9: number of the part counting from most to least signif-
icant

H,Q: mode of the part

D,S,H: mode of the containing operand

0,F: value of the other parts (F—all bits set)

The constraint matches if the specified part of a constant has a
value different from it’s other parts.

Memory reference without index register and with short displace-
ment.

Memory reference with index register and short displacement.

Memory reference without index register but with long displace-
ment.

Memory reference with index register and long displacement.
Pointer with short displacement.
Pointer with long displacement.

Shift count operand.

Score family— ‘config/score/score.h’

d

< QO K O~ B d o

N

Registers from r0 to r32.
Registers from r0 to r16.
r8—rll or r22—r27 registers.
hi register.

lo register.

hi + lo register.

cnt register.

Icb register.

scb register.

cnt + lcb + scb register.

232 GNU Compiler Collection (GCC) Internals

c cr0—crl5 register.
b cpl registers.
f cp2 registers.
i cp3 registers.
b cpl + cp2 + cp3 registers.
I High 16-bit constant (32-bit constant with 16 L.SBs zero).
J Unsigned 5 bit integer (in the range 0 to 31).
K Unsigned 16 bit integer (in the range 0 to 65535).
L Signed 16 bit integer (in the range —32768 to 32767).
M Unsigned 14 bit integer (in the range 0 to 16383).
N Signed 14 bit integer (in the range —8192 to 8191).
Z Any SYMBOL_REF.
Xstormyl6— ‘config/stormyl6/stormy16.h’
a Register r0.
b Register rl.
c Register r2.
d Register r8.
e Registers r0 through r7.
t Registers r0 and rl.
y The carry register.
z Registers r8 and r9.
I A constant between 0 and 3 inclusive.
J A constant that has exactly one bit set.
K A constant that has exactly one bit clear.
L A constant between 0 and 255 inclusive.
M A constant between —255 and 0 inclusive.
N A constant between —3 and 0 inclusive.
0 A constant between 1 and 4 inclusive.
P A constant between —4 and —1 inclusive.
Q A memory reference that is a stack push.
R A memory reference that is a stack pop.
S A memory reference that refers to a constant address of known

value.

Chapter 14: Machine Descriptions 233

T The register indicated by Rx (not implemented yet).
U A constant that is not between 2 and 15 inclusive.
Z The constant 0.

Xtensa—‘config/xtensa/xtensa.h’

a General-purpose 32-bit register

One-bit boolean register

MAC16 40-bit accumulator register

Signed 12-bit integer constant, for use in MOVI instructions
Signed 8-bit integer constant, for use in ADDI instructions

Integer constant valid for Becl instructions

X o H o>

Unsigned constant valid for BecUI instructions

14.8.6 Defining Machine-Specific Constraints

Machine-specific constraints fall into two categories: register and non-register constraints.
Within the latter category, constraints which allow subsets of all possible memory or address
operands should be specially marked, to give reload more information.

Machine-specific constraints can be given names of arbitrary length, but they must be
entirely composed of letters, digits, underscores (‘_’), and angle brackets (‘< >’). Like C
identifiers, they must begin with a letter or underscore.

In order to avoid ambiguity in operand constraint strings, no constraint can have a name
that begins with any other constraint’s name. For example, if x is defined as a constraint
name, xy may not be, and vice versa. As a consequence of this rule, no constraint may

begin with one of the generic constraint letters: ‘EF VXgimnopr s’

Register constraints correspond directly to register classes. See Section 15.8 [Register
Classes], page 323. There is thus not much flexibility in their definitions.

define_register_constraint name regclass docstring [MD Expression]
All three arguments are string constants. name is the name of the constraint, as it
will appear in match_operand expressions. regclass can be either the name of the
corresponding register class (see Section 15.8 [Register Classes], page 323), or a C
expression which evaluates to the appropriate register class. If it is an expression,
it must have no side effects, and it cannot look at the operand. The usual use of
expressions is to map some register constraints to NO_REGS when the register class is
not available on a given subarchitecture.

docstring is a sentence documenting the meaning of the constraint. Docstrings are
explained further below.

Non-register constraints are more like predicates: the constraint definition gives a Boolean
expression which indicates whether the constraint matches.

define_constraint name docstring exp [MD Expression]
The name and docstring arguments are the same as for define_register_
constraint, but note that the docstring comes immediately after the name for

234 GNU Compiler Collection (GCC) Internals

these expressions. exp is an RTL expression, obeying the same rules as the RTL
expressions in predicate definitions. See Section 14.7.2 [Defining Predicates],
page 210, for details. If it evaluates true, the constraint matches; if it evaluates false,
it doesn’t. Constraint expressions should indicate which RTL codes they might
match, just like predicate expressions.

match_test C expressions have access to the following variables:

op The RTL object defining the operand.

mode The machine mode of op.

ival ‘INTVAL (op)’, if op is a const_int.

hval ‘CONST_DOUBLE_HIGH (op)’, if op is an integer const_double.

lval ‘CONST_DOUBLE_LOW (op)’, if op is an integer const_double.

rval ‘CONST_DOUBLE_REAL_VALUE (op)’, if op is a floating-point

const_double.

The *val variables should only be used once another piece of the expression has verified
that op is the appropriate kind of RTL object.

Most non-register constraints should be defined with define_constraint. The remain-
ing two definition expressions are only appropriate for constraints that should be handled
specially by reload if they fail to match.

define_memory_constraint name docstring exp [MD Expression]
Use this expression for constraints that match a subset of all memory operands:
that is, reload can make them match by converting the operand to the form
‘(mem (reg X))’, where X is a base register (from the register class specified by
BASE_REG_CLASS, see Section 15.8 [Register Classes|, page 323).

