GNU Compiler Collection Internals

For ccc version 4.2.1

Richard M. Stallman and the Gcc Developer Community

Copyright (© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction e v v v v oo vvve e e e et i eeeenoooenoeeaossns 1
1 Contributing to GCC Development . o o o v v v e e veennnn. 3
2 GCCand Portability e o o o v v v vvveneneiieeenennanns 5
3 Interfacing to GCC Output + v v v v v v e e eeeenennns 7
4 The GCC low-level runtime library « ... oo veeeneennn.. 9
5 Language Front Ends in GCC0ccveenn, 21
6 Source Tree Structure and Build System............... 23
7 Option specification fileS. o o o o o v v v v v eeooooeoeeens 51
8 Passes and Files of the Compilerc0venn... 55
9 Trees: The intermediate representation used by the C and C++
frontends «vvee e ettt i s 69
10 Analysis and Optimization of GIMPLE Trees « ¢ oo oo ... 107
11 Analysis and Representation of LOOPS e e v v v v v v v oo v v v oo 131
12 RTL Representation e v oo eeeeeeeeeeeeoooeeeonsans 141
13 Control Flow Graph e e e e e e e oo e eeeeveeeeoooesss 189
14 Machine Descriptions o o o o o o o v v v v v vveeeseeneeseas 199
15 Target Description Macros and Functions 293
16 Host Configuration « v e e v e eeeoeeeeooeseonas 439
17 Makefile Fragments « « v v v v v v et v i e e e nneeennnns 443
18 collect2 i v v i it eeeeneeeesoeeennooonoos 447
19 Standard Header File Directories « o v v v v v v v v v eennn.. 449
20 Memory Management and Type Information 451
Funding Free Software . oo oo v it inni i ennns 457
The GNU Project and GNU/LINUX + v ¢ e v o e v v vvevooenenns 459
GNU GENERAL PUBLICLICENSE . o o v v et v v v e s nnnns 461
GNU Free Documentation License « o v v v o v v v v vveeeeeensn 467
Contributors to GCC . v v v v v v i i i i it esnennnnnns 475
Option Index .o oo oo e e e envneeeeeeeeeesssennnnonas 491

Concept Index o v v v v e v e eeeoeeeeeeeeooscsooossooeas 493

i

GNU Compiler Collection (GCC) Internals

Table of Contents

Introduction oL, 1
1 Contributing to GCC Development 3
2 GCC and Portability....................... 5
3 Interfacing to GCC Output................. 7
4 The GCC low-level runtime library 9
4.1 Routines for integer arithmetic............................... 9
4.1.1 Arithmetic functions i 9
4.1.2 Comparison functions L. 10
4.1.3 Trapping arithmetic functions 11
4.1.4 Bit operationsouuviii e 11
4.2 Routines for floating point emulation 12
4.2.1 Arithmetic functions L 12
4.2.2 Conversion functions.............. ... i, 13
4.2.3 Comparison functions L. 14
4.2.4 Other floating-point functions 16
4.3 Routines for decimal floating point emulation................. 16
4.3.1 Arithmetic functions 16
4.3.2 Conversion functions.............. ... i, 17
4.3.3 Comparison functions L, 18
4.4 Language-independent routines for exception handling 19
4.5 Miscellaneous runtime library routines 20
4.5.1 Cache control functions 20
5 Language Front Ends in GCC 21
6 Source Tree Structure and Build System ... 23
6.1 Configure Terms and History.................... 23
6.2 Top Level Source Directoryo .. 23
6.3 The ‘gcc’ Subdirectory ...l 24
6.3.1 Subdirectories of ‘gcc” ... 25
6.3.2 Configuration in the ‘gcc’ Directory..................... 25
6.3.2.1 Scripts Used by ‘configure’....................... 26

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’
Files ... oo 26
6.3.2.3 Files Created by configure........................ 26
6.3.3 Build System in the ‘gcc’ Directory 27

6.3.4 Makefile Targets. ... 27

iii

v

7

GNU Compiler Collection (GCC) Internals

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

.. 30

6.3.6 Headers Installed by GCC.................... 30
6.3.7 Building Documentation 30
6.3.7.1 Texinfo Manuals 31
6.3.7.2 Man Page Generationiii.. 31
6.3.7.3 Miscellaneous Documentation...................... 32

6.3.8 Anatomy of a Language Front End...................... 33
6.3.8.1 The Front End ‘language’ Directory 34
6.3.8.2 The Front End ‘config-lang.in’ File.............. 36

6.3.9 Anatomy of a Target Back End 37
6.4 Testsuites.........ooiiiii 38
6.4.1 Idioms Used in Testsuite Code..................., 38
6.4.2 Directives used within DejaGnu tests.................... 39
6.4.3 Ada Language Testsuites............................... 43
6.4.4 C Language Testsuitesccoiiiiiiiiin .. 44
6.4.5 The Java library testsuites.......... 45
6.4.6 Support for testing gcov ... 46
6.4.7 Support for testing profile-directed optimizations......... 47
6.4.8 Support for testing binary compatibility 47
Option specification files 51
7.1 Option file format 51
7.2 Option propertiesou e 51
Passes and Files of the Compiler........... 55
8.1 Parsing passoiiiiiiii 5]
8.2 Gimplification pass...........ooo i 56
8.3 Pass Manager........ ...ttt 56
8.4 Tree-SSA PasSeS. . ..ottt 57
8.5 RTL passesot e e 63

