
The gnu Binary Utilities

(GNU Binutils)
Version 2.18.50

September 2008

Roland H. Pesch
Je�rey M. Osier
Cygnus Support

Cygnus Support
TEXinfo 2004-02-19.09

Copyright c
 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004,
2005, 2006, 2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free
Documentation License".

i

Table of Contents

Introduction . 1

1 ar . 3

1.1 Controlling ar on the Command Line . 4
1.2 Controlling ar with a Script . 6

2 ld . 9

3 nm . 11

4 objcopy . 15

5 objdump . 27

6 ranlib . 35

7 size . 37

8 strings . 39

9 strip . 41

10 c++�lt . 45

11 addr2line . 49

12 nlmconv . 51

13 windmc . 53

14 windres . 57

15 dlltool . 61

15.1 The format of the dlltool `.def' �le . 65

16 readelf . 67

ii gnu Binary Utilities

17 Common Options . 71

18 Selecting the Target System 73

18.1 Target Selection . 73
18.2 Architecture Selection . 74

19 Reporting Bugs . 75

19.1 Have You Found a Bug? . 75
19.2 How to Report Bugs . 75

Appendix A GNU Free Documentation License
. 79

ADDENDUM: How to use this License for your documents 84

Binutils Index . 85

1

Introduction

This brief manual contains documentation for the gnu binary utilities (GNU Binutils)
version 2.18.50:

ar Create, modify, and extract from archives

nm List symbols from object �les

objcopy Copy and translate object �les

objdump Display information from object �les

ranlib Generate index to archive contents

readelf Display the contents of ELF format �les.

size List �le section sizes and total size

strings List printable strings from �les

strip Discard symbols

c++filt Demangle encoded C++ symbols (on MS-DOS, this program is named cxxfilt)

addr2line

Convert addresses into �le names and line numbers

nlmconv Convert object code into a Netware Loadable Module

windres Manipulate Windows resources

windmc Genertor for Windows message resources

dlltool Create the �les needed to build and use Dynamic Link Libraries

This document is distributed under the terms of the GNU Free Documentation License.
A copy of the license is included in the section entitled "GNU Free Documentation License".

2 gnu Binary Utilities

Chapter 1: ar 3

1 ar

ar [-]p[mod [relpos] [count]] archive [member...]
ar -M [<mri-script]

The gnu ar program creates, modi�es, and extracts from archives. An archive is a single
�le holding a collection of other �les in a structure that makes it possible to retrieve the
original individual �les (called members of the archive).

The original �les' contents, mode (permissions), timestamp, owner, and group are pre-
served in the archive, and can be restored on extraction.

gnu ar can maintain archives whose members have names of any length; however, de-
pending on how ar is con�gured on your system, a limit on member-name length may be
imposed for compatibility with archive formats maintained with other tools. If it exists, the
limit is often 15 characters (typical of formats related to a.out) or 16 characters (typical of
formats related to co�).

ar is considered a binary utility because archives of this sort are most often used as
libraries holding commonly needed subroutines.

ar creates an index to the symbols de�ned in relocatable object modules in the archive
when you specify the modi�er `s'. Once created, this index is updated in the archive
whenever ar makes a change to its contents (save for the `q' update operation). An archive
with such an index speeds up linking to the library, and allows routines in the library to
call each other without regard to their placement in the archive.

You may use `nm -s' or `nm --print-armap' to list this index table. If an archive lacks
the table, another form of ar called ranlib can be used to add just the table.

gnu ar is designed to be compatible with two di�erent facilities. You can control its
activity using command-line options, like the di�erent varieties of ar on Unix systems; or,
if you specify the single command-line option `-M', you can control it with a script supplied
via standard input, like the MRI \librarian" program.

4 gnu Binary Utilities

1.1 Controlling ar on the Command Line
ar [`-X32_64'] [`-']p[mod [relpos] [count]] archive [member...]

When you use ar in the Unix style, ar insists on at least two arguments to execute: one
keyletter specifying the operation (optionally accompanied by other keyletters specifying
modi�ers), and the archive name to act on.

Most operations can also accept further member arguments, specifying particular �les
to operate on.

gnu ar allows you to mix the operation code p and modi�er
ags mod in any order,
within the �rst command-line argument.

If you wish, you may begin the �rst command-line argument with a dash.

The p keyletter speci�es what operation to execute; it may be any of the following, but
you must specify only one of them:

`d' Delete modules from the archive. Specify the names of modules to be deleted
as member . . . ; the archive is untouched if you specify no �les to delete.

If you specify the `v' modi�er, ar lists each module as it is deleted.

`m' Use this operation to move members in an archive.

The ordering of members in an archive can make a di�erence in how programs
are linked using the library, if a symbol is de�ned in more than one member.

If no modi�ers are used with m, any members you name in the member ar-
guments are moved to the end of the archive; you can use the `a', `b', or `i'
modi�ers to move them to a speci�ed place instead.

`p' Print the speci�ed members of the archive, to the standard output �le. If the
`v' modi�er is speci�ed, show the member name before copying its contents to
standard output.

If you specify no member arguments, all the �les in the archive are printed.

`q' Quick append ; Historically, add the �les member . . . to the end of archive,
without checking for replacement.

The modi�ers `a', `b', and `i' do not a�ect this operation; new members are
always placed at the end of the archive.

The modi�er `v' makes ar list each �le as it is appended.

Since the point of this operation is speed, the archive's symbol table index is
not updated, even if it already existed; you can use `ar s' or ranlib explicitly
to update the symbol table index.

However, too many di�erent systems assume quick append rebuilds the index,
so gnu ar implements `q' as a synonym for `r'.

`r' Insert the �les member . . . into archive (with replacement). This operation
di�ers from `q' in that any previously existing members are deleted if their
names match those being added.

If one of the �les named in member . . . does not exist, ar displays an error
message, and leaves undisturbed any existing members of the archive matching
that name.

Chapter 1: ar 5

By default, new members are added at the end of the �le; but you may use one
of the modi�ers `a', `b', or `i' to request placement relative to some existing
member.

The modi�er `v' used with this operation elicits a line of output for each �le
inserted, along with one of the letters `a' or `r' to indicate whether the �le was
appended (no old member deleted) or replaced.

`t' Display a table listing the contents of archive, or those of the �les listed in
member . . . that are present in the archive. Normally only the member name
is shown; if you also want to see the modes (permissions), timestamp, owner,
group, and size, you can request that by also specifying the `v' modi�er.

If you do not specify a member, all �les in the archive are listed.

If there is more than one �le with the same name (say, `fie') in an archive (say
`b.a'), `ar t b.a fie' lists only the �rst instance; to see them all, you must ask
for a complete listing|in our example, `ar t b.a'.

`x' Extract members (named member) from the archive. You can use the `v' mod-
i�er with this operation, to request that ar list each name as it extracts it.

If you do not specify a member, all �les in the archive are extracted.

A number of modi�ers (mod) may immediately follow the p keyletter, to specify varia-
tions on an operation's behavior:

`a' Add new �les after an existing member of the archive. If you use the modi�er
`a', the name of an existing archive member must be present as the relpos

argument, before the archive speci�cation.

`b' Add new �les before an existing member of the archive. If you use the modi�er
`b', the name of an existing archive member must be present as the relpos

argument, before the archive speci�cation. (same as `i').

`c' Create the archive. The speci�ed archive is always created if it did not exist,
when you request an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modi�er.

`f' Truncate names in the archive. gnu ar will normally permit �le names of any
length. This will cause it to create archives which are not compatible with the
native ar program on some systems. If this is a concern, the `f' modi�er may
be used to truncate �le names when putting them in the archive.

`i' Insert new �les before an existing member of the archive. If you use the modi�er
`i', the name of an existing archive member must be present as the relpos

argument, before the archive speci�cation. (same as `b').

`l' This modi�er is accepted but not used.

`N' Uses the count parameter. This is used if there are multiple entries in the
archive with the same name. Extract or delete instance count of the given
name from the archive.

`o' Preserve the original dates of members when extracting them. If you do not
specify this modi�er, �les extracted from the archive are stamped with the time
of extraction.

6 gnu Binary Utilities

`P' Use the full path name when matching names in the archive. gnu ar can
not create an archive with a full path name (such archives are not POSIX
complaint), but other archive creators can. This option will cause gnu ar to
match �le names using a complete path name, which can be convenient when
extracting a single �le from an archive created by another tool.

`s' Write an object-�le index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modi�er
ag either with
any operation, or alone. Running `ar s' on an archive is equivalent to running
`ranlib' on it.

`S' Do not generate an archive symbol table. This can speed up building a large
library in several steps. The resulting archive can not be used with the linker.
In order to build a symbol table, you must omit the `S' modi�er on the last
execution of `ar', or you must run `ranlib' on the archive.

`u' Normally, `ar r'. . . inserts all �les listed into the archive. If you would like
to insert only those of the �les you list that are newer than existing members
of the same names, use this modi�er. The `u' modi�er is allowed only for the
operation `r' (replace). In particular, the combination `qu' is not allowed, since
checking the timestamps would lose any speed advantage from the operation
`q'.

`v' This modi�er requests the verbose version of an operation. Many operations
display additional information, such as �lenames processed, when the modi�er
`v' is appended.

`V' This modi�er shows the version number of ar.

ar ignores an initial option spelt `-X32_64', for compatibility with AIX. The behaviour
produced by this option is the default for gnu ar. ar does not support any of the other
`-X' options; in particular, it does not support `-X32' which is the default for AIX ar.

1.2 Controlling ar with a Script
ar -M [<script]

If you use the single command-line option `-M' with ar, you can control its operation
with a rudimentary command language. This form of ar operates interactively if standard
input is coming directly from a terminal. During interactive use, ar prompts for input (the
prompt is `AR >'), and continues executing even after errors. If you redirect standard input
to a script �le, no prompts are issued, and ar abandons execution (with a nonzero exit
code) on any error.

The ar command language is not designed to be equivalent to the command-line options;
in fact, it provides somewhat less control over archives. The only purpose of the command
language is to ease the transition to gnu ar for developers who already have scripts written
for the MRI \librarian" program.

The syntax for the ar command language is straightforward:

� commands are recognized in upper or lower case; for example, LIST is the same as
list. In the following descriptions, commands are shown in upper case for clarity.

� a single command may appear on each line; it is the �rst word on the line.

Chapter 1: ar 7

� empty lines are allowed, and have no e�ect.

� comments are allowed; text after either of the characters `*' or `;' is ignored.

� Whenever you use a list of names as part of the argument to an ar command, you can
separate the individual names with either commas or blanks. Commas are shown in
the explanations below, for clarity.

� `+' is used as a line continuation character; if `+' appears at the end of a line, the text
on the following line is considered part of the current command.

Here are the commands you can use in ar scripts, or when using ar interactively. Three
of them have special signi�cance:

OPEN or CREATE specify a current archive, which is a temporary �le required for most of
the other commands.

SAVE commits the changes so far speci�ed by the script. Prior to SAVE, commands a�ect
only the temporary copy of the current archive.

ADDLIB archive

ADDLIB archive (module, module, ... module)

Add all the contents of archive (or, if speci�ed, each named module from
archive) to the current archive.

Requires prior use of OPEN or CREATE.

ADDMOD member, member, ... member

Add each named member as a module in the current archive.

Requires prior use of OPEN or CREATE.

CLEAR Discard the contents of the current archive, canceling the e�ect of any operations
since the last SAVE. May be executed (with no e�ect) even if no current archive
is speci�ed.

CREATE archive

Creates an archive, and makes it the current archive (required for many other
commands). The new archive is created with a temporary name; it is not actu-
ally saved as archive until you use SAVE. You can overwrite existing archives;
similarly, the contents of any existing �le named archive will not be destroyed
until SAVE.

DELETE module, module, ... module

Delete each listed module from the current archive; equivalent to `ar -d

archive module ... module '.

Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, ... module)

DIRECTORY archive (module, ... module) outputfile

List each named module present in archive. The separate command VERBOSE

speci�es the form of the output: when verbose output is o�, output is like that
of `ar -t archive module...'. When verbose output is on, the listing is like
`ar -tv archive module...'.

Output normally goes to the standard output stream; however, if you specify
output�le as a �nal argument, ar directs the output to that �le.

8 gnu Binary Utilities

END Exit from ar, with a 0 exit code to indicate successful completion. This com-
mand does not save the output �le; if you have changed the current archive
since the last SAVE command, those changes are lost.

EXTRACT module, module, ... module

Extract each named module from the current archive, writing them into the
current directory as separate �les. Equivalent to `ar -x archive module...'.

Requires prior use of OPEN or CREATE.

LIST Display full contents of the current archive, in \verbose" style regardless of the
state of VERBOSE. The e�ect is like `ar tv archive '. (This single command is
a gnu ar enhancement, rather than present for MRI compatibility.)

Requires prior use of OPEN or CREATE.

OPEN archive

Opens an existing archive for use as the current archive (required for many
other commands). Any changes as the result of subsequent commands will not
actually a�ect archive until you next use SAVE.