For example, on the S/390, some instructions do not accept arbitrary memory ref-
erences, but only those that do not make use of an index register. The constraint
letter ‘Q’ is defined to represent a memory address of this type. If ‘Q’ is defined
with define_memory_constraint, a ‘Q" constraint can handle any memory operand,
because reload knows it can simply copy the memory address into a base register
if required. This is analogous to the way a ‘o’ constraint can handle any memory
operand.

The syntax and semantics are otherwise identical to define_constraint.

define_address_constraint name docstring exp [MD Expression]
Use this expression for constraints that match a subset of all address operands: that
is, reload can make the constraint match by converting the operand to the form
‘(reg X)’, again with X a base register.

Constraints defined with define_address_constraint can only be used with the
address_operand predicate, or machine-specific predicates that work the same way.
They are treated analogously to the generic ‘p’ constraint.

The syntax and semantics are otherwise identical to define_constraint.

Chapter 14: Machine Descriptions 235

For historical reasons, names beginning with the letters ‘G H* are reserved for constraints
that match only const_doubles, and names beginning with the letters ‘T JK LM N 0 P’ are
reserved for constraints that match only const_ints. This may change in the future. For
the time being, constraints with these names must be written in a stylized form, so that
genpreds can tell you did it correctly:

(define_constraint "[GHIJKLMNOP]..."

"doc..."
(and (match_code "comst_int") ; const_double for G/H
condition...)) ; usually a match_test
It is fine to use names beginning with other letters for constraints that match const_
doubles or const_ints.

Each docstring in a constraint definition should be one or more complete sentences,
marked up in Texinfo format. They are currently unused. In the future they will be copied
into the GCC manual, in Section 14.8.5 [Machine Constraints], page 218, replacing the
hand-maintained tables currently found in that section. Also, in the future the compiler
may use this to give more helpful diagnostics when poor choice of asm constraints causes a
reload failure.

If you put the pseudo-Texinfo directive ‘@internal’ at the beginning of a docstring, then
(in the future) it will appear only in the internals manual’s version of the machine-specific
constraint tables. Use this for constraints that should not appear in asm statements.

14.8.7 Testing constraints from C

It is occasionally useful to test a constraint from C code rather than implicitly via the
constraint string in a match_operand. The generated file ‘tm_p.h’ declares a few interfaces
for working with machine-specific constraints. None of these interfaces work with the generic
constraints described in Section 14.8.1 [Simple Constraints], page 212. This may change in
the future.

Warning: ‘tm_p.h’ may declare other functions that operate on constraints, besides the
ones documented here. Do not use those functions from machine-dependent code. They
exist to implement the old constraint interface that machine-independent components of
the compiler still expect. They will change or disappear in the future.

Some valid constraint names are not valid C identifiers, so there is a mangling scheme
for referring to them from C. Constraint names that do not contain angle brackets or
underscores are left unchanged. Underscores are doubled, each ‘<’ is replaced with ‘_1’, and
each >’ with ‘_g’. Here are some examples:

Original Mangled

X X
P42x P42x
P4_x P4__x
P4>x P4_gx
P4>> Pd_ g g
P4_g> Pi__g_ g

Throughout this section, the variable c is either a constraint in the abstract sense, or a
constant from enum constraint_num; the variable m is a mangled constraint name (usually
as part of a larger identifier).

236 GNU Compiler Collection (GCC) Internals

constraint_num [Enum]
For each machine-specific constraint, there is a corresponding enumeration constant:
‘CONSTRAINT_’ plus the mangled name of the constraint. Functions that take an enum
constraint_num as an argument expect one of these constants.

Machine-independent constraints do not have associated constants. This may change
in the future.

inline bool satisfies_constraint_m (rtx exp) [Function]
For each machine-specific, non-register constraint m, there is one of these functions; it
returns true if exp satisfies the constraint. These functions are only visible if ‘rt1l.h’
was included before ‘tm_p.h’.

bool constraint_satisfied_p (rtx exp, enum constraint_num c) [Function]
Like the satisfies_constraint_m functions, but the constraint to test is given as
an argument, c. If ¢ specifies a register constraint, this function will always return
false.

enum reg_class regclass_for_constraint (enum constraint_num c) [Function]
Returns the register class associated with c¢. If ¢ is not a register constraint, or those
registers are not available for the currently selected subtarget, returns NO_REGS.

Here is an example use of satisfies_constraint_m. In peephole optimizations (see
Section 14.18 [Peephole Definitions|, page 270), operand constraint strings are ignored, so if
there are relevant constraints, they must be tested in the C condition. In the example, the
optimization is applied if operand 2 does not satisfy the ‘K’ constraint. (This is a simplified
version of a peephole definition from the 1386 machine description.)

(define_peephole2
[(match_scratch:SI 3 "r")
(set (match_operand:SI O "register_operand" "")
(mult:SI (match_operand:SI 1 "memory_operand" "")
(match_operand:SI 2 "immediate_operand" "")))]

"!satisfies_constraint_K (operands[2])"

[(set (match_dup 3) (match_dup 1))
(set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]

||||)

14.9 Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation pass of
the compiler. Giving one of these names to an instruction pattern tells the RTL generation
pass that it can use the pattern to accomplish a certain task.

‘movm’ Here m stands for a two-letter machine mode name, in lowercase. This instruc-
tion pattern moves data with that machine mode from operand 1 to operand
0. For example, ‘movsi’ moves full-word data.

If operand 0 is a subreg with mode m of a register whose own mode is wider
than m, the effect of this instruction is to store the specified value in the part
of the register that corresponds to mode m. Bits outside of m, but which

Chapter 14: Machine Descriptions 237

are within the same target word as the subreg are undefined. Bits which are
outside the target word are left unchanged.