Trees: The intermediate representation used by

the C and C++ frontends............... 69
9.1 Deficienciesov v 69
0.2 OVEIVICW . .ottt e e e e e 69

0.2,] TrCeS . ot 70

0.2.2 Identifiers.t 70

0.2.3 Containerso 71
9.3 IyPeS .ot 71
0.4 SCOPES . ottt 76

9.4 1 NamMESPACES « .« v v e et et e e e e 76

0.4.2 ClasSeS . . vt 77
9.5 Declarationst e 79

9.5.1 Working with declarations.............................. 79

9.5.2 Internal structure........... ... 81

9.5.2.1 Current structure hierarchy 82

9.5.2.2 Adding new DECL node types 83

9.6 Functions. e 84
9.6.1 Function BasicS.coi i 85
9.6.2 Function Bodies.......... ... 88

9.6.2.1 Statementsurii 88

9.7 Attributes In trees.t 92

0.8 EXPIeSsiOnSttt 92

10 Analysis and Optimization of GIMPLE Trees

....................................... 107

10.1 GENERIC. ... 107
10.2 GIMPLE ... 107
10.2.1 Interfaceso 108
10.2.2 Temporaries.t et 108
10.2.3 EXPIesSiOnSvvvtreti e et 109
10.2.3.1 Compound Expressions.......................... 109
10.2.3.2 Compound Lvalues.............................. 109
10.2.3.3 Conditional Expressions 109
10.2.3.4 Logical Operators........... ..o 110
10.2.4 Statements.............. i 110
10.24.1 BlockS ..o 110
10.2.4.2 Statement Sequences 111
10.2.4.3 Empty Statements 111
10.2.4.4 LOODPS . oo v 111
10.2.4.5 Selection Statements 111
10.24.6 0 JUMPS « o et 111
10.2.4.7 Cleanupso et 111
10.2.4.8 Exception Handling 112
10.2.5 GIMPLE Example....... i, 112
10.2.6 Rough GIMPLE Grammarccun.... 114
10.3 Annotations 116
10.4 Statement Operands.............ooviiiiiiiiiniia.. 117
10.4.1 Operand Iterators And Access Routines 118
10.4.2 Immediate Uses 121
10.5 Static Single Assignment............... 122
10.5.1 Preserving the SSA form............................. 123
10.5.2 Preserving the virtual SSA form 125
10.5.3 Examining SSA_NAME nodes.cooiiiiinn.... 125
10.5.4 Walking use-def chains........................ 126
10.5.5 Walking the dominator tree 126

10.6 Alias analysis..........oooiiiiiii i 126

vi GNU Compiler Collection (GCC) Internals

11 Analysis and Representation of Loops.... 131

11.1 Loop representationoiiiiiiiiii ... 131
11.2 Loop qUeryingco et e 132
11.3 Loop manipulation............. i 133
11.4 Loop-closed SSA form 134
11.5 Scalar evolutions i 134
11.6 IVanalysison RTL i 135
11.7 Number of iterations analysis 136
11.8 Data Dependency Analysis....... ..., 137
11.9 Linear loop transformations framework 139
12 RTL Representation.................... 141
12.1 RTL Object Types ..ot 141
12.2 RTL Classes and Formats................................. 142
12.3 Access to Operands ... i 144
12.4 Access to Special Operands 145
12.5 Flags in an RTL Expression.............o..... 147
12.6 Machine Modesooviniiini i e 153
12.7 Constant Expression Types o ... 156
12.8 Registers and Memory............... i 158
12.9 RTL Expressions for Arithmetic........................... 163
12.10 Comparison Operations.cooiviiiiinee .. 166
12,11 Bit-Fieldsoo oo 168
12.12 Vector Operations.oouiuiniiinneiinnen... 168
12,13 COnVErSIONS. . .ottt et ettt et et e 169
12.14 Declarationst e 170
12.15 Side Effect Expressions, 170
12.16 Embedded Side-Effects on Addresses 175
12.17 Assembler Instructions as Expressions 177
12,18 INSTIS . ettt 177
12.19 RTL Representation of Function-Call Insns................ 186
12.20 Structure Sharing Assumptions........................... 186
1221 Reading RTLo 187
13 Control Flow Graph 189
13.1 BasicBlocks. ... 189
13.2 Edges ..o 190
13.3 Profile information 193
13.4 Maintaining the CFG...... 194

13.5 Liveness Informationo, 196

Vil

14 Machine Descriptions................... 199
14.1 Overview of How the Machine Description is Used 199
14.2 Everything about Instruction Patterns..................... 199
14.3 Example of define_insn................ ... i, 200
144 RTL Template . ..o e 201
14.5 Output Templates and Operand Substitution............... 204
14.6 C Statements for Assembler Output 206
14.7 Predicates....... ..o 207