REPLACE module, module, ... module

In the current archive, replace each existing module (named in the REPLACE ar-
guments) from �les in the current working directory. To execute this command
without errors, both the �le, and the module in the current archive, must exist.

Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal
ag governing the output from DIRECTORY. When the
ag
is on, DIRECTORY output matches output from `ar -tv '. . . .

SAVE Commit your changes to the current archive, and actually save it as a �le with
the name speci�ed in the last CREATE or OPEN command.

Requires prior use of OPEN or CREATE.

Chapter 2: ld 9

2 ld

The gnu linker ld is now described in a separate manual. See section \Overview" in Using

LD: the gnu linker.

10 gnu Binary Utilities

Chapter 3: nm 11

3 nm

nm [`-a'|`--debug-syms'] [`-g'|`--extern-only']
[`-B'] [`-C'|`--demangle'[=style]] [`-D'|`--dynamic']
[`-S'|`--print-size'] [`-s'|`--print-armap']
[`-A'|`-o'|`--print-file-name'][`--special-syms']
[`-n'|`-v'|`--numeric-sort'] [`-p'|`--no-sort']
[`-r'|`--reverse-sort'] [`--size-sort'] [`-u'|`--undefined-only']
[`-t' radix|`--radix='radix] [`-P'|`--portability']
[`--target='bfdname] [`-f'format|`--format='format]
[`--defined-only'] [`-l'|`--line-numbers'] [`--no-demangle']
[`-V'|`--version'] [`-X 32_64'] [`--help'] [objfile...]

gnu nm lists the symbols from object �les obj�le If no object �les are listed as
arguments, nm assumes the �le `a.out'.

For each symbol, nm shows:

� The symbol value, in the radix selected by options (see below), or hexadecimal by
default.

� The symbol type. At least the following types are used; others are, as well, depending
on the object �le format. If lowercase, the symbol is local; if uppercase, the symbol is
global (external).

A The symbol's value is absolute, and will not be changed by further linking.

B The symbol is in the uninitialized data section (known as BSS).

C The symbol is common. Common symbols are uninitialized data. When
linking, multiple common symbols may appear with the same name. If the
symbol is de�ned anywhere, the common symbols are treated as unde�ned
references. For more details on common symbols, see the discussion of
{warn-common in section \Linker options" in The GNU linker.

D The symbol is in the initialized data section.

G The symbol is in an initialized data section for small objects. Some object
�le formats permit more e�cient access to small data objects, such as a
global int variable as opposed to a large global array.

I The symbol is an indirect reference to another symbol. This is a gnu

extension to the a.out object �le format which is rarely used.

N The symbol is a debugging symbol.

R The symbol is in a read only data section.

S The symbol is in an uninitialized data section for small objects.

T The symbol is in the text (code) section.

U The symbol is unde�ned.

V The symbol is a weak object. When a weak de�ned symbol is linked with
a normal de�ned symbol, the normal de�ned symbol is used with no error.
When a weak unde�ned symbol is linked and the symbol is not de�ned,
the value of the weak symbol becomes zero with no error.

12 gnu Binary Utilities

W The symbol is a weak symbol that has not been speci�cally tagged as a
weak object symbol. When a weak de�ned symbol is linked with a normal
de�ned symbol, the normal de�ned symbol is used with no error. When a
weak unde�ned symbol is linked and the symbol is not de�ned, the value
of the symbol is determined in a system-speci�c manner without error. On
some systems, uppercase indicates that a default value has been speci�ed.

- The symbol is a stabs symbol in an a.out object �le. In this case, the next
values printed are the stabs other �eld, the stabs desc �eld, and the stab
type. Stabs symbols are used to hold debugging information. For more
information, see section \Stabs Overview" in The \stabs" debug format.

? The symbol type is unknown, or object �le format speci�c.

� The symbol name.

The long and short forms of options, shown here as alternatives, are equivalent.

-A

-o

--print-file-name

Precede each symbol by the name of the input �le (or archive member) in which
it was found, rather than identifying the input �le once only, before all of its
symbols.

-a

--debug-syms

Display all symbols, even debugger-only symbols; normally these are not listed.

-B The same as `--format=bsd' (for compatibility with the MIPS nm).

-C

--demangle[=style]

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. Di�erent compilers have di�erent mangling styles. The
optional demangling style argument can be used to choose an appropriate de-
mangling style for your compiler. See Chapter 10 [c++�lt], page 45, for more
information on demangling.

--no-demangle

Do not demangle low-level symbol names. This is the default.

-D

--dynamic

Display the dynamic symbols rather than the normal symbols. This is only
meaningful for dynamic objects, such as certain types of shared libraries.

-f format

--format=format

Use the output format format, which can be bsd, sysv, or posix. The default
is bsd. Only the �rst character of format is signi�cant; it can be either upper
or lower case.

Chapter 3: nm 13

-g

--extern-only

Display only external symbols.

-l

--line-numbers

For each symbol, use debugging information to try to �nd a �lename and line
number. For a de�ned symbol, look for the line number of the address of the
symbol. For an unde�ned symbol, look for the line number of a relocation entry
which refers to the symbol. If line number information can be found, print it
after the other symbol information.

-n

-v

--numeric-sort

Sort symbols numerically by their addresses, rather than alphabetically by their
names.

-p

--no-sort

Do not bother to sort the symbols in any order; print them in the order en-
countered.

-P

--portability

Use the POSIX.2 standard output format instead of the default format. Equiv-
alent to `-f posix'.

-S

--print-size

Print size, not the value, of de�ned symbols for the bsd output format.

-s

--print-armap

When listing symbols from archive members, include the index: a mapping
(stored in the archive by ar or ranlib) of which modules contain de�nitions
for which names.

-r

--reverse-sort

Reverse the order of the sort (whether numeric or alphabetic); let the last come
�rst.

--size-sort

Sort symbols by size. The size is computed as the di�erence between the value
of the symbol and the value of the symbol with the next higher value. If the
bsd output format is used the size of the symbol is printed, rather than the
value, and `-S' must be used in order both size and value to be printed.

--special-syms

Display symbols which have a target-speci�c special meaning. These symbols
are usually used by the target for some special processing and are not nor-
mally helpful when included included in the normal symbol lists. For example

14 gnu Binary Utilities

for ARM targets this option would skip the mapping symbols used to mark
transitions between ARM code, THUMB code and data.

-t radix

--radix=radix

Use radix as the radix for printing the symbol values. It must be `d' for decimal,
`o' for octal, or `x' for hexadecimal.

--target=bfdname

Specify an object code format other than your system's default format. See
Section 18.1 [Target Selection], page 73, for more information.

-u

--undefined-only

Display only unde�ned symbols (those external to each object �le).

--defined-only

Display only de�ned symbols for each object �le.

-V

--version

Show the version number of nm and exit.

-X This option is ignored for compatibility with the AIX version of nm. It takes
one parameter which must be the string `32_64'. The default mode of AIX nm

corresponds to `-X 32', which is not supported by gnu nm.

--help Show a summary of the options to nm and exit.

Chapter 4: objcopy 15

4 objcopy
objcopy [`-F' bfdname|`--target='bfdname]

[`-I' bfdname|`--input-target='bfdname]
[`-O' bfdname|`--output-target='bfdname]
[`-B' bfdarch|`--binary-architecture='bfdarch]
[`-S'|`--strip-all']
[`-g'|`--strip-debug']
[`-K' symbolname|`--keep-symbol='symbolname]
[`-N' symbolname|`--strip-symbol='symbolname]
[`--strip-unneeded-symbol='symbolname]
[`-G' symbolname|`--keep-global-symbol='symbolname]
[`--localize-hidden']
[`-L' symbolname|`--localize-symbol='symbolname]
[`--globalize-symbol='symbolname]
[`-W' symbolname|`--weaken-symbol='symbolname]
[`-w'|`--wildcard']
[`-x'|`--discard-all']
[`-X'|`--discard-locals']
[`-b' byte|`--byte='byte]
[`-i' interleave|`--interleave='interleave]
[`-j' sectionname|`--only-section='sectionname]
[`-R' sectionname|`--remove-section='sectionname]
[`-p'|`--preserve-dates']
[`--debugging']
[`--gap-fill='val]
[`--pad-to='address]
[`--set-start='val]
[`--adjust-start='incr]
[`--change-addresses='incr]
[`--change-section-address' section{=,+,-}val]
[`--change-section-lma' section{=,+,-}val]
[`--change-section-vma' section{=,+,-}val]
[`--change-warnings'] [`--no-change-warnings']
[`--set-section-flags' section=flags]
[`--add-section' sectionname=filename]
[`--rename-section' oldname=newname[,flags]]
[`--change-leading-char'] [`--remove-leading-char']
[`--reverse-bytes='num]
[`--srec-len='ival] [`--srec-forceS3']
[`--redefine-sym' old=new]
[`--redefine-syms='filename]
[`--weaken']
[`--keep-symbols='filename]
[`--strip-symbols='filename]
[`--strip-unneeded-symbols='filename]
[`--keep-global-symbols='filename]
[`--localize-symbols='filename]
[`--globalize-symbols='filename]
[`--weaken-symbols='filename]
[`--alt-machine-code='index]
[`--prefix-symbols='string]
[`--prefix-sections='string]
[`--prefix-alloc-sections='string]
[`--add-gnu-debuglink='path-to-file]
[`--keep-file-symbols']
[`--only-keep-debug']
[`--extract-symbol']
[`--writable-text']

16 gnu Binary Utilities

[`--readonly-text']
[`--pure']
[`--impure']
[`-v'|`--verbose']
[`-V'|`--version']
[`--help'] [`--info']
infile [outfile]

The gnu objcopy utility copies the contents of an object �le to another. objcopy uses
the gnu bfd Library to read and write the object �les. It can write the destination object
�le in a format di�erent from that of the source object �le. The exact behavior of objcopy
is controlled by command-line options. Note that objcopy should be able to copy a fully
linked �le between any two formats. However, copying a relocatable object �le between any
two formats may not work as expected.

objcopy creates temporary �les to do its translations and deletes them afterward.
objcopy uses bfd to do all its translation work; it has access to all the formats described
in bfd and thus is able to recognize most formats without being told explicitly. See section
\BFD" in Using LD.

objcopy can be used to generate S-records by using an output target of `srec' (e.g., use
`-O srec').

objcopy can be used to generate a raw binary �le by using an output target of `binary'
(e.g., use `-O binary'). When objcopy generates a raw binary �le, it will essentially pro-
duce a memory dump of the contents of the input object �le. All symbols and relocation
information will be discarded. The memory dump will start at the load address of the
lowest section copied into the output �le.

When generating an S-record or a raw binary �le, it may be helpful to use `-S' to
remove sections containing debugging information. In some cases `-R' will be useful to
remove sections which contain information that is not needed by the binary �le.

Note|objcopy is not able to change the endianness of its input �les. If the input format
has an endianness (some formats do not), objcopy can only copy the inputs into �le formats
that have the same endianness or which have no endianness (e.g., `srec'). (However, see
the `--reverse-bytes' option.)

infile

outfile The input and output �les, respectively. If you do not specify out�le, objcopy
creates a temporary �le and destructively renames the result with the name of
in�le.

-I bfdname

--input-target=bfdname

Consider the source �le's object format to be bfdname, rather than attempting
to deduce it. See Section 18.1 [Target Selection], page 73, for more information.

-O bfdname

--output-target=bfdname

Write the output �le using the object format bfdname. See Section 18.1 [Target
Selection], page 73, for more information.

Chapter 4: objcopy 17

-F bfdname

--target=bfdname

Use bfdname as the object format for both the input and the output �le; i.e.,
simply transfer data from source to destination with no translation. See Sec-
tion 18.1 [Target Selection], page 73, for more information.

-B bfdarch

--binary-architecture=bfdarch

Useful when transforming a raw binary input �le into an object �le. In this
case the output architecture can be set to bfdarch. This option will be ignored
if the input �le has a known bfdarch. You can access this binary data inside a
program by referencing the special symbols that are created by the conversion
process. These symbols are called binary obj�le start, binary obj�le end
and binary obj�le size. e.g. you can transform a picture �le into an object
�le and then access it in your code using these symbols.

-j sectionname

--only-section=sectionname

Copy only the named section from the input �le to the output �le. This option
may be given more than once. Note that using this option inappropriately may
make the output �le unusable.

-R sectionname

--remove-section=sectionname

Remove any section named sectionname from the output �le. This option may
be given more than once. Note that using this option inappropriately may make
the output �le unusable.

-S

--strip-all

Do not copy relocation and symbol information from the source �le.

-g

--strip-debug

Do not copy debugging symbols or sections from the source �le.

--strip-unneeded

Strip all symbols that are not needed for relocation processing.

-K symbolname

--keep-symbol=symbolname

When stripping symbols, keep symbol symbolname even if it would normally
be stripped. This option may be given more than once.

-N symbolname

--strip-symbol=symbolname

Do not copy symbol symbolname from the source �le. This option may be
given more than once.