This class of patterns is special in several ways. First of all, each of these names
up to and including full word size must be defined, because there is no other
way to copy a datum from one place to another. If there are patterns accepting
operands in larger modes, ‘movm’ must be defined for integer modes of those
sizes.

Second, these patterns are not used solely in the RTL generation pass. FEven
the reload pass can generate move insns to copy values from stack slots into
temporary registers. When it does so, one of the operands is a hard register
and the other is an operand that can need to be reloaded into a register.

Therefore, when given such a pair of operands, the pattern must generate RTL
which needs no reloading and needs no temporary registers—no registers other
than the operands. For example, if you support the pattern with a define_
expand, then in such a case the define_expand mustn’t call force_reg or any
other such function which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine where
fetching those modes from memory normally requires several insns and some
temporary registers.

During reload a memory reference with an invalid address may be passed as
an operand. Such an address will be replaced with a valid address later in the
reload pass. In this case, nothing may be done with the address except to use
it as it stands. If it is copied, it will not be replaced with a valid address. No
attempt should be made to make such an address into a valid address and no
routine (such as change_address) that will do so may be called. Note that
general_operand will fail when applied to such an address.

The global variable reload_in_progress (which must be explicitly declared if
required) can be used to determine whether such special handling is required.

The variety of operands that have reloads depends on the rest of the machine
description, but typically on a RISC machine these can only be pseudo regis-
ters that did not get hard registers, while on other machines explicit memory
references will get optional reloads.

If a scratch register is required to move an object to or from memory, it can be
allocated using gen_reg_rtx prior to life analysis.

If there are cases which need scratch registers during or after reload, you must
provide an appropriate secondary_reload target hook.

The global variable no_new_pseudos can be used to determine if it is unsafe to
create new pseudo registers. If this variable is nonzero, then it is unsafe to call
gen_reg_rtx to allocate a new pseudo.

The constraints on a ‘movm’ must permit moving any hard register to any other
hard register provided that HARD_REGNO_MODE_OK permits mode m in both reg-
isters and REGISTER_MOVE_COST applied to their classes returns a value of 2.

It is obligatory to support floating point ‘movm’ instructions into and out of any
registers that can hold fixed point values, because unions and structures (which

238

GNU Compiler Collection (GCC) Internals

have modes SImode or DImode) can be in those registers and they may have
floating point members.

There may also be a need to support fixed point ‘movm’ instructions in and out
of floating point registers. Unfortunately, I have forgotten why this was so, and
I don’t know whether it is still true. If HARD_REGNO_MODE_OK rejects fixed point
values in floating point registers, then the constraints of the fixed point ‘movm’
instructions must be designed to avoid ever trying to reload into a floating point
register.

‘reload_inm’
‘reload_outm’

These named patterns have been obsoleted by the target hook secondary_
reload.

Like ‘movm’, but used when a scratch register is required to move between
operand 0 and operand 1. Operand 2 describes the scratch register. See the
discussion of the SECONDARY_RELOAD_CLASS macro in see Section 15.8 [Register
Classes], page 323.

There are special restrictions on the form of the match_operands used in these
patterns. First, only the predicate for the reload operand is examined, i.e.,
reload_in examines operand 1, but not the predicates for operand 0 or 2.
Second, there may be only one alternative in the constraints. Third, only a
single register class letter may be used for the constraint; subsequent constraint
letters are ignored. As a special exception, an empty constraint string matches
the ALL_REGS register class. This may relieve ports of the burden of defining
an ALL_REGS constraint letter just for these patterns.

‘movstrictm’

Like ‘movm’ except that if operand 0 is a subreg with mode m of a register
whose natural mode is wider, the ‘movstrictm’ instruction is guaranteed not
to alter any of the register except the part which belongs to mode m.

‘movmisalignm’

This variant of a move pattern is designed to load or store a value from a
memory address that is not naturally aligned for its mode. For a store, the
memory will be in operand 0; for a load, the memory will be in operand 1.
The other operand is guaranteed not to be a memory, so that it’s easy to tell
whether this is a load or store.

This pattern is used by the autovectorizer, and when expanding a MISALIGNED _
INDIRECT_REF expression.

‘load_multiple’

Load several consecutive memory locations into consecutive registers. Operand
0 is the first of the consecutive registers, operand 1 is the first memory location,
and operand 2 is a constant: the number of consecutive registers.

Define this only if the target machine really has such an instruction; do not
define this if the most efficient way of loading consecutive registers from memory
is to do them one at a time.

Chapter 14: Machine Descriptions 239

On some machines, there are restrictions as to which consecutive registers can
be stored into memory, such as particular starting or ending register numbers
or only a range of valid counts. For those machines, use a define_expand (see
Section 14.15 [Expander Definitions], page 263) and make the pattern fail if the
restrictions are not met.

Write the generated insn as a parallel with elements being a set of one register
from the appropriate memory location (you may also need use or clobber
elements). Use a match_parallel (see Section 14.4 [RTL Template], page 201)
to recognize the insn. See ‘rs6000.md’ for examples of the use of this insn
pattern.

‘store_multiple’

‘vec_setm’

Similar to ‘load_multiple’, but store several consecutive registers into con-
secutive memory locations. Operand 0 is the first of the consecutive memory
locations, operand 1 is the first register, and operand 2 is a constant: the
number of consecutive registers.

Set given field in the vector value. Operand 0 is the vector to modify, operand
1 is new value of field and operand 2 specify the field index.

‘vec_extractm’

Extract given field from the vector value. Operand 1 is the vector, operand 2
specify field index and operand 0 place to store value into.

‘vec_initm’

‘pushm1’

‘addm3’

Initialize the vector to given values. Operand 0 is the vector to initialize and
operand 1 is parallel containing values for individual fields.