14.7.1 Machine-Independent Predicates...................... 208
14.7.2 Defining Machine-Specific Predicates.................. 210
14.8 Operand Constraintscoo ... 211
14.8.1 Simple Constraints, 212
14.8.2 Multiple Alternative Constraints...................... 216
14.8.3 Register Class Preferences............................ 217
14.8.4 Constraint Modifier Characters....................... 217
14.8.5 Constraints for Particular Machines................... 218
14.8.6 Defining Machine-Specific Constraints................. 233
14.8.7 Testing constraints from C 235
14.9 Standard Pattern Names For Generation................... 236
14.10 When the Order of Patterns Matters 257
14.11 Interdependence of Patterns 258
14.12 Defining Jump Instruction Patterns 259
14.13 Defining Looping Instruction Patterns.................... 260
14.14 Canonicalization of Instructions 262
14.15 Defining RTL Sequences for Code Generation 263
14.16 Defining How to Split Instructions........................ 266
14.17 Including Patterns in Machine Descriptions................ 269
14.17.1 RTL Generation Tool Options for Directory Search.... 270
14.18 Machine-Specific Peephole Optimizers 270
14.18.1 RTL to Text Peephole Optimizers.................... 270
14.18.2 RTL to RTL Peephole Optimizers.................... 272
14.19 Instruction Attributes.......... 274
14.19.1 Defining Attributes and their Values................. 274
14.19.2 Attribute Expressions. ... 274
14.19.3 Assigning Attribute Values toInsns.................. 277
14.19.4 Example of Attribute Specifications.................. 278
14.19.5 Computing the Length of an Insn................. ... 279
14.19.6 Constant Attributes 280
14.19.7 Delay Slot Scheduling................... 281
14.19.8 Specifying processor pipeline description.............. 282
14.20 Conditional Execution............ i, 287
14.21 Constant Definitions 288
14.22 MaCroS .. . oot 289
14.22.1 Mode Macrosovernee 289
14.22.1.1 Defining Mode Macros. 289
14.22.1.2 Substitution in Mode Macros 290
14.22.1.3 Mode Macro Examples 290

14.22.2 Code Macros..........oiii .. 291

viii GNU Compiler Collection (GCC) Internals

15 Target Description Macros and Functions

....................................... 293

15.1 The Global targetm Variable 293
15.2 Controlling the Compilation Driver, ‘gcc’.................. 293
15.3 Run-time Target Specification............................. 301
15.4 Defining data structures for per-function information........ 303
15.5 Storage Layout......... ... i 304
15.6 Layout of Source Language Data Types.................... 313
15.7 Register Usage 317
15.7.1 Basic Characteristics of Registers..................... 317
15.7.2 Order of Allocation of Registers....................... 319
15.7.3 How Values Fit in Registers.......................... 319
15.7.4 Handling Leaf Functions, 321
15.7.5 Registers That Form a Stack 322
15.8 Register Classes.ouvieiiiiiiie i 323
15.9 Obsolete Macros for Defining Constraints 331
15.10 Stack Layout and Calling Conventions.................... 333
15.10.1 Basic Stack Layout, 333
15.10.2 Exception Handling Support 337
15.10.3 Specifying How Stack Checking is Done 339
15.10.4 Registers That Address the Stack Frame 340
15.10.5 Eliminating Frame Pointer and Arg Pointer........... 342
15.10.6 Passing Function Arguments on the Stack............ 343
15.10.7 Passing Arguments in Registers...................... 345
15.10.8 How Scalar Function Values Are Returned............ 350
15.10.9 How Large Values Are Returned 351
15.10.10 Caller-Saves Register Allocation 353
15.10.11 Function Entry and Exit 353
15.10.12 Generating Code for Profiling 357
15.10.13 Permitting tail calls.......................... 357
15.10.14 Stack smashing protection.......................... 358
15.11 TImplementing the Varargs Macros........................ 358
15.12 Trampolines for Nested Functions 360
15.13 Implicit Calls to Library Routines........................ 363
15.14 Addressing Modes. 364
15.15 Anchored Addresses..............oooiiiiiiii.. 368
15.16 Condition Code Status 369
15.17 Describing Relative Costs of Operations 371
15.18 Adjusting the Instruction Scheduler 375
15.19 Dividing the Output into Sections (Texts, Data, ...) 381
15.20 Position Independent Code 385
15.21 Defining the Output Assembler Language 386
15.21.1 The Overall Framework of an Assembler File 386
1521.2 Outputof Data. 388
15.21.3 Output of Uninitialized Variables.................... 390
15.21.4 Output and Generation of Labels.................... 392
15.21.5 How Initialization Functions Are Handled 399

15.21.6 Macros Controlling Initialization Routines............ 400

15.21.7 OQutput of Assembler Instructions.................... 402
15.21.8 Output of Dispatch Tables 405
15.21.9 Assembler Commands for Exception Regions 407
15.21.10 Assembler Commands for Alignment................ 409

15.22 Controlling Debugging Information Format................ 410
15.22.1 Macros Affecting All Debugging Formats............. 410
15.22.2 Specific Options for DBX Output 411
15.22.3 Open-Ended Hooks for DBX Format................. 413
15.22.4 File Names in DBX Format 414
15.22.5 Macros for SDB and DWARF Output................ 415
15.22.6 Macros for VMS Debug Format...................... 416

15.23 Cross Compilation and Floating Point 416
15.24 Mode Switching Instructions............................. 418
15.25 Defining target-specific uses of __attribute__............ 419
15.26 Defining coprocessor specifics for MIPS targets. 421
15.27 Parameters for Precompiled Header Validity Checking 421
15.28 CH+ ABI parameters, 422
15.29 Miscellaneous Parameters........ 423
16 Host Configuration 439
16.1 Host Common ...t 439
16.2 Host Filesystem 440
16.3 Host MiSC ..ot 441
17 Makefile Fragments..................... 443
17.1 Target Makefile Fragments...................... 443
17.2 Host Makefile Fragments................., 445
18 collect2 .vvvviiiiiiiiii it iiieennnnn 447
19 Standard Header File Directories........ 449