--strip-unneeded-symbol=symbolname

Do not copy symbol symbolname from the source �le unless it is needed by a
relocation. This option may be given more than once.

18 gnu Binary Utilities

-G symbolname

--keep-global-symbol=symbolname

Keep only symbol symbolname global. Make all other symbols local to the �le,
so that they are not visible externally. This option may be given more than
once.

--localize-hidden

In an ELF object, mark all symbols that have hidden or internal visibility as
local. This option applies on top of symbol-speci�c localization options such as
`-L'.

-L symbolname

--localize-symbol=symbolname

Make symbol symbolname local to the �le, so that it is not visible externally.
This option may be given more than once.

-W symbolname

--weaken-symbol=symbolname

Make symbol symbolname weak. This option may be given more than once.

--globalize-symbol=symbolname

Give symbol symbolname global scoping so that it is visible outside of the �le
in which it is de�ned. This option may be given more than once.

-w

--wildcard

Permit regular expressions in symbolnames used in other command line options.
The question mark (?), asterisk (*), backslash (\) and square brackets ([])
operators can be used anywhere in the symbol name. If the �rst character of
the symbol name is the exclamation point (!) then the sense of the switch is
reversed for that symbol. For example:

-w -W !foo -W fo*

would cause objcopy to weaken all symbols that start with \fo" except for the
symbol \foo".

-x

--discard-all

Do not copy non-global symbols from the source �le.

-X

--discard-locals

Do not copy compiler-generated local symbols. (These usually start with `L' or
`.'.)

-b byte

--byte=byte

Keep only every byteth byte of the input �le (header data is not a�ected). byte
can be in the range from 0 to interleave-1, where interleave is given by the `-i'
or `--interleave' option, or the default of 4. This option is useful for creating
�les to program rom. It is typically used with an srec output target.

Chapter 4: objcopy 19

-i interleave

--interleave=interleave

Only copy one out of every interleave bytes. Select which byte to copy with the
`-b' or `--byte' option. The default is 4. objcopy ignores this option if you do
not specify either `-b' or `--byte'.

-p

--preserve-dates

Set the access and modi�cation dates of the output �le to be the same as those
of the input �le.

--debugging

Convert debugging information, if possible. This is not the default because
only certain debugging formats are supported, and the conversion process can
be time consuming.

--gap-fill val

Fill gaps between sections with val. This operation applies to the load address

(LMA) of the sections. It is done by increasing the size of the section with the
lower address, and �lling in the extra space created with val.

--pad-to address

Pad the output �le up to the load address address. This is done by increasing
the size of the last section. The extra space is �lled in with the value speci�ed
by `--gap-fill' (default zero).

--set-start val

Set the start address of the new �le to val. Not all object �le formats support
setting the start address.

--change-start incr

--adjust-start incr

Change the start address by adding incr. Not all object �le formats support
setting the start address.

--change-addresses incr

--adjust-vma incr

Change the VMA and LMA addresses of all sections, as well as the start address,
by adding incr. Some object �le formats do not permit section addresses to be
changed arbitrarily. Note that this does not relocate the sections; if the program
expects sections to be loaded at a certain address, and this option is used to
change the sections such that they are loaded at a di�erent address, the program
may fail.

--change-section-address section{=,+,-}val

--adjust-section-vma section{=,+,-}val

Set or change both the VMA address and the LMA address of the named
section. If `=' is used, the section address is set to val. Otherwise, val is
added to or subtracted from the section address. See the comments under
`--change-addresses', above. If section does not exist in the input �le, a
warning will be issued, unless `--no-change-warnings' is used.

20 gnu Binary Utilities

--change-section-lma section{=,+,-}val

Set or change the LMA address of the named section. The LMA address is
the address where the section will be loaded into memory at program load
time. Normally this is the same as the VMA address, which is the address
of the section at program run time, but on some systems, especially those
where a program is held in ROM, the two can be di�erent. If `=' is used, the
section address is set to val. Otherwise, val is added to or subtracted from
the section address. See the comments under `--change-addresses', above.
If section does not exist in the input �le, a warning will be issued, unless
`--no-change-warnings' is used.

--change-section-vma section{=,+,-}val

Set or change the VMA address of the named section. The VMA address is
the address where the section will be located once the program has started
executing. Normally this is the same as the LMA address, which is the address
where the section will be loaded into memory, but on some systems, especially
those where a program is held in ROM, the two can be di�erent. If `=' is used,
the section address is set to val. Otherwise, val is added to or subtracted from
the section address. See the comments under `--change-addresses', above.
If section does not exist in the input �le, a warning will be issued, unless
`--no-change-warnings' is used.

--change-warnings

--adjust-warnings

If `--change-section-address' or `--change-section-lma' or
`--change-section-vma' is used, and the named section does not exist, issue
a warning. This is the default.

--no-change-warnings

--no-adjust-warnings

Do not issue a warning if `--change-section-address' or
`--adjust-section-lma' or `--adjust-section-vma' is used, even if
the named section does not exist.

--set-section-flags section=flags

Set the
ags for the named section. The
ags argument is a comma separated
string of
ag names. The recognized names are `alloc', `contents', `load',
`noload', `readonly', `code', `data', `rom', `share', and `debug'. You can set
the `contents'
ag for a section which does not have contents, but it is not
meaningful to clear the `contents'
ag of a section which does have contents{
just remove the section instead. Not all
ags are meaningful for all object �le
formats.

--add-section sectionname=filename

Add a new section named sectionname while copying the �le. The contents of
the new section are taken from the �le �lename. The size of the section will be
the size of the �le. This option only works on �le formats which can support
sections with arbitrary names.

Chapter 4: objcopy 21

--rename-section oldname=newname[,flags]

Rename a section from oldname to newname, optionally changing the section's

ags to
ags in the process. This has the advantage over usng a linker script
to perform the rename in that the output stays as an object �le and does not
become a linked executable.

This option is particularly helpful when the input format is binary, since this
will always create a section called .data. If for example, you wanted instead
to create a section called .rodata containing binary data you could use the
following command line to achieve it:

objcopy -I binary -O <output_format> -B <architecture> \
--rename-section .data=.rodata,alloc,load,readonly,data,contents \
<input_binary_file> <output_object_file>

--change-leading-char

Some object �le formats use special characters at the start of symbols. The
most common such character is underscore, which compilers often add before
every symbol. This option tells objcopy to change the leading character of every
symbol when it converts between object �le formats. If the object �le formats
use the same leading character, this option has no e�ect. Otherwise, it will add
a character, or remove a character, or change a character, as appropriate.

--remove-leading-char

If the �rst character of a global symbol is a special symbol leading character
used by the object �le format, remove the character. The most common symbol
leading character is underscore. This option will remove a leading underscore
from all global symbols. This can be useful if you want to link together objects
of di�erent �le formats with di�erent conventions for symbol names. This is
di�erent from `--change-leading-char' because it always changes the symbol
name when appropriate, regardless of the object �le format of the output �le.

--reverse-bytes=num

Reverse the bytes in a section with output contents. A section length must be
evenly divisible by the value given in order for the swap to be able to take place.
Reversing takes place before the interleaving is performed.

This option is used typically in generating ROM images for problematic target
systems. For example, on some target boards, the 32-bit words fetched from
8-bit ROMs are re-assembled in little-endian byte order regardless of the CPU
byte order. Depending on the programming model, the endianness of the ROM
may need to be modi�ed.

Consider a simple �le with a section containing the following eight bytes:
12345678.

Using `--reverse-bytes=2' for the above example, the bytes in the output �le
would be ordered 21436587.

Using `--reverse-bytes=4' for the above example, the bytes in the output �le
would be ordered 43218765.

By using `--reverse-bytes=2' for the above example, followed by
`--reverse-bytes=4' on the output �le, the bytes in the second output �le
would be ordered 34127856.

22 gnu Binary Utilities

--srec-len=ival

Meaningful only for srec output. Set the maximum length of the Srecords being
produced to ival. This length covers both address, data and crc �elds.

--srec-forceS3

Meaningful only for srec output. Avoid generation of S1/S2 records, creating
S3-only record format.

--redefine-sym old=new

Change the name of a symbol old, to new. This can be useful when one is
trying link two things together for which you have no source, and there are
name collisions.

--redefine-syms=filename

Apply `--redefine-sym' to each symbol pair "old new" listed in the �le �le-
name. �lename is simply a
at �le, with one symbol pair per line. Line com-
ments may be introduced by the hash character. This option may be given
more than once.

--weaken Change all global symbols in the �le to be weak. This can be useful when
building an object which will be linked against other objects using the `-R'
option to the linker. This option is only e�ective when using an object �le
format which supports weak symbols.

--keep-symbols=filename

Apply `--keep-symbol' option to each symbol listed in the �le �lename. �le-
name is simply a
at �le, with one symbol name per line. Line comments may
be introduced by the hash character. This option may be given more than once.

--strip-symbols=filename

Apply `--strip-symbol' option to each symbol listed in the �le �lename. �le-
name is simply a
at �le, with one symbol name per line. Line comments may
be introduced by the hash character. This option may be given more than once.

--strip-unneeded-symbols=filename

Apply `--strip-unneeded-symbol' option to each symbol listed in the �le �le-
name. �lename is simply a
at �le, with one symbol name per line. Line
comments may be introduced by the hash character. This option may be given
more than once.

--keep-global-symbols=filename

Apply `--keep-global-symbol' option to each symbol listed in the �le �le-

name. �lename is simply a
at �le, with one symbol name per line. Line
comments may be introduced by the hash character. This option may be given
more than once.

--localize-symbols=filename

Apply `--localize-symbol' option to each symbol listed in the �le �lename.
�lename is simply a
at �le, with one symbol name per line. Line comments
may be introduced by the hash character. This option may be given more than
once.

Chapter 4: objcopy 23

--globalize-symbols=filename

Apply `--globalize-symbol' option to each symbol listed in the �le �lename.
�lename is simply a
at �le, with one symbol name per line. Line comments
may be introduced by the hash character. This option may be given more than
once.

--weaken-symbols=filename

Apply `--weaken-symbol' option to each symbol listed in the �le �lename.
�lename is simply a
at �le, with one symbol name per line. Line comments
may be introduced by the hash character. This option may be given more than
once.

--alt-machine-code=index

If the output architecture has alternate machine codes, use the indexth code
instead of the default one. This is useful in case a machine is assigned an
o�cial code and the tool-chain adopts the new code, but other applications
still depend on the original code being used. For ELF based architectures if the
index alternative does not exist then the value is treated as an absolute number
to be stored in the e machine �eld of the ELF header.

--writable-text

Mark the output text as writable. This option isn't meaningful for all object
�le formats.

--readonly-text

Make the output text write protected. This option isn't meaningful for all
object �le formats.

--pure Mark the output �le as demand paged. This option isn't meaningful for all
object �le formats.

--impure Mark the output �le as impure. This option isn't meaningful for all object �le
formats.

--prefix-symbols=string

Pre�x all symbols in the output �le with string.

--prefix-sections=string

Pre�x all section names in the output �le with string.

--prefix-alloc-sections=string

Pre�x all the names of all allocated sections in the output �le with string.

--add-gnu-debuglink=path-to-file

Creates a .gnu debuglink section which contains a reference to path-to-�le and
adds it to the output �le.

--keep-file-symbols

When stripping a �le, perhaps with `--strip-debug' or `--strip-unneeded',
retain any symbols specifying source �le names, which would otherwise get
stripped.

24 gnu Binary Utilities

--only-keep-debug

Strip a �le, removing contents of any sections that would not be stripped by
`--strip-debug' and leaving the debugging sections intact. In ELF �les, this
preserves all note sections in the output.

The intention is that this option will be used in conjunction with
`--add-gnu-debuglink' to create a two part executable. One a stripped
binary which will occupy less space in RAM and in a distribution and the
second a debugging information �le which is only needed if debugging abilities
are required. The suggested procedure to create these �les is as follows:

1. Link the executable as normal. Assuming that is is called foo then...

2. Run objcopy --only-keep-debug foo foo.dbg to create a �le containing
the debugging info.

3. Run objcopy --strip-debug foo to create a stripped executable.

4. Run objcopy --add-gnu-debuglink=foo.dbg foo to add a link to the
debugging info into the stripped executable.

Note - the choice of .dbg as an extension for the debug info �le is arbitrary.
Also the --only-keep-debug step is optional. You could instead do this:

1. Link the executable as normal.

2. Copy foo to foo.full

3. Run objcopy --strip-debug foo

4. Run objcopy --add-gnu-debuglink=foo.full foo

i.e., the �le pointed to by the `--add-gnu-debuglink' can be the full executable.
It does not have to be a �le created by the `--only-keep-debug' switch.

Note - this switch is only intended for use on fully linked �les. It does not make
sense to use it on object �les where the debugging information may be incom-
plete. Besides the gnu debuglink feature currently only supports the presence
of one �lename containing debugging information, not multiple �lenames on a
one-per-object-�le basis.