Output a push instruction. Operand 0 is value to push. Used only when PUSH_
ROUNDING is defined. For historical reason, this pattern may be missing and in
such case an mov expander is used instead, with a MEM expression forming the
push operation. The mov expander method is deprecated.

Add operand 2 and operand 1, storing the result in operand 0. All operands
must have mode m. This can be used even on two-address machines, by means
of constraints requiring operands 1 and 0 to be the same location.

‘subm3’, ‘mulm3’
‘divm3’, ‘udivm3’
‘modm3’, ‘umodm3’
‘uminm3’, ‘umaxm3’
‘andm3’, ‘iorm3’, ‘xorm3’

Similar, for other arithmetic operations.

‘sminm3’, ‘smaxm3’

Signed minimum and maximum operations. When used with floating point, if
both operands are zeros, or if either operand is NaN, then it is unspecified which
of the two operands is returned as the result.

240

GNU Compiler Collection (GCC) Internals

‘reduc_smin_m’, ‘reduc_smax_m’

Find the signed minimum/maximum of the elements of a vector. The vector is
operand 1, and the scalar result is stored in the least significant bits of operand
0 (also a vector). The output and input vector should have the same modes.

‘reduc_umin_m’, ‘reduc_umax_m’

Find the unsigned minimum/maximum of the elements of a vector. The vector
is operand 1, and the scalar result is stored in the least significant bits of operand
0 (also a vector). The output and input vector should have the same modes.

‘reduc_splus_m’

Compute the sum of the signed elements of a vector. The vector is operand 1,
and the scalar result is stored in the least significant bits of operand 0 (also a
vector). The output and input vector should have the same modes.

‘reduc_uplus_m’

Compute the sum of the unsigned elements of a vector. The vector is operand
1, and the scalar result is stored in the least significant bits of operand 0 (also
a vector). The output and input vector should have the same modes.

‘sdot_prodm’
‘udot_prodm’

Compute the sum of the products of two signed/unsigned elements. Operand 1
and operand 2 are of the same mode. Their product, which is of a wider mode,
is computed and added to operand 3. Operand 3 is of a mode equal or wider
than the mode of the product. The result is placed in operand 0, which is of
the same mode as operand 3.

‘ssum_widenm3’
‘usum_widenm3’

Operands 0 and 2 are of the same mode, which is wider than the mode of
operand 1. Add operand 1 to operand 2 and place the widened result in operand
0. (This is used express accumulation of elements into an accumulator of a wider
mode.)

‘vec_shl_m’, ‘vec_shr_m’

‘mulhisi3’

‘mulqihi3’,

Whole vector left/right shift in bits. Operand 1 is a vector to be shifted.
Operand 2 is an integer shift amount in bits. Operand 0 is where the resulting
shifted vector is stored. The output and input vectors should have the same
modes.

Multiply operands 1 and 2, which have mode HImode, and store a SImode
product in operand 0.

‘mulsidi3’

Similar widening-multiplication instructions of other widths.

‘umulgihi3’, ‘umulhigi3’, ‘umulsidid’

Similar widening-multiplication instructions that do unsigned multiplication.

Chapter 14:

Machine Descriptions 241

‘usmulqgihi3’, ‘usmulhisi3’, ‘usmulsidi3’

Similar widening-multiplication instructions that interpret the first operand as
unsigned and the second operand as signed, then do a signed multiplication.

‘smulm3_highpart’

Perform a signed multiplication of operands 1 and 2, which have mode m, and
store the most significant half of the product in operand 0. The least significant
half of the product is discarded.

‘umulm3_highpart’

‘maddmn4’

‘umaddmn4’

‘msubmn4’

‘umsubmn4’

‘divmodm4’

Similar, but the multiplication is unsigned.

Multiply operands 1 and 2, sign-extend them to mode n, add operand 3, and
store the result in operand 0. Operands 1 and 2 have mode m and operands 0
and 3 have mode n. Both modes must be integer modes and n must be twice
the size of m.

In other words, maddmn4 is like mulmn3 except that it also adds operand 3.

These instructions are not allowed to FAIL.

Like maddmn4, but zero-extend the multiplication operands instead of sign-
extending them.

Multiply operands 1 and 2, sign-extend them to mode n, subtract the result
from operand 3, and store the result in operand 0. Operands 1 and 2 have mode
m and operands 0 and 3 have mode n. Both modes must be integer modes and
n must be twice the size of m.

In other words, msubmn4 is like mulmn3 except that it also subtracts the result
from operand 3.

These instructions are not allowed to FAIL.

Like msubmn4, but zero-extend the multiplication operands instead of sign-
extending them.

Signed division that produces both a quotient and a remainder. Operand 1 is
divided by operand 2 to produce a quotient stored in operand 0 and a remainder
stored in operand 3.

For machines with an instruction that produces both a quotient and a remain-
der, provide a pattern for ‘divmodm4’ but do not provide patterns for ‘divm3’
and ‘modm3’. This allows optimization in the relatively common case when both
the quotient and remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is
more efficient than the instruction that produces both, write the output routine
of ‘divmodm4’ to call find_reg_note and look for a REG_UNUSED note on the
quotient or remainder and generate the appropriate instruction.

‘udivmodm4’

Similar, but does unsigned division.

242

‘ashlm3’

GNU Compiler Collection (GCC) Internals

Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and
store the result in operand 0. Here m is the mode of operand 0 and operand 1;
operand 2’s mode is specified by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction. The mean-
ing of out-of-range shift counts can optionally be specified by TARGET_SHIFT_
TRUNCATION_MASK. See [TARGET_SHIFT_TRUNCATION_MASK], page 425.