....................................... 451

20.1 The Inside of a GTY(()) +.vvrree e 451
20.2 Marking Roots for the Garbage Collector 455
20.3 Source Files Containing Type Information.................. 455
Funding Free Software 457

The GNU Project and GNU/Linux 459

1X

X GNU Compiler Collection (GCC) Internals

GNU GENERAL PUBLIC LICENSE........ 461
Preamble. o 461
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . ..o e 462
Appendix: How to Apply These Terms to Your New Programs 466

GNU Free Documentation License 467
ADDENDUM: How to use this License for your documents. 473

Contributors to GCC 475

OptionIndex, 491

Concept Index.............coiiiiiiii.... 493

Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages. It
corresponds to the compilers version 4.2.1. The use of the GNU compilers is documented
in a separate manual. See section “Introduction” in Using the GNU Compiler Collection
(GCCO).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing], page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability|, page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 5 [Languages],
page 21). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.

http://gcc.gnu.org/readings.html

GNU Compiler Collection (GCC) Internals

Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current developiment
sources are available by SVN (see http://gcc.gnu.org/svn.html). Source and binary
snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.
If you would like to work on improvements to GCC, please read the advice at these URLs:
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

GNU Compiler Collection (GCC) Internals

Chapter 2: GCC and Portability)

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, ad-hoc parameters have been defined for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.

GNU Compiler Collection (GCC) Internals

Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 15 [Target Macros|, page 293).

However, returning of structure and union values is done differently on some target ma-
chines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or uniouns.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The target hook TARGET_STRUCT_
VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.

GNU Compiler Collection (GCC) Internals

Chapter 4: The GCC low-level runtime library 9

4 The GCC low-level runtime library

GCC provides a low-level runtime library, ‘libgcc.a’ or ‘libgcc_s.so.1’ on some plat-
forms. GCC generates calls to routines in this library automatically, whenever it needs to
perform some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor
cannot, perform directly. This includes integer multiply and divide on some machines, and
all floating-point operations on other machines. 1ibgcc also includes routines for exception
handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in section “Other
Builtins” in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a specific machine mode, not a specific
C type. See Section 12.6 [Machine Modes], page 153, for an explanation of this concept. For
illustrative purposes, in this chapter the floating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long
to DImode; and long long and unsigned long long to TImode.

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don’t provide hardware support
for arithmetic operations on some modes.

4.1.1 Arithmetic functions

int __ashlsi3 (int a, int b) [Runtime Function]

long __ashldi3 (long a, int b) [Runtime Function]

long long __ashlti3 (long long a, int b) [Runtime Function]
These functions return the result of shifting a left by b bits.

int __ashrsi3 (int a, int b) [Runtime Function]

long __ashrdi3 (long a, int b) [Runtime Function]

long long __ashrti3 (long long a, int b) [Runtime Function]
These functions return the result of arithmetically shifting a right by b bits.

int __divsi3 (int a, int b) [Runtime Function]

long __divdi3 (long a, long b) [Runtime Function]

long long __divti3 (long long a, long long b) [Runtime Function]
These functions return the quotient of the signed division of a and b.

int __1shrsi3 (int a, int b) [Runtime Function]

long __1shrdi3 (long a, int b) [Runtime Function]

long long __lshrti3 (long long a, int b) [Runtime Function]

These functions return the result of logically shifting a right by b bits.

10 GNU Compiler Collection (GCC) Internals

int __modsi3 (int a, int b) [Runtime Function]

long __moddi3 (long a, long b) [Runtime Function]

long long __modti3 (long long a, long long b) [Runtime Function]
These functions return the remainder of the signed division of a and b.

int __mulsi3 (int a, int b) [Runtime Function]

long __muldi3 (long a, long b) [Runtime Function]

long long __multi3 (long long a, long long b) [Runtime Function]
These functions return the product of a and b.

long __negdi2 (long a) [Runtime Function]

long long __negti2 (long long a) [Runtime Function]
These functions return the negation of a.

unsigned int __udivsi3 (unsigned int a, unsigned int b) [Runtime Function]

unsigned long __udivdi3 (unsigned long a, unsigned long b) [Runtime Function]

unsigned long long __udivti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the quotient of the unsigned division of a and b.

unsigned long __udivmoddi3 (unsigned long a, unsigned long [Runtime Function]
b, unsigned long *c)
unsigned long long __udivti3 (unsigned long long a, [Runtime Function]
unsigned long long b, unsigned long long *c)
These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

unsigned int __umodsi3 (unsigned int a, unsigned int b) [Runtime Function]
unsigned long __umoddi3 (unsigned long a, unsigned long b) [Runtime Function]
unsigned long long __umodti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

int __cmpdi2 (long a, long b) [Runtime Function]
int __cmpti2 (long long a, long long b) [Runtime Function]
These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

int __ucmpdi2 (unsigned long a, unsigned long b) [Runtime Function]
int __ucmpti2 (unsigned long long a, unsigned long long b) [Runtime Function]
These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

Chapter 4: The GCC low-level runtime library 11

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic overflow.

int __absvsi2 (int a) [Runtime Function]
long __absvdi2 (long a) [Runtime Function]
These functions return the absolute value of a.

int __addvsi3 (int a, int b) [Runtime Function]

long __addvdi3 (long a, long b) [Runtime Function]
These functions return the sum of a and b; that is a + b.

int __mulvsi3 (int a, int b) [Runtime Function]

long __mulvdi3 (long a, long b) [Runtime Function]

The functions return the product of a and b; that is a * b.

long __negvdi2 (long a) [Runtime Function]
These functions return the negation of a; that is -a.

int __negvsi2 (int a Runtime Function
g

int __subvsi3 (int a, int b) [Runtime Function]
long __subvdi3 (long a, long b) [Runtime Function]
These functions return the difference between b and a; that is a - b.