--extract-symbol

Keep the �le's section
ags and symbols but remove all section data. Speci�-
cally, the option:

� sets the virtual and load addresses of every section to zero;

� removes the contents of all sections;

� sets the size of every section to zero; and

� sets the �le's start address to zero.

This option is used to build a `.sym' �le for a VxWorks kernel. It can also be
a useful way of reducing the size of a `--just-symbols' linker input �le.

-V

--version

Show the version number of objcopy.

Chapter 4: objcopy 25

-v

--verbose

Verbose output: list all object �les modi�ed. In the case of archives, `objcopy
-V' lists all members of the archive.

--help Show a summary of the options to objcopy.

--info Display a list showing all architectures and object formats available.

26 gnu Binary Utilities

Chapter 5: objdump 27

5 objdump

objdump [`-a'|`--archive-headers']
[`-b' bfdname|`--target=bfdname']
[`-C'|`--demangle'[=style]]
[`-d'|`--disassemble']
[`-D'|`--disassemble-all']
[`-z'|`--disassemble-zeroes']
[`-EB'|`-EL'|`--endian='{big | little }]
[`-f'|`--file-headers']
[`--file-start-context']
[`-g'|`--debugging']
[`-e'|`--debugging-tags']
[`-h'|`--section-headers'|`--headers']
[`-i'|`--info']
[`-j' section|`--section='section]
[`-l'|`--line-numbers']
[`-S'|`--source']
[`-m' machine|`--architecture='machine]
[`-M' options|`--disassembler-options='options]
[`-p'|`--private-headers']
[`-r'|`--reloc']
[`-R'|`--dynamic-reloc']
[`-s'|`--full-contents']
[`-W'|`--dwarf']
[`-G'|`--stabs']
[`-t'|`--syms']
[`-T'|`--dynamic-syms']
[`-x'|`--all-headers']
[`-w'|`--wide']
[`--start-address='address]
[`--stop-address='address]
[`--prefix-addresses']
[`--[no-]show-raw-insn']
[`--adjust-vma='offset]
[`--special-syms']
[`-V'|`--version']
[`-H'|`--help']
objfile...

objdump displays information about one or more object �les. The options control what
particular information to display. This information is mostly useful to programmers who are
working on the compilation tools, as opposed to programmers who just want their program
to compile and work.

obj�le . . . are the object �les to be examined. When you specify archives, objdump shows
information on each of the member object �les.

The long and short forms of options, shown here as alternatives, are equivalent. At least
one option from the list `-a,-d,-D,-e,-f,-g,-G,-h,-H,-p,-r,-R,-s,-S,-t,-T,-V,-x'
must be given.

-a

--archive-header

If any of the obj�le �les are archives, display the archive header information
(in a format similar to `ls -l'). Besides the information you could list with `ar
tv', `objdump -a' shows the object �le format of each archive member.

28 gnu Binary Utilities

--adjust-vma=offset

When dumping information, �rst add o�set to all the section addresses. This
is useful if the section addresses do not correspond to the symbol table, which
can happen when putting sections at particular addresses when using a format
which can not represent section addresses, such as a.out.

-b bfdname

--target=bfdname

Specify that the object-code format for the object �les is bfdname. This option
may not be necessary; objdump can automatically recognize many formats.

For example,

objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (`-h') of `fu.o', which
is explicitly identi�ed (`-m') as a VAX object �le in the format produced by
Oasys compilers. You can list the formats available with the `-i' option. See
Section 18.1 [Target Selection], page 73, for more information.

-C

--demangle[=style]

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. Di�erent compilers have di�erent mangling styles. The
optional demangling style argument can be used to choose an appropriate de-
mangling style for your compiler. See Chapter 10 [c++�lt], page 45, for more
information on demangling.

-g

--debugging

Display debugging information. This attempts to parse debugging information
stored in the �le and print it out using a C like syntax. Only certain types of
debugging information have been implemented. Some other types are supported
by readelf -w. See Chapter 16 [readelf], page 67.

-e

--debugging-tags

Like `-g', but the information is generated in a format compatible with ctags
tool.

-d

--disassemble

Display the assembler mnemonics for the machine instructions from obj�le.
This option only disassembles those sections which are expected to contain
instructions.

-D

--disassemble-all

Like `-d', but disassemble the contents of all sections, not just those expected
to contain instructions.

Chapter 5: objdump 29

--prefix-addresses

When disassembling, print the complete address on each line. This is the older
disassembly format.

-EB

-EL

--endian={big|little}

Specify the endianness of the object �les. This only a�ects disassembly. This
can be useful when disassembling a �le format which does not describe endian-
ness information, such as S-records.

-f

--file-headers

Display summary information from the overall header of each of the obj�le �les.

--file-start-context

Specify that when displaying interlisted source code/disassembly (assumes `-S')
from a �le that has not yet been displayed, extend the context to the start of
the �le.

-h

--section-headers

--headers

Display summary information from the section headers of the object �le.

File segments may be relocated to nonstandard addresses, for example by using
the `-Ttext', `-Tdata', or `-Tbss' options to ld. However, some object �le
formats, such as a.out, do not store the starting address of the �le segments.
In those situations, although ld relocates the sections correctly, using `objdump
-h' to list the �le section headers cannot show the correct addresses. Instead,
it shows the usual addresses, which are implicit for the target.

-H

--help Print a summary of the options to objdump and exit.

-i

--info Display a list showing all architectures and object formats available for speci�-
cation with `-b' or `-m'.

-j name

--section=name

Display information only for section name.

-l

--line-numbers

Label the display (using debugging information) with the �lename and source
line numbers corresponding to the object code or relocs shown. Only useful
with `-d', `-D', or `-r'.

-m machine

--architecture=machine

Specify the architecture to use when disassembling object �les. This can be
useful when disassembling object �les which do not describe architecture infor-

30 gnu Binary Utilities

mation, such as S-records. You can list the available architectures with the `-i'
option.

-M options

--disassembler-options=options

Pass target speci�c information to the disassembler. Only supported on some
targets. If it is necessary to specify more than one disassembler option then
multiple `-M' options can be used or can be placed together into a comma
separated list.

If the target is an ARM architecture then this switch can be used to select which
register name set is used during disassembler. Specifying `-M reg-names-std'
(the default) will select the register names as used in ARM's instruction set
documentation, but with register 13 called 'sp', register 14 called 'lr' and register
15 called 'pc'. Specifying `-M reg-names-apcs' will select the name set used by
the ARM Procedure Call Standard, whilst specifying `-M reg-names-raw' will
just use `r' followed by the register number.

There are also two variants on the APCS register naming scheme enabled
by `-M reg-names-atpcs' and `-M reg-names-special-atpcs' which use the
ARM/Thumb Procedure Call Standard naming conventions. (Either with the
normal register names or the special register names).

This option can also be used for ARM architectures to force the disassem-
bler to interpret all instructions as Thumb instructions by using the switch
`--disassembler-options=force-thumb'. This can be useful when attempt-
ing to disassemble thumb code produced by other compilers.

For the x86, some of the options duplicate functions of the `-m' switch, but allow
�ner grained control. Multiple selections from the following may be speci�ed
as a comma separated string. `x86-64', `i386' and `i8086' select disassem-
bly for the given architecture. `intel' and `att' select between intel syntax
mode and AT&T syntax mode. `addr64', `addr32', `addr16', `data32' and
`data16' specify the default address size and operand size. These four options
will be overridden if `x86-64', `i386' or `i8086' appear later in the option string.
Lastly, `suffix', when in AT&T mode, instructs the disassembler to print a
mnemonic su�x even when the su�x could be inferred by the operands.

For PPC, `booke', `booke32' and `booke64' select disassembly of BookE instruc-
tions. `32' and `64' select PowerPC and PowerPC64 disassembly, respectively.
`e300' selects disassembly for the e300 family. `440' selects disassembly for the
PowerPC 440.

For MIPS, this option controls the printing of instruction mnemonic names
and register names in disassembled instructions. Multiple selections from the
following may be speci�ed as a comma separated string, and invalid options are
ignored:

no-aliases

Print the 'raw' instruction mnemonic instead of some pseudo in-
struction mnemonic. I.e., print 'daddu' or 'or' instead of 'move',
'sll' instead of 'nop', etc.

Chapter 5: objdump 31

gpr-names=ABI

Print GPR (general-purpose register) names as appropriate for the
speci�ed ABI. By default, GPR names are selected according to
the ABI of the binary being disassembled.

fpr-names=ABI

Print FPR (
oating-point register) names as appropriate for the
speci�ed ABI. By default, FPR numbers are printed rather than
names.

cp0-names=ARCH

Print CP0 (system control coprocessor; coprocessor 0) register
names as appropriate for the CPU or architecture speci�ed by
ARCH. By default, CP0 register names are selected according to
the architecture and CPU of the binary being disassembled.

hwr-names=ARCH

Print HWR (hardware register, used by the rdhwr instruction)
names as appropriate for the CPU or architecture speci�ed by
ARCH. By default, HWR names are selected according to the ar-
chitecture and CPU of the binary being disassembled.

reg-names=ABI

Print GPR and FPR names as appropriate for the selected ABI.

reg-names=ARCH

Print CPU-speci�c register names (CP0 register and HWR names)
as appropriate for the selected CPU or architecture.

For any of the options listed above, ABI or ARCH may be speci�ed as `numeric'
to have numbers printed rather than names, for the selected types of registers.
You can list the available values of ABI and ARCH using the `--help' option.

For VAX, you can specify function entry addresses with `-M entry:0xf00ba'.
You can use this multiple times to properly disassemble VAX binary �les that
don't contain symbol tables (like ROM dumps). In these cases, the function
entry mask would otherwise be decoded as VAX instructions, which would
probably lead the rest of the function being wrongly disassembled.

-p

--private-headers

Print information that is speci�c to the object �le format. The exact informa-
tion printed depends upon the object �le format. For some object �le formats,
no additional information is printed.

-r

--reloc Print the relocation entries of the �le. If used with `-d' or `-D', the relocations
are printed interspersed with the disassembly.

-R

--dynamic-reloc

Print the dynamic relocation entries of the �le. This is only meaningful for
dynamic objects, such as certain types of shared libraries.

32 gnu Binary Utilities

-s

--full-contents

Display the full contents of any sections requested. By default all non-empty
sections are displayed.

-S

--source Display source code intermixed with disassembly, if possible. Implies `-d'.

--show-raw-insn

When disassembling instructions, print the instruction in hex as well as in
symbolic form. This is the default except when `--prefix-addresses' is used.

--no-show-raw-insn

When disassembling instructions, do not print the instruction bytes. This is
the default when `--prefix-addresses' is used.

-W

--dwarf Displays the contents of the DWARF debug sections in the �le, if any are
present.

-G

--stabs Display the full contents of any sections requested. Display the contents of the
.stab and .stab.index and .stab.excl sections from an ELF �le. This is only
useful on systems (such as Solaris 2.0) in which .stab debugging symbol-table
entries are carried in an ELF section. In most other �le formats, debugging
symbol-table entries are interleaved with linkage symbols, and are visible in the
`--syms' output. For more information on stabs symbols, see section \Stabs
Overview" in The \stabs" debug format.

--start-address=address

Start displaying data at the speci�ed address. This a�ects the output of the
`-d', `-r' and `-s' options.

--stop-address=address

Stop displaying data at the speci�ed address. This a�ects the output of the
`-d', `-r' and `-s' options.

-t

--syms Print the symbol table entries of the �le. This is similar to the information
provided by the `nm' program.

-T

--dynamic-syms

Print the dynamic symbol table entries of the �le. This is only meaningful for
dynamic objects, such as certain types of shared libraries. This is similar to the
information provided by the `nm' program when given the `-D' (`--dynamic')
option.

--special-syms

When displaying symbols include those which the target considers to be special
in some way and which would not normally be of interest to the user.

Chapter 5: objdump 33

-V

--version

Print the version number of objdump and exit.

-x

--all-headers

Display all available header information, including the symbol table and re-
location entries. Using `-x' is equivalent to specifying all of `-a -f -h -p -r

-t'.

-w

--wide Format some lines for output devices that have more than 80 columns. Also do
not truncate symbol names when they are displayed.

-z

--disassemble-zeroes

Normally the disassembly output will skip blocks of zeroes. This option directs
the disassembler to disassemble those blocks, just like any other data.

34 gnu Binary Utilities

Chapter 6: ranlib 35

6 ranlib

ranlib [`-vV'] archive

ranlib generates an index to the contents of an archive and stores it in the archive. The
index lists each symbol de�ned by a member of an archive that is a relocatable object �le.

You may use `nm -s' or `nm --print-armap' to list this index.

An archive with such an index speeds up linking to the library and allows routines in
the library to call each other without regard to their placement in the archive.

The gnu ranlib program is another form of gnu ar; running ranlib is completely
equivalent to executing `ar -s'. See Chapter 1 [ar], page 3.

-v

-V

--version

Show the version number of ranlib.