‘ashrm3’, ‘1shrm3’, ‘rot1lm3’, ‘rotrm3’

‘negm?2’
‘absm?2’

‘sqrtm?2’

‘cosm?2’

‘sinm?2’

‘expm?2’

‘logm?2’

‘powm3’

‘atan2m3’

Other shift and rotate instructions, analogous to the ashlm3 instructions.
Negate operand 1 and store the result in operand 0.
Store the absolute value of operand 1 into operand 0.

Store the square root of operand 1 into operand 0.

The sqrt built-in function of C always uses the mode which corresponds to
the C data type double and the sqrtf built-in function uses the mode which
corresponds to the C data type float.

Store the cosine of operand 1 into operand 0.

The cos built-in function of C always uses the mode which corresponds to
the C data type double and the cosf built-in function uses the mode which
corresponds to the C data type float.

Store the sine of operand 1 into operand 0.

The sin built-in function of C always uses the mode which corresponds to
the C data type double and the sinf built-in function uses the mode which
corresponds to the C data type float.

Store the exponential of operand 1 into operand 0.

The exp built-in function of C always uses the mode which corresponds to
the C data type double and the expf built-in function uses the mode which
corresponds to the C data type float.

Store the natural logarithm of operand 1 into operand 0.

The log built-in function of C always uses the mode which corresponds to
the C data type double and the logf built-in function uses the mode which
corresponds to the C data type float.

Store the value of operand 1 raised to the exponent operand 2 into operand 0.

The pow built-in function of C always uses the mode which corresponds to
the C data type double and the powf built-in function uses the mode which
corresponds to the C data type float.

Store the arc tangent (inverse tangent) of operand 1 divided by operand 2 into
operand 0, using the signs of both arguments to determine the quadrant of the
result.

The atan2 built-in function of C always uses the mode which corresponds to
the C data type double and the atan2f built-in function uses the mode which
corresponds to the C data type float.

Chapter 14: Machine Descriptions 243

‘floorm?2’

‘btruncm?2’

‘roundm?2’

‘ceilm?’

Store the largest integral value not greater than argument.

The floor built-in function of C always uses the mode which corresponds to
the C data type double and the floorf built-in function uses the mode which
corresponds to the C data type float.

Store the argument rounded to integer towards zero.

The trunc built-in function of C always uses the mode which corresponds to
the C data type double and the truncf built-in function uses the mode which
corresponds to the C data type float.

Store the argument rounded to integer away from zero.

The round built-in function of C always uses the mode which corresponds to
the C data type double and the roundf built-in function uses the mode which
corresponds to the C data type float.

Store the argument rounded to integer away from zero.

The ceil built-in function of C always uses the mode which corresponds to
the C data type double and the ceilf built-in function uses the mode which
corresponds to the C data type float.

‘nearbyintm?2’

‘rintm?2’

Store the argument rounded according to the default rounding mode

The nearbyint built-in function of C always uses the mode which corresponds
to the C data type double and the nearbyintf built-in function uses the mode
which corresponds to the C data type float.

Store the argument rounded according to the default rounding mode and raise
the inexact exception when the result differs in value from the argument

The rint built-in function of C always uses the mode which corresponds to
the C data type double and the rintf built-in function uses the mode which
corresponds to the C data type float.

‘copysignm3’

‘ffsm?2’

‘clzm?2’

Store a value with the magnitude of operand 1 and the sign of operand 2 into
operand 0.

The copysign built-in function of C always uses the mode which corresponds
to the C data type double and the copysignf built-in function uses the mode
which corresponds to the C data type float.

Store into operand 0 one plus the index of the least significant 1-bit of operand
1. If operand 1 is zero, store zero. m is the mode of operand 0; operand 1’s
mode is specified by the instruction pattern, and the compiler will convert the
operand to that mode before generating the instruction.

The f££fs built-in function of C always uses the mode which corresponds to the
C data type int.

Store into operand 0 the number of leading 0-bits in x, starting at the most sig-
nificant bit position. If x is 0, the result is undefined. m is the mode of operand
0; operand 1’s mode is specified by the instruction pattern, and the compiler
will convert the operand to that mode before generating the instruction.

244 GNU Compiler Collection (GCC) Internals
‘ctzm2’ Store into operand 0 the number of trailing 0-bits in x, starting at the least sig-
nificant bit position. If x is 0, the result is undefined. m is the mode of operand
0; operand 1’s mode is specified by the instruction pattern, and the compiler
will convert the operand to that mode before generating the instruction.
‘popcountm?2’
Store into operand 0 the number of 1-bits in x. m is the mode of operand 0;
operand 1’s mode is specified by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction.
‘paritym?2’

Store into operand 0 the parity of x, i.e. the number of 1-bits in x modulo 2. m is
the mode of operand 0; operand 1’s mode is specified by the instruction pattern,
and the compiler will convert the operand to that mode before generating the
instruction.

‘one_cmplm?2’

‘cmpm’

‘tstm’

‘movmemm’

Store the bitwise-complement of operand 1 into operand 0.

Compare operand 0 and operand 1, and set the condition codes. The RTL
pattern should look like this:

(set (ccO) (compare (match_operand:m 0 ...)
(match_operand:m 1 ...)))

Compare operand 0 against zero, and set the condition codes. The RTL pattern
should look like this:

(set (ccO) (match_operand:m O ...))

‘tstm’ patterns should not be defined for machines that do not use (cc0).
Doing so would confuse the optimizer since it would no longer be clear which
set operations were comparisons. The ‘cmpm’ patterns should be used instead.

Block move instruction. The destination and source blocks of memory are the
first two operands, and both are mem:BLKs with an address in mode Pmode.

The number of bytes to move is the third operand, in mode m. Usually, you
specify word_mode for m. However, if you can generate better code knowing
the range of valid lengths is smaller than those representable in a full word, you
should provide a pattern with a mode corresponding to the range of values you
can handle efficiently (e.g., QImode for values in the range 0-127; note we avoid
numbers that appear negative) and also a pattern with word_mode.