4.1.4 Bit operations

int __clzsi2 (int a) [Runtime Function]
int __clzdi2 (long a) [Runtime Function]
int __clzti2 (long long a) [Runtime Function]

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is undefined.

int __ctzsi2 (int a) [Runtime Function]
int __ctzdi2 (long a) [Runtime Function]
int __ctzti2 (long long a) [Runtime Function]

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is undefined.

int __ffsdi2 (long a) [Runtime Function]

int __ffsti2 (long long a) [Runtime Function]
These functions return the index of the least significant 1-bit in a, or the value zero
if a is zero. The least significant bit is index one.

int __paritysi2 (int a) [Runtime Function]
int __paritydi2 (long a) [Runtime Function]
int __parityti2 (long long a) [Runtime Function]

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.

12 GNU Compiler Collection (GCC) Internals

int __popcountsi2 (int a) [Runtime Function]
int __popcountdi2 (long a) [Runtime Function]
int __popcountti2 (long long a) [Runtime Function]

These functions return the number of bits set in a.

4.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support
for floating point. It is also used whenever ‘-msoft-float’ is used to disable generation of
floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 15.13 [Library Calls],
page 363). In this section, the default names are used.

Presently the library does not support XFmode, which is used for long double on some
architectures.

4.2.1 Arithmetic functions

float __addsf3 (float a, float b) [Runtime Function]
double __adddf3 (double a, double b) [Runtime Function]
long double __addtf3 (long double a, long double b) [Runtime Function]
long double __addxf3 (long double a, long double b) [Runtime Function]

These functions return the sum of a and b.

float __subsf3 (float a, float b) [Runtime Function]
double __subdf3 (double a, double b) [Runtime Function]
[]

]

long double _subtf3 (long double a, long double b) Runtime Function
long double __subxf3 (long double a, long double b) [Runtime Function

These functions return the difference between b and a; that is, a — b.

float __mulsf3 (float a, float b) [Runtime Function]
double __muldf3 (double a, double b) [Runtime Function]
long double __multf3 (long double a, long double b) [Runtime Function]
long double __mulxf3 (long double a, long double b) [Runtime Function]

These functions return the product of a and b.

float __divsf3 (float a, float b) [Runtime Function]
double __divdf3 (double a, double b) [Runtime Function]
long double __divtf3 (long double a, long double b) [Runtime Function]
long double __divxf3 (long double a, long double b) [Runtime Function]

These functions return the quotient of a and b; that is, a/b.

float __negsf2 (float a) Runtime Function

[]
double __negdf2 (double a) [Runtime Function]
long double __negtf2 (long double a) [Runtime Function]
long double __negxf2 (long double a) [Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

Chapter 4: The GCC low-level runtime library 13

4.2.2 Conversion functions

double __extendsfdf2 (float a) [Runtime Function]
long double __extendsftf2 (float a) [Runtime Function]
_extendsfxf2 (float a) [Runtime Function]
[]
[]

long double _ (
long double __extenddftf2 (double a) Runtime Function
long double __extenddfxf2 (double a) Runtime Function

These functions extend a to the wider mode of their return type.

double __truncxfdf2 (long double a) Runtime Function
double __trunctfdf2 (long double a) Runtime Function

[]

[]

float __truncxfsf2 (long double a) [Runtime Function]
[]

]

float __trunctfsf2 (long double a) Runtime Function

float __truncdfsf2 (double a) [Runtime Function
These functions truncate a to the narrower mode of their return type, rounding toward
Zero.

int __fixsfsi (foat a) [Runtime Function]

int __fixdfsi (double a) [Runtime Function]

int __fixtfsi (long double a) [Runtime Function]

int __fixxfsi (long double a) [Runtime Function]

These functions convert a to a signed integer, rounding toward zero.

Runtime Function
Runtime Function
Runtime Function
Runtime Function

long __fixsfdi (float a)

long __fixdfdi (double a)

long __fixtfdi (long double a)

long __fixxfdi (long double a)
These functions convert a to a signed long, rounding toward zero.

[]
[]
[]
[]

long long __fixsfti (float a) [Runtime Function]

long long __fixdfti (double a) [Runtime Function]

long long __fixtfti (long double a) [Runtime Function]

long long __fixxfti (long double a) [Runtime Function]
These functions convert a to a signed long long, rounding toward zero.

unsigned int __fixunssfsi (foat a) [Runtime Function]
unsigned int __fixunsdfsi (double a) [Runtime Function]
unsigned int __fixunstfsi (long double a) [Runtime Function]

]

unsigned int __fixunsxfsi (long double a) [Runtime Function
These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

unsigned long __fixunssfdi (float a) [Runtime Function]
unsigned long __fixunsdfdi (double a) [Runtime Function]
unsigned long __fixunstfdi (long double a) [Runtime Function]
unsigned long __fixunsxfdi (long double a) [Runtime Function]

These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

14 GNU Compiler Collection (GCC) Internals

unsigned long long __fixunssfti (float a) [Runtime Function]
unsigned long long __fixunsdfti (double a) [Runtime Function]
unsigned long long __fixunstfti (long double a) [Runtime Function]
unsigned long long __fixunsxfti (long double a) [Runtime Function]

These functions convert a to an unsigned long long, rounding toward zero. Negative
values all become zero.