36 gnu Binary Utilities

Chapter 7: size 37

7 size

size [`-A'|`-B'|`--format='compatibility]
[`--help']
[`-d'|`-o'|`-x'|`--radix='number]
[`--common']
[`-t'|`--totals']
[`--target='bfdname] [`-V'|`--version']
[objfile...]

The gnu size utility lists the section sizes|and the total size|for each of the object
or archive �les obj�le in its argument list. By default, one line of output is generated for
each object �le or each module in an archive.

obj�le . . . are the object �les to be examined. If none are speci�ed, the �le a.out will
be used.

The command line options have the following meanings:

-A

-B

--format=compatibility

Using one of these options, you can choose whether the output from gnu size

resembles output from System V size (using `-A', or `--format=sysv'), or
Berkeley size (using `-B', or `--format=berkeley'). The default is the one-
line format similar to Berkeley's.
Here is an example of the Berkeley (default) format of output from size:

$ size --format=Berkeley ranlib size
text data bss dec hex filename
294880 81920 11592 388392 5ed28 ranlib
294880 81920 11888 388688 5ee50 size

This is the same data, but displayed closer to System V conventions:
$ size --format=SysV ranlib size
ranlib :
section size addr
.text 294880 8192
.data 81920 303104
.bss 11592 385024
Total 388392

size :
section size addr
.text 294880 8192
.data 81920 303104
.bss 11888 385024
Total 388688

--help Show a summary of acceptable arguments and options.

-d

-o

-x

--radix=number

Using one of these options, you can control whether the size of each section is
given in decimal (`-d', or `--radix=10'); octal (`-o', or `--radix=8'); or hex-

38 gnu Binary Utilities

adecimal (`-x', or `--radix=16'). In `--radix=number ', only the three values
(8, 10, 16) are supported. The total size is always given in two radices; decimal
and hexadecimal for `-d' or `-x' output, or octal and hexadecimal if you're using
`-o'.

--common Print total size of common symbols in each �le. When using Berkeley format
these are included in the bss size.

-t

--totals Show totals of all objects listed (Berkeley format listing mode only).

--target=bfdname

Specify that the object-code format for obj�le is bfdname. This option may not
be necessary; size can automatically recognize many formats. See Section 18.1
[Target Selection], page 73, for more information.

-V

--version

Display the version number of size.

Chapter 8: strings 39

8 strings

strings [`-afov'] [`-'min-len]
[`-n' min-len] [`--bytes='min-len]
[`-t' radix] [`--radix='radix]
[`-e' encoding] [`--encoding='encoding]
[`-'] [`--all'] [`--print-file-name']
[`-T' bfdname] [`--target='bfdname]
[`--help'] [`--version'] file...

For each �le given, gnu strings prints the printable character sequences that are at
least 4 characters long (or the number given with the options below) and are followed by an
unprintable character. By default, it only prints the strings from the initialized and loaded
sections of object �les; for other types of �les, it prints the strings from the whole �le.

strings is mainly useful for determining the contents of non-text �les.

-a

--all

- Do not scan only the initialized and loaded sections of object �les; scan the
whole �les.

-f

--print-file-name

Print the name of the �le before each string.

--help Print a summary of the program usage on the standard output and exit.

-min-len

-n min-len

--bytes=min-len

Print sequences of characters that are at least min-len characters long, instead
of the default 4.

-o Like `-t o'. Some other versions of strings have `-o' act like `-t d' instead.
Since we can not be compatible with both ways, we simply chose one.

-t radix

--radix=radix

Print the o�set within the �le before each string. The single character argument
speci�es the radix of the o�set|`o' for octal, `x' for hexadecimal, or `d' for
decimal.

-e encoding

--encoding=encoding

Select the character encoding of the strings that are to be found. Possible
values for encoding are: `s' = single-7-bit-byte characters (ASCII, ISO 8859,
etc., default), `S' = single-8-bit-byte characters, `b' = 16-bit bigendian, `l' =
16-bit littleendian, `B' = 32-bit bigendian, `L' = 32-bit littleendian. Useful for
�nding wide character strings.

-T bfdname

--target=bfdname

Specify an object code format other than your system's default format. See
Section 18.1 [Target Selection], page 73, for more information.

40 gnu Binary Utilities

-v

--version

Print the program version number on the standard output and exit.

Chapter 9: strip 41

9 strip

strip [`-F' bfdname |`--target='bfdname]
[`-I' bfdname |`--input-target='bfdname]
[`-O' bfdname |`--output-target='bfdname]
[`-s'|`--strip-all']
[`-S'|`-g'|`-d'|`--strip-debug']
[`-K' symbolname |`--keep-symbol='symbolname]
[`-N' symbolname |`--strip-symbol='symbolname]
[`-w'|`--wildcard']
[`-x'|`--discard-all'] [`-X' |`--discard-locals']
[`-R' sectionname |`--remove-section='sectionname]
[`-o' file] [`-p'|`--preserve-dates']
[`--keep-file-symbols']
[`--only-keep-debug']
[`-v' |`--verbose'] [`-V'|`--version']
[`--help'] [`--info']
objfile...

gnu strip discards all symbols from object �les obj�le. The list of object �les may
include archives. At least one object �le must be given.

strip modi�es the �les named in its argument, rather than writing modi�ed copies
under di�erent names.

-F bfdname

--target=bfdname

Treat the original obj�le as a �le with the object code format bfdname, and
rewrite it in the same format. See Section 18.1 [Target Selection], page 73, for
more information.

--help Show a summary of the options to strip and exit.

--info Display a list showing all architectures and object formats available.

-I bfdname

--input-target=bfdname

Treat the original obj�le as a �le with the object code format bfdname. See
Section 18.1 [Target Selection], page 73, for more information.

-O bfdname

--output-target=bfdname

Replace obj�le with a �le in the output format bfdname. See Section 18.1
[Target Selection], page 73, for more information.

-R sectionname

--remove-section=sectionname

Remove any section named sectionname from the output �le. This option may
be given more than once. Note that using this option inappropriately may make
the output �le unusable.

-s

--strip-all

Remove all symbols.

42 gnu Binary Utilities

-g

-S

-d

--strip-debug

Remove debugging symbols only.

--strip-unneeded

Remove all symbols that are not needed for relocation processing.

-K symbolname

--keep-symbol=symbolname

When stripping symbols, keep symbol symbolname even if it would normally
be stripped. This option may be given more than once.

-N symbolname

--strip-symbol=symbolname

Remove symbol symbolname from the source �le. This option may be given
more than once, and may be combined with strip options other than `-K'.

-o file Put the stripped output in �le, rather than replacing the existing �le. When
this argument is used, only one obj�le argument may be speci�ed.

-p

--preserve-dates

Preserve the access and modi�cation dates of the �le.

-w

--wildcard

Permit regular expressions in symbolnames used in other command line options.
The question mark (?), asterisk (*), backslash (\) and square brackets ([])
operators can be used anywhere in the symbol name. If the �rst character of
the symbol name is the exclamation point (!) then the sense of the switch is
reversed for that symbol. For example:

-w -K !foo -K fo*

would cause strip to only keep symbols that start with the letters \fo", but to
discard the symbol \foo".

-x

--discard-all

Remove non-global symbols.

-X

--discard-locals

Remove compiler-generated local symbols. (These usually start with `L' or `.'.)

--keep-file-symbols

When stripping a �le, perhaps with `--strip-debug' or `--strip-unneeded',
retain any symbols specifying source �le names, which would otherwise get
stripped.

Chapter 9: strip 43

--only-keep-debug

Strip a �le, removing contents of any sections that would not be stripped by
`--strip-debug' and leaving the debugging sections intact. In ELF �les, this
preserves all note sections in the output.

The intention is that this option will be used in conjunction with
`--add-gnu-debuglink' to create a two part executable. One a stripped
binary which will occupy less space in RAM and in a distribution and the
second a debugging information �le which is only needed if debugging abilities
are required. The suggested procedure to create these �les is as follows:

1. Link the executable as normal. Assuming that is is called foo then...

2. Run objcopy --only-keep-debug foo foo.dbg to create a �le containing
the debugging info.

3. Run objcopy --strip-debug foo to create a stripped executable.

4. Run objcopy --add-gnu-debuglink=foo.dbg foo to add a link to the
debugging info into the stripped executable.

Note - the choice of .dbg as an extension for the debug info �le is arbitrary.
Also the --only-keep-debug step is optional. You could instead do this:

1. Link the executable as normal.

2. Copy foo to foo.full

3. Run strip --strip-debug foo

4. Run objcopy --add-gnu-debuglink=foo.full foo

ie the �le pointed to by the `--add-gnu-debuglink' can be the full executable.
It does not have to be a �le created by the `--only-keep-debug' switch.

Note - this switch is only intended for use on fully linked �les. It does not make
sense to use it on object �les where the debugging information may be incom-
plete. Besides the gnu debuglink feature currently only supports the presence
of one �lename containing debugging information, not multiple �lenames on a
one-per-object-�le basis.

-V

--version

Show the version number for strip.

-v

--verbose

Verbose output: list all object �les modi�ed. In the case of archives, `strip
-v' lists all members of the archive.

44 gnu Binary Utilities

Chapter 10: c++�lt 45

10 c++�lt

c++filt [`-_'|`--strip-underscores']
[`-n'|`--no-strip-underscores']
[`-p'|`--no-params']
[`-t'|`--types']
[`-i'|`--no-verbose']
[`-s' format|`--format='format]
[`--help'] [`--version'] [symbol...]

The C++ and Java languages provide function overloading, which means that you can
write many functions with the same name, providing that each function takes parameters of
di�erent types. In order to be able to distinguish these similarly named functions C++ and
Java encode them into a low-level assembler name which uniquely identi�es each di�erent
version. This process is known as mangling. The c++filt1 program does the inverse
mapping: it decodes (demangles) low-level names into user-level names so that they can be
read.

Every alphanumeric word (consisting of letters, digits, underscores, dollars, or periods)
seen in the input is a potential mangled name. If the name decodes into a C++ name, the
C++ name replaces the low-level name in the output, otherwise the original word is output.
In this way you can pass an entire assembler source �le, containing mangled names, through
c++filt and see the same source �le containing demangled names.

You can also use c++filt to decipher individual symbols by passing them on the com-
mand line:

c++filt symbol

If no symbol arguments are given, c++filt reads symbol names from the standard
input instead. All the results are printed on the standard output. The di�erence between
reading names from the command line versus reading names from the standard input is
that command line arguments are expected to be just mangled names and no checking is
performed to separate them from surrounding text. Thus for example:

c++filt -n _Z1fv

will work and demangle the name to \f()" whereas:

c++filt -n _Z1fv,

will not work. (Note the extra comma at the end of the mangled name which makes it
invalid). This command however will work:

echo _Z1fv, | c++filt -n

and will display \f()," ie the demangled name followed by a trailing comma. This
behaviour is because when the names are read from the standard input it is expected that
they might be part of an assembler source �le where there might be extra, extraneous
characters trailing after a mangled name. eg:

.type _Z1fv, @function

-_

--strip-underscores

On some systems, both the C and C++ compilers put an underscore in front
of every name. For example, the C name foo gets the low-level name _foo.

1 MS-DOS does not allow + characters in �le names, so on MS-DOS this program is named CXXFILT.

46 gnu Binary Utilities

This option removes the initial underscore. Whether c++filt removes the
underscore by default is target dependent.

-j

--java Prints demangled names using Java syntax. The default is to use C++ syntax.

-n

--no-strip-underscores

Do not remove the initial underscore.

-p

--no-params

When demangling the name of a function, do not display the types of the
function's parameters.

-t

--types Attempt to demangle types as well as function names. This is disabled by
default since mangled types are normally only used internally in the compiler,
and they can be confused with non-mangled names. eg a function called \a"
treated as a mangled type name would be demangled to \signed char".

-i

--no-verbose

Do not include implementation details (if any) in the demangled output.

-s format

--format=format

c++filt can decode various methods of mangling, used by di�erent compilers.
The argument to this option selects which method it uses:

auto Automatic selection based on executable (the default method)

gnu the one used by the gnu C++ compiler (g++)

lucid the one used by the Lucid compiler (lcc)

arm the one speci�ed by the C++ Annotated Reference Manual

hp the one used by the HP compiler (aCC)

edg the one used by the EDG compiler

gnu-v3 the one used by the gnu C++ compiler (g++) with the V3 ABI.

java the one used by the gnu Java compiler (gcj)

gnat the one used by the gnu Ada compiler (GNAT).

--help Print a summary of the options to c++filt and exit.

--version

Print the version number of c++filt and exit.

Warning: c++filt is a new utility, and the details of its user interface are
subject to change in future releases. In particular, a command-line option may
be required in the future to decode a name passed as an argument on the
command line; in other words,

Chapter 10: c++�lt 47

c++filt symbol

may in a future release become

c++filt option symbol

48 gnu Binary Utilities

Chapter 11: addr2line 49

11 addr2line

addr2line [`-b' bfdname|`--target='bfdname]
[`-C'|`--demangle'[=style]]
[`-e' filename|`--exe='filename]
[`-f'|`--functions'] [`-s'|`--basename']
[`-i'|`--inlines']
[`-j'|`--section='name]
[`-H'|`--help'] [`-V'|`--version']
[addr addr ...]

addr2line translates addresses into �le names and line numbers. Given an address in an
executable or an o�set in a section of a relocatable object, it uses the debugging information
to �gure out which �le name and line number are associated with it.