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

Descriptions of multiple movmemm patterns can only be beneficial if the pat-
terns for smaller modes have fewer restrictions on their first, second and fourth
operands. Note that the mode m in movmemm does not impose any restriction
on the mode of individually moved data units in the block.

These patterns need not give special consideration to the possibility that the
source and destination strings might overlap.

Chapter 14: Machine Descriptions 245

‘movstr’

‘setmemm’

‘cmpstrnm’

‘cmpstrm’

‘cmpmemm’

‘strlenm’

String copy instruction, with stpcpy semantics. Operand 0 is an output
operand in mode Pmode. The addresses of the destination and source strings
are operands 1 and 2, and both are mem:BLKs with addresses in mode Pmode.
The execution of the expansion of this pattern should store in operand 0 the
address in which the NUL terminator was stored in the destination string.

Block set instruction. The destination string is the first operand, given as a
mem:BLK whose address is in mode Pmode. The number of bytes to set is the
second operand, in mode m. The value to initialize the memory with is the
third operand. Targets that only support the clearing of memory should reject
any value that is not the constant 0. See ‘movmemm’ for a discussion of the choice
of mode.

The fourth operand is the known alignment of the destination, in the form of
a const_int rtx. Thus, if the compiler knows that the destination is word-
aligned, it may provide the value 4 for this operand.

The use for multiple setmemm is as for movmemm.

String compare instruction, with five operands. Operand 0 is the output; it
has mode m. The remaining four operands are like the operands of ‘movmemm’.
The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each string. The instruction is not allowed to
prefetch more than one byte at a time since either string may end in the first
byte and reading past that may access an invalid page or segment and cause a
fault. The effect of the instruction is to store a value in operand 0 whose sign
indicates the result of the comparison.

String compare instruction, without known maximum length. Operand 0 is the
output; it has mode m. The second and third operand are the blocks of memory
to be compared; both are mem:BLK with an address in mode Pmode.

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each string. The instruction is not allowed to
prefetch more than one byte at a time since either string may end in the first
byte and reading past that may access an invalid page or segment and cause a
fault. The effect of the instruction is to store a value in operand 0 whose sign
indicates the result of the comparison.

Block compare instruction, with five operands like the operands of ‘cmpstrm’.
The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each block. Unlike ‘cmpstrm’ the instruction
can prefetch any bytes in the two memory blocks. The effect of the instruction is
to store a value in operand 0 whose sign indicates the result of the comparison.

Compute the length of a string, with three operands. Operand 0 is the result
(of mode m), operand 1 is a mem referring to the first character of the string,

246 GNU Compiler Collection (GCC) Internals

operand 2 is the character to search for (normally zero), and operand 3 is a
constant describing the known alignment of the beginning of the string.

‘floatmn?2’
Convert signed integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘floatunsmn?2’
Convert unsigned integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘fixmn2’ Convert operand 1 (valid for floating point mode m) to fixed point mode n as a
signed number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

If the machine description defines this pattern, it also needs to define the ftrunc
pattern.

‘fixunsmn?2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as an
unsigned number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

‘ftruncm?’
Convert operand 1 (valid for floating point mode m) to an integer value, still
represented in floating point mode m, and store it in operand 0 (valid for floating
point mode m).

‘fix_truncmn?2’
Like ‘fixmn?2’ but works for any floating point value of mode m by converting
the value to an integer.

‘fixuns_truncmn?2’
Like ‘fixunsmn?2’ but works for any floating point value of mode m by convert-
ing the value to an integer.

‘truncmn?’
Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which
has mode n). Both modes must be fixed point or both floating point.

‘extendmn?2’
Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point or both floating point.

‘zero_extendmn?2’
Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point.

‘extv’ Extract a bit-field from operand 1 (a register or memory operand), where
operand 2 specifies the width in bits and operand 3 the starting bit, and store
it in operand 0. Operand 0 must have mode word_mode. Operand 1 may have
mode byte_mode or word_mode; often word_mode is allowed only for registers.
Operands 2 and 3 must be valid for word_mode.

Chapter 14: Machine Descriptions 247

‘extzv’

‘insv’

The RTL generation pass generates this instruction only with constants for
operands 2 and 3 and the constant is never zero for operand 2.

The bit-field value is sign-extended to a full word integer before it is stored in
operand 0.

Like ‘extv’ except that the bit-field value is zero-extended.

Store operand 3 (which must be valid for word_mode) into a bit-field in operand
0, where operand 1 specifies the width in bits and operand 2 the starting bit.
Operand 0 may have mode byte_mode or word_mode; often word_mode is al-
lowed only for registers. Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for
operands 1 and 2 and the constant is never zero for operand 1.

‘movmodecc’

Conditionally move operand 2 or operand 3 into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise operand 3 is moved.

The mode of the operands being compared need not be the same as the operands
being moved. Some machines, sparc64 for example, have instructions that
conditionally move an integer value based on the floating point condition codes
and vice versa.

If the machine does not have conditional move instructions, do not define these
patterns.

‘addmodecc’

‘scond’

Similar to ‘movmodecc’ but for conditional addition. Conditionally move
operand 2 or (operands 2 + operand 3) into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise (operand 2 + operand 3) is moved.

Store zero or nonzero in the operand according to the condition codes. Value
stored is nonzero iff the condition cond is true. cond is the name of a comparison
operation expression code, such as eq, 1t or leu.

You specify the mode that the operand must have when you write the match_
operand expression. The compiler automatically sees which mode you have
used and supplies an operand of that mode.