- [Runtime Function
double __floatsidf (int i) [Runtime Function
long double __floatsitf (int i) [Runtime Function
long double __floatsixf (int i) [Runtime Function
These functions convert i, a signed integer, to floating point.

float __floatsisf (int 1)]
]
]
]

float __floatdisf (long i) [Runtime Function]
double __floatdidf (long i) [Runtime Function]
long double __floatditf (long i) [Runtime Function]
long double __floatdixf (long i) [Runtime Function]

These functions convert i, a signed long, to floating point.

float __floattisf (long long i) [Runtime Function]
double __floattidf (long long i) [Runtime Function]
long double __floattitf (long long i) [Runtime Function]
long double __floattixf (long long i) [Runtime Function]

These functions convert i, a signed long long, to floating point.

float __floatunsisf (unsigned int i) [Runtime Function]
double __floatunsidf (unsigned int 1) [Runtime Function]
long double __floatunsitf (unsigned int i) [Runtime Function]
long double __floatunsixf (unsigned int i) [Runtime Function]

These functions convert i, an unsigned integer, to floating point.

float __floatundisf (unsigned long i) [Runtime Function]
double __floatundidf (unsigned long i) [Runtime Function]
long double __floatunditf (unsigned long i) [Runtime Function]
long double __floatundixf (unsigned long i) [Runtime Function]

These functions convert i, an unsigned long, to floating point.

float __floatuntisf (unsigned long long 1) [Runtime Function]
double __floatuntidf (unsigned long long 1) [Runtime Function]
long double __floatuntitf (unsigned long long i) [Runtime Function]
long double __floatuntixf (unsigned long long i) [Runtime Function]

These functions convert i, an unsigned long long, to floating point.

4.2.3 Comparison functions

There are two sets of basic comparison functions.

int __cmpsf2 (float a, float b) [Runtime Function]
int __cmpdf2 (double a, double b) [Runtime Function]

Chapter 4: The GCC low-level runtime library 15

int __cmptf2 (long double a, long double b) [Runtime Function]
These functions calculate ¢ <=> b. That is, if a is less than b, they return —1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,
use one of the higher-level comparison functions.

int __unordsf2 (float a, float b) [Runtime Function]
int __unorddf2 (double a, double b) [Runtime Function]
int __unordtf2 (long double a, long double b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))
return E;
return __cmpXf2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsf2 (float a, float b) [Runtime Function]

int __eqdf2 (double a, double b) [Runtime Function]

int __eqtf2 (long double a, long double b) [Runtime Function]
These functions return zero if neither argument is NaN, and a and b are equal.

int __nesf2 (float a, float b) [Runtime Function]

int __nedf2 (double a, double b) [Runtime Function]

int __netf2 (long double a, long double b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesf2 (float a, float b) [Runtime Function]

int __gedf2 (double a, double b) [Runtime Function]

int __getf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsf2 (float a, float b) [Runtime Function]
int __1tdf2 (double a, double b) [Runtime Function]
int __1ttf2 (long double a, long double b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

int __lesf2 (float a, float b) [Runtime Function]
int __ledf2 (double a, double b) [Runtime Function]
int __letf2 (long double a, long double b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

16 GNU Compiler Collection (GCC) Internals

int __gtsf2 (float a, float b)
int __gtdf2 (double a, double b)
int __gttf2 (long double a, long double b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is

strictly greater than b.
4.2.4 Other floating-point functions

float __powisf2 (float a, int b)

double __powidf2 (double a, int b)

long double __powitf2 (long double a, int b)

long double __powixf2 (long double a, int b)
These functions convert raise a to the power b.

complex float __mulsc3 (float a, float b, float c, float d)

complex double __muldc3 (double a, double b, double c,
double d)

complex long double __multc3 (long double a, long double
b, long double c, long double d)

complex long double __mulxc3 (long double a, long double

b, long double c, long double d)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

These functions return the product of a + ib and ¢ + 4d, following the rules of C99

Annex G.

complex float __divsc3 (float a, float b, float c, float d)

complex double __divdc3 (double a, double b, double c,
double d)

complex long double __divtc3 (long double a, long double
b, long double c, long double d)

complex long double __divxc3 (long double a, long double
b, long double c, long double d)

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

These functions return the quotient of a + ¢b and ¢ + id (i.e., (a + ib)/(c + id)),

following the rules of C99 Annex G.

4.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754R decimal floating point

arithmetic and is only activated on selected targets.

4.3.1 Arithmetic functions

_Decimal32 __addsd3 (_Decimal32 a, _Decimal32 b)

_Decimal64 __adddd3 (_Decimal64 a, _Decimal64 b)

_Decimall28 __addtd3 (_Decimall28 a, _Decimall28 b)
These functions return the sum of a and b.

_Decimal32 __subsd3 (_Decimal32 a, _Decimal32 b)
_Decimal64 __subdd3 (_Decimal64 a, _Decimal64 b)
_Decimall28 __subtd3 (_Decimall28 a, _Decimall28 b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the difference between b and a; that is, a — b.

Chapter 4: The GCC low-level runtime library 17

_Decimal32 __mulsd3 (_Decimal32 a, _Decimal32 b) [Runtime Function]

_Decimal64 __muldd3 (_Decimal64 a, _Decimal64 b) [Runtime Function]

_Decimall28 __multd3 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return the product of a and b.