The executable or relocatable object to use is speci�ed with the `-e' option. The default
is the �le `a.out'. The section in the relocatable object to use is speci�ed with the `-j'
option.

addr2line has two modes of operation.

In the �rst, hexadecimal addresses are speci�ed on the command line, and addr2line

displays the �le name and line number for each address.

In the second, addr2line reads hexadecimal addresses from standard input, and prints
the �le name and line number for each address on standard output. In this mode, addr2line
may be used in a pipe to convert dynamically chosen addresses.

The format of the output is `FILENAME:LINENO'. The �le name and line number for each
address is printed on a separate line. If the -f option is used, then each `FILENAME:LINENO'
line is preceded by a `FUNCTIONNAME' line which is the name of the function containing the
address.

If the �le name or function name can not be determined, addr2line will print two
question marks in their place. If the line number can not be determined, addr2line will
print 0.

The long and short forms of options, shown here as alternatives, are equivalent.

-b bfdname

--target=bfdname

Specify that the object-code format for the object �les is bfdname.

-C

--demangle[=style]

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. Di�erent compilers have di�erent mangling styles. The
optional demangling style argument can be used to choose an appropriate de-
mangling style for your compiler. See Chapter 10 [c++�lt], page 45, for more
information on demangling.

-e filename

--exe=filename

Specify the name of the executable for which addresses should be translated.
The default �le is `a.out'.

50 gnu Binary Utilities

-f

--functions

Display function names as well as �le and line number information.

-s

--basenames

Display only the base of each �le name.

-i

--inlines

If the address belongs to a function that was inlined, the source information for
all enclosing scopes back to the �rst non-inlined function will also be printed.
For example, if main inlines callee1 which inlines callee2, and address is from
callee2, the source information for callee1 and main will also be printed.

-j

--section

Read o�sets relative to the speci�ed section instead of absolute addresses.

Chapter 12: nlmconv 51

12 nlmconv

nlmconv converts a relocatable object �le into a NetWare Loadable Module.

Warning: nlmconv is not always built as part of the binary utilities, since it is
only useful for NLM targets.

nlmconv [`-I' bfdname|`--input-target='bfdname]
[`-O' bfdname|`--output-target='bfdname]
[`-T' headerfile|`--header-file='headerfile]
[`-d'|`--debug'] [`-l' linker|`--linker='linker]
[`-h'|`--help'] [`-V'|`--version']
infile outfile

nlmconv converts the relocatable `i386' object �le in�le into the NetWare Loadable
Module out�le, optionally reading header�le for NLM header information. For instructions
on writing the NLM command �le language used in header �les, see the `linkers' section,
`NLMLINK' in particular, of the NLM Development and Tools Overview, which is part of the
NLM Software Developer's Kit (\NLM SDK"), available from Novell, Inc. nlmconv uses
the gnu Binary File Descriptor library to read in�le; see section \BFD" in Using LD, for
more information.

nlmconv can perform a link step. In other words, you can list more than one object �le
for input if you list them in the de�nitions �le (rather than simply specifying one input �le
on the command line). In this case, nlmconv calls the linker for you.

-I bfdname

--input-target=bfdname

Object format of the input �le. nlmconv can usually determine the format of
a given �le (so no default is necessary). See Section 18.1 [Target Selection],
page 73, for more information.

-O bfdname

--output-target=bfdname

Object format of the output �le. nlmconv infers the output format based on
the input format, e.g. for a `i386' input �le the output format is `nlm32-i386'.
See Section 18.1 [Target Selection], page 73, for more information.

-T headerfile

--header-file=headerfile

Reads header�le for NLM header information. For instructions on writing the
NLM command �le language used in header �les, see see the `linkers' sec-
tion, of the NLM Development and Tools Overview, which is part of the NLM
Software Developer's Kit, available from Novell, Inc.

-d

--debug Displays (on standard error) the linker command line used by nlmconv.

-l linker

--linker=linker

Use linker for any linking. linker can be an absolute or a relative pathname.

-h

--help Prints a usage summary.

52 gnu Binary Utilities

-V

--version

Prints the version number for nlmconv.

Chapter 13: windmc 53

13 windmc

windmc may be used to generator Windows message resources.

Warning: windmc is not always built as part of the binary utilities, since it is
only useful for Windows targets.
windmc [options] input-file

windmc reads message de�nitions from an input �le (.mc) and translate them into a set
of output �les. The output �les may be of four kinds:

h A C header �le containing the message de�nitions.

rc A resource �le compilable by the windres tool.

bin One or more binary �les containing the resource data for a speci�c message
language.

dbg A C include �le that maps message id's to their symbolic name.

The exact description of these di�erent formats is available in documentation from Mi-
crosoft.

When windmc converts from the mc format to the bin format, rc, h, and optional dbg it
is acting like the Windows Message Compiler.

-a

--ascii_in

Speci�es that the input �le speci�ed is ANSI. This is the default behaviour.

-A

--ascii_out

Speci�es that messages in the output bin �les should be in ANSI format.

-b

--binprefix

Speci�es that bin �lenames should have to be pre�xed by the basename of the
source �le.

-c

--customflag

Sets the customer bit in all message id's.

-C codepage

--codepage_in codepage

Sets the default codepage to be used to convert input �le to UTF16. The default
is ocdepage 1252.

-d

--decimal_values

Outputs the constants in the header �le in decimal. Default is using hexadeci-
mal output.

-e ext

--extension ext

The extension for the header �le. The default is .h extension.

54 gnu Binary Utilities

-F target

--target target

Specify the BFD format to use for a bin �le as output. This is a BFD target
name; you can use the `--help' option to see a list of supported targets. Nor-
mally windmc will use the default format, which is the �rst one listed by the
`--help' option. Section 18.1 [Target Selection], page 73.

-h path

--headerdir path

The target directory of the generated header �le. The default is the current
directory.

-H

--help Displays a list of command line options and then exits.

-m characters

--maxlength characters

Instructs windmc to generate a warning if the length of any message exceeds
the number speci�ed.

-n

--nullterminate

Terminate message text in bin �les by zero. By default they are terminated by
CR/LF.

-o

--hresult_use

Not yet implemented. Instructs windmc to generate an OLE2 header �le, using
HRESULT de�nitions. Status codes are used if the
ag is not speci�ed.

-O codepage

--codepage_out codepage

Sets the default codepage to be used to output text �les. The default is ocdepage
1252.

-r path

--rcdir path

The target directory for the generated rc script and the generated bin �les that
the resource compiler script includes. The default is the current directory.

-u

--unicode_in

Speci�es that the input �le is UTF16.

-U

--unicode_out

Speci�es that messages in the output bin �le should be in UTF16 format. This
is the default behaviour.

-v

--verbose

Enable verbose mode.

Chapter 13: windmc 55

-V

--version

Prints the version number for windmc.

-x path

--xdgb path

The path of the dbg C include �le that maps message id's to the symbolic name.
No such �le is generated without specifying the switch.

56 gnu Binary Utilities

Chapter 14: windres 57

14 windres

windres may be used to manipulate Windows resources.

Warning: windres is not always built as part of the binary utilities, since it is
only useful for Windows targets.

windres [options] [input-file] [output-file]

windres reads resources from an input �le and copies them into an output �le. Either
�le may be in one of three formats:

rc A text format read by the Resource Compiler.

res A binary format generated by the Resource Compiler.

coff A COFF object or executable.

The exact description of these di�erent formats is available in documentation from Mi-
crosoft.

When windres converts from the rc format to the res format, it is acting like the
Windows Resource Compiler. When windres converts from the res format to the coff

format, it is acting like the Windows CVTRES program.

When windres generates an rc �le, the output is similar but not identical to the format
expected for the input. When an input rc �le refers to an external �lename, an output rc
�le will instead include the �le contents.

If the input or output format is not speci�ed, windres will guess based on the �le name,
or, for the input �le, the �le contents. A �le with an extension of `.rc' will be treated as
an rc �le, a �le with an extension of `.res' will be treated as a res �le, and a �le with an
extension of `.o' or `.exe' will be treated as a coff �le.

If no output �le is speci�ed, windres will print the resources in rc format to standard
output.

The normal use is for you to write an rc �le, use windres to convert it to a COFF
object �le, and then link the COFF �le into your application. This will make the resources
described in the rc �le available to Windows.

-i filename

--input filename

The name of the input �le. If this option is not used, then windres will use
the �rst non-option argument as the input �le name. If there are no non-option
arguments, then windres will read from standard input. windres can not read
a COFF �le from standard input.

-o filename

--output filename

The name of the output �le. If this option is not used, then windres will use
the �rst non-option argument, after any used for the input �le name, as the
output �le name. If there is no non-option argument, then windres will write
to standard output. windres can not write a COFF �le to standard output.
Note, for compatibility with rc the option `-fo' is also accepted, but its use is
not recommended.

58 gnu Binary Utilities

-J format

--input-format format

The input format to read. format may be `res', `rc', or `coff'. If no input
format is speci�ed, windres will guess, as described above.

-O format

--output-format format

The output format to generate. format may be `res', `rc', or `coff'. If no
output format is speci�ed, windres will guess, as described above.

-F target

--target target

Specify the BFD format to use for a COFF �le as input or output. This is a
BFD target name; you can use the `--help' option to see a list of supported
targets. Normally windres will use the default format, which is the �rst one
listed by the `--help' option. Section 18.1 [Target Selection], page 73.

--preprocessor program

When windres reads an rc �le, it runs it through the C preprocessor �rst. This
option may be used to specify the preprocessor to use, including any leading
arguments. The default preprocessor argument is gcc -E -xc-header -DRC_

INVOKED.

-I directory

--include-dir directory

Specify an include directory to use when reading an rc �le. windres will
pass this to the preprocessor as an `-I' option. windres will also search this
directory when looking for �les named in the rc �le. If the argument passed to
this command matches any of the supported formats (as described in the `-J'
option), it will issue a deprecation warning, and behave just like the `-J' option.
New programs should not use this behaviour. If a directory happens to match
a format, simple pre�x it with `./' to disable the backward compatibility.

-D target

--define sym[=val]

Specify a `-D' option to pass to the preprocessor when reading an rc �le.

-U target

--undefine sym

Specify a `-U' option to pass to the preprocessor when reading an rc �le.

-r Ignored for compatibility with rc.

-v Enable verbose mode. This tells you what the preprocessor is if you didn't
specify one.

-c val

--codepage val

Specify the default codepage to use when reading an rc �le. val should be
a hexadecimal pre�xed by `0x' or decimal codepage code. The valid range is
from zero up to 0x��, but the validity of the codepage is host and con�guration
dependent.

Chapter 14: windres 59

-l val

--language val

Specify the default language to use when reading an rc �le. val should be a
hexadecimal language code. The low eight bits are the language, and the high
eight bits are the sublanguage.

--use-temp-file

Use a temporary �le to instead of using popen to read the output of the pre-
processor. Use this option if the popen implementation is buggy on the host
(eg., certain non-English language versions of Windows 95 and Windows 98 are
known to have buggy popen where the output will instead go the console).

--no-use-temp-file

Use popen, not a temporary �le, to read the output of the preprocessor. This
is the default behaviour.

-h

--help Prints a usage summary.

-V

--version

Prints the version number for windres.

--yydebug

If windres is compiled with YYDEBUG de�ned as 1, this will turn on parser
debugging.

60 gnu Binary Utilities

Chapter 15: dlltool 61

15 dlltool

dlltool is used to create the �les needed to create dynamic link libraries (DLLs) on systems
which understand PE format image �les such as Windows. A DLL contains an export
table which contains information that the runtime loader needs to resolve references from
a referencing program.

The export table is generated by this program by reading in a `.def' �le or scanning the
`.a' and `.o' �les which will be in the DLL. A `.o' �le can contain information in special
`.drectve' sections with export information.

Note: dlltool is not always built as part of the binary utilities, since it is only
useful for those targets which support DLLs.

dlltool [`-d'|`--input-def' def-file-name]
[`-b'|`--base-file' base-file-name]
[`-e'|`--output-exp' exports-file-name]
[`-z'|`--output-def' def-file-name]
[`-l'|`--output-lib' library-file-name]
[`--export-all-symbols'] [`--no-export-all-symbols']
[`--exclude-symbols' list]
[`--no-default-excludes']
[`-S'|`--as' path-to-assembler] [`-f'|`--as-flags' options]
[`-D'|`--dllname' name] [`-m'|`--machine' machine]
[`-a'|`--add-indirect']
[`-U'|`--add-underscore'] [`--add-stdcall-underscore']
[`-k'|`--kill-at'] [`-A'|`--add-stdcall-alias']
[`-p'|`--ext-prefix-alias' prefix]
[`-x'|`--no-idata4'] [`-c'|`--no-idata5'] [`-i'|`--interwork']
[`-n'|`--nodelete'] [`-t'|`--temp-prefix' prefix]
[`-v'|`--verbose']
[`-h'|`--help'] [`-V'|`--version']
[object-file ...]

dlltool reads its inputs, which can come from the `-d' and `-b' options as well as object
�les speci�ed on the command line. It then processes these inputs and if the `-e' option
has been speci�ed it creates a exports �le. If the `-l' option has been speci�ed it creates a
library �le and if the `-z' option has been speci�ed it creates a def �le. Any or all of the
`-e', `-l' and `-z' options can be present in one invocation of dlltool.