The value stored for a true condition must have 1 as its low bit, or else must
be negative. Otherwise the instruction is not suitable and you should omit it
from the machine description. You describe to the compiler exactly which value
is stored by defining the macro STORE_FLAG_VALUE (see Section 15.29 [Misc],
page 423). If a description cannot be found that can be used for all the ‘scond’
patterns, you should omit those operations from the machine description.

These operations may fail, but should do so only in relatively uncommon cases;
if they would fail for common cases involving integer comparisons, it is best to
omit these patterns.

If these operations are omitted, the compiler will usually generate code that
copies the constant one to the target and branches around an assignment of

248

‘bcond’

GNU Compiler Collection (GCC) Internals

zero to the target. If this code is more efficient than the potential instructions
used for the ‘scond’ pattern followed by those required to convert the result
into a 1 or a zero in SImode, you should omit the ‘scond’ operations from the
machine description.

Conditional branch instruction. Operand 0 is a label_ref that refers to the
label to jump to. Jump if the condition codes meet condition cond.

Some machines do not follow the model assumed here where a comparison in-
struction is followed by a conditional branch instruction. In that case, the
‘cmpm’ (and ‘tstm’) patterns should simply store the operands away and gen-
erate all the required insns in a define_expand (see Section 14.15 [Expander
Definitions], page 263) for the conditional branch operations. All calls to ex-
pand ‘bcond’ patterns are immediately preceded by calls to expand either a
‘cmpm’ pattern or a ‘tstm’ pattern.

Machines that use a pseudo register for the condition code value, or where the
mode used for the comparison depends on the condition being tested, should
also use the above mechanism. See Section 14.12 [Jump Patterns|, page 259.

The above discussion also applies to the ‘movmodecc’ and ‘scond’ patterns.

‘cbranchmode4’

jump

‘call’

Conditional branch instruction combined with a compare instruction. Operand
0 is a comparison operator. Operand 1 and operand 2 are the first and second
operands of the comparison, respectively. Operand 3 is a label_ref that refers
to the label to jump to.

A jump inside a function; an unconditional branch. Operand 0 is the label_ref
of the label to jump to. This pattern name is mandatory on all machines.

Subroutine call instruction returning no value. Operand 0 is the function to
call; operand 1 is the number of bytes of arguments pushed as a const_int;
operand 2 is the number of registers used as operands.

On most machines, operand 2 is not actually stored into the RTL pattern. It is
supplied for the sake of some RISC machines which need to put this information
into the assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function.
Note, however, that this address can be a symbol_ref expression even if it
would not be a legitimate memory address on the target machine. If it is also
not a valid argument for a call instruction, the pattern for this operation should
be a define_expand (see Section 14.15 [Expander Definitions|, page 263) that
places the address into a register and uses that register in the call instruction.

‘call_value’

Subroutine call instruction returning a value. Operand 0 is the hard register in
which the value is returned. There are three more operands, the same as the
three operands of the ‘call’ instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the ‘call’ insn.

Chapter 14: Machine Descriptions 249

‘call_pop’, ‘call_value_pop’

Similar to ‘call’ and ‘call_value’, except used if defined and if RETURN_POPS_
ARGS is nonzero. They should emit a parallel that contains both the function
call and a set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be nonzero, the use of these pat-
terns increases the number of functions for which the frame pointer can be
eliminated, if desired.

‘untyped_call’

‘return’

Subroutine call instruction returning a value of any type. Operand 0 is the
function to call; operand 1 is a memory location where the result of calling the
function is to be stored; operand 2 is a parallel expression where each element
is a set expression that indicates the saving of a function return value into the
result block.

This instruction pattern should be defined to support __builtin_apply on
machines where special instructions are needed to call a subroutine with ar-
bitrary arguments or to save the value returned. This instruction pattern is
required on machines that have multiple registers that can hold a return value
(i.e. FUNCTION_VALUE_REGNO_P is true for more than one register).

Subroutine return instruction. This instruction pattern name should be defined
only if a single instruction can do all the work of returning from a function.

Like the ‘movm’ patterns, this pattern is also used after the RTL generation
phase. In this case it is to support machines where multiple instructions are
usually needed to return from a function, but some class of functions only re-
quires one instruction to implement a return. Normally, the applicable functions
are those which do not need to save any registers or allocate stack space.

For such machines, the condition specified in this pattern should only be true
when reload_completed is nonzero and the function’s epilogue would only be
a single instruction. For machines with register windows, the routine leaf_
function_p may be used to determine if a register window push is required.

Machines that have conditional return instructions should define patterns such
as

(define_insn ""
[(set (pc)
(if _then_else (match_operator
0 "comparison_operator"
[(cc0) (comst_int 0)1)
(return)
(pc)))]
"condition"

u‘.‘n)

where condition would normally be the same condition specified on the named
‘return’ pattern.

‘untyped_return’

Untyped subroutine return instruction. This instruction pattern should be
defined to support __builtin_return on machines where special instructions
are needed to return a value of any type.

250

nop

GNU Compiler Collection (GCC) Internals

Operand 0 is a memory location where the result of calling a function with
__builtin_apply is stored; operand 1 is a parallel expression where each
element is a set expression that indicates the restoring of a function return
value from the result block.

No-op instruction. This instruction pattern name should always be defined to
output a no-op in assembler code. (const_int 0) will do as an RTL pattern.

‘indirect_jump’

‘casesi’

‘tablejump’

An instruction to jump to an address which is operand zero. This pattern name
is mandatory on all machines.

Instruction to jump through a dispatch table, including bounds checking. This
instruction takes five operands:

1. The index to dispatch on, which has mode SImode.
2. The lower bound for indices in the table, an integer constant.

3. The total range of indices in the table—the largest index minus the smallest
one (both inclusive).

4. A label that precedes the table itself.
5. A label to jump to if the index has a value outside the bounds.

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number
of elements in the table is one plus the difference between the upper bound and
the lower bound.