_Decimal32 __divsd3 (_Decimal32 a, _Decimal32 b) [Runtime Function]

_Decimal64 __divdd3 (_Decimal64 a, -Decimal64 b) [Runtime Function]

_Decimall28 __divtd3 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return the quotient of a and b; that is, a/b.

_Decimal32 __negsd2 (_Decimal32 a) [Runtime Function]

_Decimal64 __negdd2 (_Decimal64 a) [Runtime Function]

_Decimall28 __negtd2 (_Decimall28 a) [Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

4.3.2 Conversion functions

_Decimal64 __extendsddd2 (_Decimal32 a)
_Decimall28 __extendsdtd2 (_Decimal32 a)
_Decimall28 __extendddtd2 (_Decimal64 a)
_Decimal32 __extendsfsd (float a)

Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
__ [Runtime Function]
double __extendsddf (_Decimal32 a) [Runtime Function]
long double __extendsdxf (_Decimal32 a) [Runtime Function]
_Decimal64 __extendsfdd (float a) [Runtime Function]
_Decimal64 __extenddfdd (double a) [Runtime Function]
long double __extendddxf (_Decimal64 a) [Runtime Function]
_Decimall28 __extendsftd (float a) [Runtime Function]
_Decimall128 __extenddftd (double a) [Runtime Function]
_Decimall28 __extendxftd (long double a) [Runtime Function]

These functions extend a to the wider mode of their return type.

Runtime Function
Runtime Function
Runtime Function

_Decimal32 __truncddsd2 (_Decimal64 a) [
_Decimal32 __trunctdsd2 (_Decimall28 a) [
_Decimal64 __trunctddd2 (_Decimall28 a) [
float __truncsdsf (-Decimal32 a) [Runtime Function
_Decimal32 __truncdfsd (double a) [Runtime Function
_Decimal32 __truncxfsd (long double a) [Runtime Function
float __truncddsf (_Decimal64 a) [Runtime Function
double __truncdddf (_Decimal64 a) [Runtime Function
_Decimal64 __truncxfdd (long double a) [Runtime Function
float __trunctdsf (_Decimall28 a) [Runtime Function
double __trunctddf (_Decimall28 a) [Runtime Function
long double __trunctdxf (_Decimall28 a) [Runtime Function
These functions truncate a to the narrower mode of their return type.

]
]
]
]
]
]
]
]
]
]
]
]

int __fixsdsi (_Decimal32 a) [Runtime Function]
int __fixddsi (_Decimal64 a) [Runtime Function]

18 GNU Compiler Collection (GCC) Internals

int __fixtdsi (_Decimall28 a) [Runtime Function]
These functions convert a to a signed integer.

long __fixsddi (_Decimal32 a) [Runtime Function]

long __fixdddi (-Decimal64 a) [Runtime Function]

long __fixtddi (_Decimall28 a) [Runtime Function]
These functions convert a to a signed long.

unsigned int __fixunssdsi (_Decimal32 a) [Runtime Function]

unsigned int __fixunsddsi (_Decimal64 a) [Runtime Function]

unsigned int __fixunstdsi (-Decimall28 a) [Runtime Function]

These functions convert a to an unsigned integer. Negative values all become zero.

unsigned long __fixunssddi (_Decimal32 a) [Runtime Function]
unsigned long __fixunsdddi (_Decimal64 a) [Runtime Function]
unsigned long __fixunstddi (_Decimall28 a) [Runtime Function]

These functions convert a to an unsigned long. Negative values all become zero.

_Decimal32 __floatsisd (int i) [Runtime Function]
_Decimal64 __floatsidd (int i) [Runtime Function]
_Decimall28 __floatsitd (int i) [Runtime Function]

These functions convert i, a signed integer, to decimal floating point.

_Decimal32 __floatdisd (long i) [Runtime Function]

_Decimalé4 __floatdidd (long i) [Runtime Function]

_Decimal128 __floatditd (long i) [Runtime Function]
These functions convert i, a signed long, to decimal floating point.

_Decimal32 __floatunssisd (unsigned int i) [Runtime Function]

_Decimalé4 __floatunssidd (unsigned int i) [Runtime Function]

_Decimal128 __floatunssitd (unsigned int i) [Runtime Function]
These functions convert i, an unsigned integer, to decimal floating point.

_Decimal32 __floatunsdisd (unsigned long i) [Runtime Function]
_Decimalé4 __floatunsdidd (unsigned long i) [Runtime Function]
_Decimal128 __floatunsditd (unsigned long i) [Runtime Function]

These functions convert i, an unsigned long, to decimal floating point.

4.3.3 Comparison functions

int __unordsd2 (_Decimal32 a, -Decimal32 b) [Runtime Function]
int __unorddd2 (_-Decimal64 a, _Decimal64 b) [Runtime Function]
int __unordtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

Chapter 4: The GCC low-level runtime library 19

if (__unordXd2 (a, b))
return E;
return __cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]

int __eqdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]

int __eqtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return zero if neither argument is NaN, and a and b are equal.

int __nesd2 (-Decimal32 a, _Decimal32 b) [Runtime Function]

int __nedd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]

int __netd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]

int __gedd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]

int __getd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __1tdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __1ttd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

int __lesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __ledd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __letd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

int __gtsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __gtdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __gttd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.4 Language-independent routines for exception handling

document me!