When creating a DLL, along with the source for the DLL, it is necessary to have three
other �les. dlltool can help with the creation of these �les.

The �rst �le is a `.def' �le which speci�es which functions are exported from the DLL,
which functions the DLL imports, and so on. This is a text �le and can be created by hand,
or dlltool can be used to create it using the `-z' option. In this case dlltool will scan
the object �les speci�ed on its command line looking for those functions which have been
specially marked as being exported and put entries for them in the `.def' �le it creates.

In order to mark a function as being exported from a DLL, it needs to have an
`-export:<name_of_function>' entry in the `.drectve' section of the object �le. This
can be done in C by using the asm() operator:

asm (".section .drectve");
asm (".ascii \"-export:my_func\"");

int my_func (void) { ... }

62 gnu Binary Utilities

The second �le needed for DLL creation is an exports �le. This �le is linked with the
object �les that make up the body of the DLL and it handles the interface between the
DLL and the outside world. This is a binary �le and it can be created by giving the `-e'
option to dlltool when it is creating or reading in a `.def' �le.

The third �le needed for DLL creation is the library �le that programs will link with in
order to access the functions in the DLL. This �le can be created by giving the `-l' option
to dlltool when it is creating or reading in a `.def' �le.

dlltool builds the library �le by hand, but it builds the exports �le by creating tempo-
rary �les containing assembler statements and then assembling these. The `-S' command
line option can be used to specify the path to the assembler that dlltool will use, and the
`-f' option can be used to pass speci�c
ags to that assembler. The `-n' can be used to
prevent dlltool from deleting these temporary assembler �les when it is done, and if `-n' is
speci�ed twice then this will prevent dlltool from deleting the temporary object �les it used
to build the library.

Here is an example of creating a DLL from a source �le `dll.c' and also creating a
program (from an object �le called `program.o') that uses that DLL:

gcc -c dll.c
dlltool -e exports.o -l dll.lib dll.o
gcc dll.o exports.o -o dll.dll
gcc program.o dll.lib -o program

The command line options have the following meanings:

-d filename

--input-def filename

Speci�es the name of a `.def' �le to be read in and processed.

-b filename

--base-file filename

Speci�es the name of a base �le to be read in and processed. The contents of
this �le will be added to the relocation section in the exports �le generated by
dlltool.

-e filename

--output-exp filename

Speci�es the name of the export �le to be created by dlltool.

-z filename

--output-def filename

Speci�es the name of the `.def' �le to be created by dlltool.

-l filename

--output-lib filename

Speci�es the name of the library �le to be created by dlltool.

--export-all-symbols

Treat all global and weak de�ned symbols found in the input object �les as
symbols to be exported. There is a small list of symbols which are not exported
by default; see the `--no-default-excludes' option. You may add to the list
of symbols to not export by using the `--exclude-symbols' option.

Chapter 15: dlltool 63

--no-export-all-symbols

Only export symbols explicitly listed in an input `.def' �le or in `.drectve'
sections in the input object �les. This is the default behaviour. The `.drectve'
sections are created by `dllexport' attributes in the source code.

--exclude-symbols list

Do not export the symbols in list. This is a list of symbol names separated by
comma or colon characters. The symbol names should not contain a leading
underscore. This is only meaningful when `--export-all-symbols' is used.

--no-default-excludes

When `--export-all-symbols' is used, it will by default avoid exporting
certain special symbols. The current list of symbols to avoid exporting
is `DllMain@12', `DllEntryPoint@0', `impure_ptr'. You may use the
`--no-default-excludes' option to go ahead and export these special
symbols. This is only meaningful when `--export-all-symbols' is used.

-S path

--as path

Speci�es the path, including the �lename, of the assembler to be used to create
the exports �le.

-f options

--as-flags options

Speci�es any speci�c command line options to be passed to the assembler when
building the exports �le. This option will work even if the `-S' option is not
used. This option only takes one argument, and if it occurs more than once
on the command line, then later occurrences will override earlier occurrences.
So if it is necessary to pass multiple options to the assembler they should be
enclosed in double quotes.

-D name

--dll-name name

Speci�es the name to be stored in the `.def' �le as the name of the DLL when
the `-e' option is used. If this option is not present, then the �lename given to
the `-e' option will be used as the name of the DLL.

-m machine

-machine machine

Speci�es the type of machine for which the library �le should be built. dlltool
has a built in default type, depending upon how it was created, but this option
can be used to override that. This is normally only useful when creating DLLs
for an ARM processor, when the contents of the DLL are actually encode using
Thumb instructions.

-a

--add-indirect

Speci�es that when dlltool is creating the exports �le it should add a section
which allows the exported functions to be referenced without using the import
library. Whatever the hell that means!

64 gnu Binary Utilities

-U

--add-underscore

Speci�es that when dlltool is creating the exports �le it should prepend an
underscore to the names of all exported symbols.

--add-stdcall-underscore

Speci�es that when dlltool is creating the exports �le it should prepend an
underscore to the names of exported stdcall functions. Variable names and non-
stdcall function names are not modi�ed. This option is useful when creating
GNU-compatible import libs for third party DLLs that were built with MS-
Windows tools.

-k

--kill-at

Speci�es that when dlltool is creating the exports �le it should not append
the string `@ <number>'. These numbers are called ordinal numbers and they
represent another way of accessing the function in a DLL, other than by name.

-A

--add-stdcall-alias

Speci�es that when dlltool is creating the exports �le it should add aliases
for stdcall symbols without `@ <number>' in addition to the symbols with `@
<number>'.

-p

--ext-prefix-alias prefix

Causes dlltool to create external aliases for all DLL imports with the speci�ed
pre�x. The aliases are created for both external and import symbols with no
leading underscore.

-x

--no-idata4

Speci�es that when dlltool is creating the exports and library �les it should
omit the .idata4 section. This is for compatibility with certain operating
systems.

-c

--no-idata5

Speci�es that when dlltool is creating the exports and library �les it should
omit the .idata5 section. This is for compatibility with certain operating
systems.

-i

--interwork

Speci�es that dlltool should mark the objects in the library �le and exports
�le that it produces as supporting interworking between ARM and Thumb code.

-n

--nodelete

Makes dlltool preserve the temporary assembler �les it used to create the ex-
ports �le. If this option is repeated then dlltool will also preserve the temporary
object �les it uses to create the library �le.

Chapter 15: dlltool 65

-t prefix

--temp-prefix prefix

Makes dlltool use pre�x when constructing the names of temporary assembler
and object �les. By default, the temp �le pre�x is generated from the pid.

-v

--verbose

Make dlltool describe what it is doing.

-h

--help Displays a list of command line options and then exits.

-V

--version

Displays dlltool's version number and then exits.

15.1 The format of the dlltool `.def' �le

A `.def' �le contains any number of the following commands:

NAME name [, base]

The result is going to be named name.exe.

LIBRARY name [, base]

The result is going to be named name.dll.

EXPORTS (((name1 [= name2]) | (name1 = module-name . external-name))

[integer] [NONAME] [CONSTANT] [DATA] [PRIVATE]) *

Declares name1 as an exported symbol from the DLL, with optional ordinal
number integer, or declares name1 as an alias (forward) of the function external-
name in the DLL module-name.

IMPORTS ((internal-name = module-name . integer) | [internal-name =]

module-name . external-name)) *

Declares that external-name or the exported function whose ordinal number
is integer is to be imported from the �le module-name. If internal-name is
speci�ed then this is the name that the imported function will be referred to in
the body of the DLL.

DESCRIPTION string

Puts string into the output `.exp' �le in the .rdata section.

STACKSIZE number-reserve [, number-commit]

HEAPSIZE number-reserve [, number-commit]

Generates --stack or --heap number-reserve,number-commit in the output
.drectve section. The linker will see this and act upon it.

CODE attr +

DATA attr +

SECTIONS (section-name attr +) *

Generates --attr section-name attr in the output .drectve section, where
attr is one of READ, WRITE, EXECUTE or SHARED. The linker will see this and act
upon it.

66 gnu Binary Utilities

Chapter 16: readelf 67

16 readelf

readelf [`-a'|`--all']
[`-h'|`--file-header']
[`-l'|`--program-headers'|`--segments']
[`-S'|`--section-headers'|`--sections']
[`-g'|`--section-groups']
[`-t'|`--section-details']
[`-e'|`--headers']
[`-s'|`--syms'|`--symbols']
[`-n'|`--notes']
[`-r'|`--relocs']
[`-u'|`--unwind']
[`-d'|`--dynamic']
[`-V'|`--version-info']
[`-A'|`--arch-specific']
[`-D'|`--use-dynamic']
[`-x' <number or name>|`--hex-dump='<number or name>]
[`-w[liaprmfFsoR]'|
`--debug-dump'[=line,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-

interp,=str,=loc,=Ranges]]
[`-I'|`-histogram']
[`-v'|`--version']
[`-W'|`--wide']
[`-H'|`--help']
elffile...

readelf displays information about one or more ELF format object �les. The options
control what particular information to display.

el�le . . . are the object �les to be examined. 32-bit and 64-bit ELF �les are supported,
as are archives containing ELF �les.

This program performs a similar function to objdump but it goes into more detail and
it exists independently of the bfd library, so if there is a bug in bfd then readelf will not
be a�ected.

The long and short forms of options, shown here as alternatives, are equivalent. At least
one option besides `-v' or `-H' must be given.

-a

--all Equivalent to specifying `--file-header', `--program-headers',
`--sections', `--symbols', `--relocs', `--dynamic', `--notes' and
`--version-info'.

-h

--file-header

Displays the information contained in the ELF header at the start of the �le.

-l

--program-headers

--segments

Displays the information contained in the �le's segment headers, if it has any.

-S

--sections

--section-headers

Displays the information contained in the �le's section headers, if it has any.

68 gnu Binary Utilities

-g

--section-groups

Displays the information contained in the �le's section groups, if it has any.

-t

--section-details

Displays the detailed section information. Implies `-S'.

-s

--symbols

--syms Displays the entries in symbol table section of the �le, if it has one.

-e

--headers

Display all the headers in the �le. Equivalent to `-h -l -S'.

-n

--notes Displays the contents of the NOTE segments and/or sections, if any.

-r

--relocs Displays the contents of the �le's relocation section, if it has one.

-u

--unwind Displays the contents of the �le's unwind section, if it has one. Only the unwind
sections for IA64 ELF �les are currently supported.

-d

--dynamic

Displays the contents of the �le's dynamic section, if it has one.

-V

--version-info

Displays the contents of the version sections in the �le, it they exist.

-A

--arch-specific

Displays architecture-speci�c information in the �le, if there is any.

-D

--use-dynamic

When displaying symbols, this option makes readelf use the symbol table in
the �le's dynamic section, rather than the one in the symbols section.

-x <number or name>

--hex-dump=<number or name>

Displays the contents of the indicated section as a hexadecimal dump. A number
identi�es a particular section by index in the section table; any other string
identi�es all sections with that name in the object �le.

-w[liaprmfFsoR]

--debug-dump[=line,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-interp,=str,=loc,=Ranges]

Displays the contents of the debug sections in the �le, if any are present. If one
of the optional letters or words follows the switch then only data found in those
speci�c sections will be dumped.

Chapter 16: readelf 69

-I

--histogram

Display a histogram of bucket list lengths when displaying the contents of the
symbol tables.

-v

--version

Display the version number of readelf.

-W

--wide Don't break output lines to �t into 80 columns. By default readelf breaks
section header and segment listing lines for 64-bit ELF �les, so that they �t
into 80 columns. This option causes readelf to print each section header resp.
each segment one a single line, which is far more readable on terminals wider
than 80 columns.

-H

--help Display the command line options understood by readelf.

70 gnu Binary Utilities

Chapter 17: Common Options 71

17 Common Options

The following command-line options are supported by all of the programs described in this
manual.

@file Read command-line options from �le. The options read are inserted in place
of the original @�le option. If �le does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in �le are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by pre�xing the
character to be included with a backslash. The �le may itself contain additional
@�le options; any such options will be processed recursively.

--help Display the command-line options supported by the program.

--version

Display the version number of the program.

72 gnu Binary Utilities

Chapter 18: Selecting the Target System 73

18 Selecting the Target System

You can specify two aspects of the target system to the gnu binary �le utilities, each in
several ways:

� the target

� the architecture

In the following summaries, the lists of ways to specify values are in order of decreasing
precedence. The ways listed �rst override those listed later.