Instruction to jump to a variable address. This is a low-level capability which
can be used to implement a dispatch table when there is no ‘casesi’ pattern.

This pattern requires two operands: the address or offset, and a label which
should immediately precede the jump table. If the macro CASE_VECTOR_PC_
RELATIVE evaluates to a nonzero value then the first operand is an offset which
counts from the address of the table; otherwise, it is an absolute address to
jump to. In either case, the first operand has mode Pmode.

The ‘tablejump’ insn is always the last insn before the jump table it uses. Its
assembler code normally has no need to use the second operand, but you should
incorporate it in the RTL pattern so that the jump optimizer will not delete
the table as unreachable code.

‘decrement_and_branch_until_zero’

Conditional branch instruction that decrements a register and jumps if the
register is nonzero. Operand 0 is the register to decrement and test; operand
1 is the label to jump to if the register is nonzero. See Section 14.13 [Looping
Patterns|, page 260.

This optional instruction pattern is only used by the combiner, typically for
loops reversed by the loop optimizer when strength reduction is enabled.

‘doloop_end’

Conditional branch instruction that decrements a register and jumps if the
register is nonzero. This instruction takes five operands: Operand 0 is the

Chapter 14: Machine Descriptions 251

register to decrement and test; operand 1 is the number of loop iterations as a
const_int or constO_rtx if this cannot be determined until run-time; operand
2 is the actual or estimated maximum number of iterations as a const_int;
operand 3 is the number of enclosed loops as a const_int (an innermost loop
has a value of 1); operand 4 is the label to jump to if the register is nonzero.
See Section 14.13 [Looping Patterns], page 260.

This optional instruction pattern should be defined for machines with low-
overhead looping instructions as the loop optimizer will try to modify suit-
able loops to utilize it. If nested low-overhead looping is not supported, use a
define_expand (see Section 14.15 [Expander Definitions], page 263) and make
the pattern fail if operand 3 is not constl_rtx. Similarly, if the actual or esti-
mated maximum number of iterations is too large for this instruction, make it

fail.

‘doloop_begin’
Companion instruction to doloop_end required for machines that need to per-
form some initialization, such as loading special registers used by a low-overhead
looping instruction. If initialization insns do not always need to be emitted, use
a define_expand (see Section 14.15 [Expander Definitions], page 263) and make
it fail.

‘canonicalize_funcptr_for_compare’
Canonicalize the function pointer in operand 1 and store the result into operand
0.

Operand 0 is always a reg and has mode Pmode; operand 1 may be a reg, mem,
symbol_ref, const_int, etc and also has mode Pmode.

Canonicalization of a function pointer usually involves computing the address
of the function which would be called if the function pointer were used in an
indirect call.

Only define this pattern if function pointers on the target machine can have
different values but still call the same function when used in an indirect call.

‘save_stack_block’

‘save_stack_function’

‘save_stack_nonlocal’

‘restore_stack_block’

‘restore_stack_function’

‘restore_stack_nonlocal’
Most machines save and restore the stack pointer by copying it to or from an
object of mode Pmode. Do not define these patterns on such machines.

Some machines require special handling for stack pointer saves and restores. On
those machines, define the patterns corresponding to the non-standard cases by
using a define_expand (see Section 14.15 [Expander Definitions], page 263)
that produces the required insns. The three types of saves and restores are:

1. ‘save_stack_block’ saves the stack pointer at the start of a block that
allocates a variable-sized object, and ‘restore_stack_block’ restores the
stack pointer when the block is exited.

252

GNU Compiler Collection (GCC) Internals

2. ‘save_stack_function’ and ‘restore_stack_function’ do a similar job
for the outermost block of a function and are used when the function al-
locates variable-sized objects or calls alloca. Only the epilogue uses the
restored stack pointer, allowing a simpler save or restore sequence on some
machines.

3. ‘save_stack_nonlocal’ is used in functions that contain labels branched to
by nested functions. It saves the stack pointer in such a way that the inner
function can use ‘restore_stack_nonlocal’ to restore the stack pointer.
The compiler generates code to restore the frame and argument pointer
registers, but some machines require saving and restoring additional data
such as register window information or stack backchains. Place insns in
these patterns to save and restore any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the
stack pointer. The mode used to allocate the save area defaults to Pmode but
you can override that choice by defining the STACK_SAVEAREA_MODE macro (see
Section 15.5 [Storage Layout], page 304). You must specify an integral mode, or
V0IDmode if no save area is needed for a particular type of save (either because
no save is needed or because a machine-specific save area can be used). Operand
0 is the stack pointer and operand 1 is the save area for restore operations. If
‘save_stack_block’ is defined, operand 0 must not be VOIDmode since these
saves can be arbitrarily nested.

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx
when the stack pointer is saved for use by nonlocal gotos and a reg in the other
two cases.

‘allocate_stack’

Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 1 from the
stack pointer to create space for dynamically allocated data.

Store the resultant pointer to this space into operand 0. If you are allocating
space from the main stack, do this by emitting a move insn to copy virtual_
stack_dynamic_rtx to operand 0. If you are allocating the space elsewhere,
generate code to copy the location of the space to operand 0. In the latter
case, you must ensure this space gets freed when the corresponding space on
the main stack is free.

Do not define this pattern if all that must be done is the subtraction. Some
machines require other operations such as stack probes or maintaining the back
chain. Define this pattern to emit those operations in addition to updating the
stack pointer.

‘check_stack’

If stack checking cannot be done on your system by probing the stack with
a load or store instruction (see Section 15.10.3 [Stack Checking], page 339),
define this pattern to perform the needed check and signaling an error if the
stack has overflowed. The single operand is the location in the stack furthest
from the current stack pointer that you need to validate. Normally, on machines
where this pattern is needed, y