The commands to list valid values only list the values for which the programs you
are running were con�gured. If they were con�gured with `--enable-targets=all', the
commands list most of the available values, but a few are left out; not all targets can be
con�gured in at once because some of them can only be con�gured native (on hosts with
the same type as the target system).

18.1 Target Selection

A target is an object �le format. A given target may be supported for multiple architec-
tures (see Section 18.2 [Architecture Selection], page 74). A target selection may also have
variations for di�erent operating systems or architectures.

The command to list valid target values is `objdump -i' (the �rst column of output
contains the relevant information).

Some sample values are: `a.out-hp300bsd', `ecoff-littlemips', `a.out-sunos-big'.

You can also specify a target using a con�guration triplet. This is the same sort of name
that is passed to `configure' to specify a target. When you use a con�guration triplet as
an argument, it must be fully canonicalized. You can see the canonical version of a triplet
by running the shell script `config.sub' which is included with the sources.

Some sample con�guration triplets are: `m68k-hp-bsd', `mips-dec-ultrix',
`sparc-sun-sunos'.

objdump Target

Ways to specify:

1. command line option: `-b' or `--target'

2. environment variable GNUTARGET

3. deduced from the input �le

objcopy and strip Input Target

Ways to specify:

1. command line options: `-I' or `--input-target', or `-F' or `--target'

2. environment variable GNUTARGET

3. deduced from the input �le

74 gnu Binary Utilities

objcopy and strip Output Target

Ways to specify:

1. command line options: `-O' or `--output-target', or `-F' or `--target'

2. the input target (see \objcopy and strip Input Target" above)

3. environment variable GNUTARGET

4. deduced from the input �le

nm, size, and strings Target

Ways to specify:

1. command line option: `--target'

2. environment variable GNUTARGET

3. deduced from the input �le

18.2 Architecture Selection

An architecture is a type of cpu on which an object �le is to run. Its name may contain a
colon, separating the name of the processor family from the name of the particular cpu.

The command to list valid architecture values is `objdump -i' (the second column con-
tains the relevant information).

Sample values: `m68k:68020', `mips:3000', `sparc'.

objdump Architecture

Ways to specify:

1. command line option: `-m' or `--architecture'

2. deduced from the input �le

objcopy, nm, size, strings Architecture

Ways to specify:

1. deduced from the input �le

Chapter 19: Reporting Bugs 75

19 Reporting Bugs

Your bug reports play an essential role in making the binary utilities reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not. But
in any case the principal function of a bug report is to help the entire community by making
the next version of the binary utilities work better. Bug reports are your contribution to
their maintenance.

In order for a bug report to serve its purpose, you must include the information that
enables us to �x the bug.

19.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

� If a binary utility gets a fatal signal, for any input whatever, that is a bug. Reliable
utilities never crash.

� If a binary utility produces an error message for valid input, that is a bug.

� If you are an experienced user of binary utilities, your suggestions for improvement are
welcome in any case.

19.2 How to Report Bugs

A number of companies and individuals o�er support for gnu products. If you obtained the
binary utilities from a support organization, we recommend you contact that organization
�rst.

You can �nd contact information for many support companies and individuals in the �le
`etc/SERVICE' in the gnu Emacs distribution.

In any event, we also recommend that you send bug reports for the binary utilities to
http://www.sourceware.org/bugzilla/.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of a �le
you use in an example does not matter. Well, probably it does not, but one cannot be sure.
Perhaps the bug is a stray memory reference which happens to fetch from the location where
that pathname is stored in memory; perhaps, if the pathname were di�erent, the contents
of that location would fool the utility into doing the right thing despite the bug. Play it
safe and give a speci�c, complete example. That is the easiest thing for you to do, and the
most helpful.

Keep in mind that the purpose of a bug report is to enable us to �x the bug if it is new
to us. Therefore, always write your bug reports on the assumption that the bug has not
been reported previously.

Sometimes people give a few sketchy facts and ask, \Does this ring a bell?" This cannot
help us �x a bug, so it is basically useless. We respond by asking for enough details to
enable us to investigate. You might as well expedite matters by sending them to begin
with.

To enable us to �x the bug, you should include all these things:

http://www.sourceware.org/bugzilla/

76 gnu Binary Utilities

� The version of the utility. Each utility announces it if you start it with the `--version'
argument.

Without this, we will not know whether there is any point in looking for the bug in the
current version of the binary utilities.

� Any patches you may have applied to the source, including any patches made to the
BFD library.

� The type of machine you are using, and the operating system name and version number.

� What compiler (and its version) was used to compile the utilities|e.g. \gcc-2.7".

� The command arguments you gave the utility to observe the bug. To guarantee you
will not omit something important, list them all. A copy of the Make�le (or the output
from make) is su�cient.

If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

� A complete input �le, or set of input �les, that will reproduce the bug. If the utility is
reading an object �le or �les, then it is generally most helpful to send the actual object
�les.

If the source �les were produced exclusively using gnu programs (e.g., gcc, gas, and/or
the gnu ld), then it may be OK to send the source �les rather than the object �les. In
this case, be sure to say exactly what version of gcc, or whatever, was used to produce
the object �les. Also say how gcc, or whatever, was con�gured.

� A description of what behavior you observe that you believe is incorrect. For example,
\It gets a fatal signal."

Of course, if the bug is that the utility gets a fatal signal, then we will certainly notice
it. But if the bug is incorrect output, we might not notice unless it is glaringly wrong.
You might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as your copy of the utility is out of sync,
or you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and ours would not. If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for us. If you had
not told us to expect a crash, then we would not be able to draw any conclusion from
our observations.

� If you wish to suggest changes to the source, send us context di�s, as generated by
diff with the `-u', `-c', or `-p' option. Always send di�s from the old �le to the new
�le. If you wish to discuss something in the ld source, refer to it by context, not by
line number.

The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.

Here are some things that are not necessary:

� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input �le will make the bug go away and which changes will not a�ect it.

Chapter 19: Reporting Bugs 77

This is often time consuming and not very useful, because the way we will �nd the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.

Of course, if you can �nd a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simpli�cation is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

� A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to �x the problem another way, or we
might not understand it at all.

Sometimes with programs as complicated as the binary utilities it is very hard to
construct an example that will make the program follow a certain path through the
code. If you do not send us the example, we will not be able to construct one, so we
will not be able to verify that the bug is �xed.

And if we cannot understand what bug you are trying to �x, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

� A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without
�rst using the debugger to �nd the facts.

78 gnu Binary Utilities

Appendix A: GNU Free Documentation License 79

Appendix A GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000, 2003 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
\free" in the sense of freedom: to assure everyone the e�ective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modi�cations made by others.

This License is a kind of \copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
\Document", below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as \you."

A \Modi�ed Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modi�cations and/or translated into
another language.

A \Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The \Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

80 gnu Binary Utilities

The \Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A \Transparent" copy of the Document means a machine-readable copy, represented
in a format whose speci�cation is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent �le format whose markup has been designed to thwart or
discourage subsequent modi�cation by readers is not Transparent. A copy that is not
\Transparent" is called \Opaque."

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modi�ca-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The \Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, \Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long

Appendix A: GNU Free Documentation License 81

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to �t legibly, you should put
the �rst ones listed (as many as �t reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modi�ed Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modi�ed Version under precisely
this License, with the Modi�ed Version �lling the role of the Document, thus licensing
distribution and modi�cation of the Modi�ed Version to whoever possesses a copy of
it. In addition, you must do these things in the Modi�ed Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modi�cations in the Modi�ed Version, together with at least �ve of
the principal authors of the Document (all of its principal authors, if it has less than
�ve).
C. State on the Title page the name of the publisher of the Modi�ed Version, as the
publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modi�cations adjacent to the other
copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modi�ed Version under the terms of this License, in the form
shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled \History", and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modi�ed Version as given on the

82 gnu Binary Utilities

Title Page. If there is no section entitled \History" in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modi�ed Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the \History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.
K. In any section entitled \Acknowledgements" or \Dedications", preserve the section's
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.
M. Delete any section entitled \Endorsements." Such a section may not be included in
the Modi�ed Version.
N. Do not retitle any existing section as \Endorsements" or to con
ict in title with any
Invariant Section.

If the Modi�ed Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modi�ed Version's license notice. These
titles must be distinct from any other section titles.

You may add a section entitled \Endorsements", provided it contains nothing but
endorsements of your Modi�ed Version by various parties{for example, statements of
peer review or that the text has been approved by an organization as the authoritative
de�nition of a standard.

You may add a passage of up to �ve words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modi�ed
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modi�ed
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms de�ned in section 4 above for modi�ed versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,

Appendix A: GNU Free Documentation License 83

unmodi�ed, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but di�erent contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled \History" in the various
original documents, forming one section entitled \History"; likewise combine any sec-
tions entitled \Acknowledgements", and any sections entitled \Dedications." You must
delete all sections entitled \Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modi�ed Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an \aggregate",
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document's
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modi�cation, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement

84 gnu Binary Utilities

between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may di�er in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
speci�es that a particular numbered version of this License \or any later version"
applies to it, you have the option of following the terms and conditions either of that
speci�ed version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled "GNU
Free Documentation License."

If you have no Invariant Sections, write \with no Invariant Sections" instead of saying
which ones are invariant. If you have no Front-Cover Texts, write \no Front-Cover Texts"
instead of \Front-Cover Texts being list"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix A: Binutils Index 85

Binutils Index

.

.stab . 32

A
addr2line . 49
address to �le name and line number 49
all header information, object �le 33
ar . 3
ar compatibility . 3
architecture . 29
architectures available . 29
archive contents . 35
archive headers . 27
archives . 3

B
base �les . 62
bug criteria . 75
bug reports. 75
bugs . 75
bugs, reporting . 75

C
c++�lt . 45
changing object addresses . 19
changing section address . 19
changing section LMA . 20
changing section VMA . 20
changing start address . 19
collections of �les . 3
compatibility, ar . 3
contents of archive . 5
crash . 75
creating archives . 5
cxx�lt . 45

D
dates in archive . 5
debug symbols . 32
debugging symbols . 12
deleting from archive . 4
demangling C++ symbols . 45
demangling in nm . 12
demangling in objdump 28, 49
disassembling object code . 28
disassembly architecture . 29
disassembly endianness . 29
disassembly, with source . 32
discarding symbols . 41
DLL . 61

dlltool . 61

DWARF . 32

dynamic relocation entries, in object �le 31

dynamic symbol table entries, printing 32

dynamic symbols . 12

E
ELF dynamic section information 68

ELF �le header information 67

ELF �le information . 67

ELF notes. 68

ELF object �le format . 32

ELF program header information 67

ELF reloc information . 68

ELF section group information. 68

ELF section information 67, 68

ELF segment information . 67

ELF symbol table information 68

ELF version sections informations 68

endianness . 29

error on valid input . 75

external symbols . 13, 14

extract from archive . 5

F
fatal signal . 75

�le name . 12

H
header information, all . 33

I
input .def �le . 62

input �le name . 12

L
ld . 9

libraries . 3

linker . 9

listings strings . 39

M
machine instructions . 28

moving in archive . 4

MRI compatibility, ar . 6

86 gnu Binary Utilities

N

name duplication in archive . 5

name length . 3

nm . 11

nm compatibility . 12

nm format . 12

not writing archive index . 6

O

objdump . 27

object code format 14, 28, 38, 39, 49

object �le header . 29

object �le information . 27

object �le sections . 32

object formats available . 29

operations on archive . 4

P

printing from archive . 4

printing strings . 39

Q

quick append to archive . 4

R

radix for section sizes . 37

ranlib . 35

readelf . 67

relative placement in archive 5

relocation entries, in object �le 31

removing symbols . 41

repeated names in archive . 5

replacement in archive . 4

reporting bugs . 75

S
scripts, ar . 6
section addresses in objdump 28
section headers . 29
section information . 29
section sizes . 37
sections, full contents . 32
size . 37
size display format . 37
size number format . 37
sorting symbols . 13
source code context . 29
source disassembly . 32
source �le name . 12
source �lenames for object �les 29
stab . 32
start-address . 32
stop-address . 32
strings . 39
strings, printing . 39
strip . 41
symbol index . 3, 35
symbol index, listing . 13
symbol line numbers . 13
symbol table entries, printing 32
symbols . 11
symbols, discarding . 41

U
unde�ned symbols . 14
Unix compatibility, ar . 4
unwind information . 68
updating an archive . 6

V
version . 1
VMA in objdump . 28

W
wide output, printing . 33
writing archive index . 6

	Introduction
	ar
	Controlling ar on the Command Line
	Controlling ar with a Script

	ld
	nm
	objcopy
	objdump
	ranlib
	size
	strings
	strip
	c++filt
	addr2line
	nlmconv
	windmc
	windres
	dlltool
	The format of the dlltool .def file

	readelf
	Common Options
	Selecting the Target System
	Target Selection
	Architecture Selection

	Reporting Bugs
	Have You Found a Bug?
	How to Report Bugs

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Binutils Index