_Unwind_DeleteException
_Unwind_Find_FDE
_Unwind_ForcedUnwind
_Unwind_GetGR
_Unwind_GetIP

20 GNU Compiler Collection (GCC) Internals

_Unwind_GetLanguageSpecificData
_Unwind_GetRegionStart
_Unwind_GetTextRelBase
_Unwind_GetDataRelBase
_Unwind_RaiseException
_Unwind_Resume

_Unwind_SetGR

_Unwind_SetIP
_Unwind_FindEnclosingFunction
_Unwind_SjLj_Register
_Unwind_SjLj_Unregister
_Unwind_SjLj_RaiseException
_Unwind_SjLj_ForcedUnwind
_Unwind_SjLj_Resume
__deregister_frame
__deregister_frame_info
__deregister_frame_info_bases
__register_frame
__register_frame_info
__register_frame_info_bases
__register_frame_info_table
__register_frame_info_table_bases
__register_frame_table

4.5 Miscellaneous runtime library routines

4.5.1 Cache control functions

void __clear_cache (char *beg, char *end) [Runtime Function]
This function clears the instruction cache between beg and end.

Chapter 5: Language Front Ends in GCC 21

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 9 [Trees], page 69), was initially designed for C, and many aspects of it are still
somewhat biased towards C and C-like languages. It is, however, reasonably well suited to
other procedural languages, and front ends for many such languages have been written for
GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

e GCC front ends benefit from the support for many different target machines already
present in GCC.

e GCC front ends benefit from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code then
when it is compiling from generated C code.

e Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.

22

GNU Compiler Collection (GCC) Internals

Chapter 6: Source Tree Structure and Build System 23

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built.
The user documentation for building and installing GCC is in a separate manual
(http://gcc.gnu.org/install/), with which it is presumed that you are familiar.

6.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘--host=’, and ‘--target=".

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the saime, this is called a native. If build and host are the
same but target is different, this is called a cross. If build, host, and target are all different
this is called a canadian (for obscure reasons dealing with Canada’s political party and the
background of the person working on the build at that time). If host and target are the
same, but build is different, you are using a cross-compiler to build a native for a different
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is different, you are using a cross compiler to build a cross
compiler that produces code for the machine you’re building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like 1ibstdc++). If build and host are different, you must have already
build and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you're building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you’re not building a compiler, you're
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

The libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:

http://gcc.gnu.org/install/

24 GNU Compiler Collection (GCC) Internals

‘boehm-gc’
The Boehm conservative garbage collector, used as part of the Java runtime
library.

‘contrib’ Contributed scripts that may be found useful in conjunction with GCC. One
of these, ‘contrib/texi2pod.pl’, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

‘fastjar’ An implementation of the jar command, used with the Java front end.

‘gec’ The main sources of GCC itself (except for runtime libraries), including op-

timizers, support for different target architectures, language front ends, and
testsuites. See Section 6.3 [The ‘gcc’ Subdirectory], page 24, for details.

‘include’ Headers for the 1ibiberty library.
‘libada’ The Ada runtime library.
‘libcpp’ The C preprocessor library.
‘libgfortran’
The Fortran runtime library.
‘1ibffi’ The 1ibffi library, used as part of the Java runtime library.
‘libiberty’
The libiberty library, used for portability and for some generally useful data

structures and algorithms. See section “Introduction” in GNU libiberty, for
more information about this library.

‘libjava’ The Java runtime library.

‘libmudflap’
The libmudflap library, used for instrumenting pointer and array dereferencing
operations.

‘libobjc’ The Objective-C and Objective-C++ runtime library.

‘libstdc++-v3’
The C++ runtime library.

‘maintainer-scripts’
Scripts used by the gccadmin account on gcc.gnu.org.

‘z1ib’ The z1ib compression library, used by the Java front end and as part of the
Java runtime library.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See section “GNU configure and build system”
in The GNU configure and build system, for details.

6.3 The ‘gcc’ Subdirectory

The ‘gcc’ directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a testsuite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 8 [Passes and Files of the Compiler], page 55.

Chapter 6: Source Tree Structure and Build System 25

6.3.1 Subdirectories of ‘gcc’

The ‘gcc’ directory contains the following subdirectories:

‘language’

‘config’

‘doc

‘fixinc’

‘ginclude’

‘intl’

po

‘testsuite’

Subdirectories for various languages. Directories containing a file
‘config-lang.in’ are language subdirectories. The contents of the
subdirectories ‘cp’ (for C++), ‘objc’ (for Objective-C) and ‘objcp’ (for
Objective-C++) are documented in this manual (see Chapter 8 [Passes and
Files of the Compiler], page 55); those for other languages are not. See
Section 6.3.8 [Anatomy of a Language Front End], page 33, for details of the
files in these directories.

Configuration files for supported architectures and operating systems. See Sec-
tion 6.3.9 [Anatomy of a Target Back End], page 37, for details of the files in
this directory.

Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See Sec-
tion 6.3.7 [Documentation], page 30.

The support for fixing system headers to work with GCC. See ‘fixinc/README’
for more information. The headers fixed by this mechanism are installed in
‘libsubdir/include’. Along with those headers, ‘README-fixinc’ is also in-
stalled, as ‘1ibsubdir/include/README’.

System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 6.3.6 [Headers Installed by GCC],
page 30, for details of when these and other headers are installed.

GNU 1libintl, from GNU gettext, for systems which do not include it in libc.
Properly, this directory should be at top level, parallel to the ‘gcc’ directory.

Message catalogs with translations of messages produced by GCC into various
languages, ‘language.po’. This directory also contains ‘gcc.pot’, the template
for these message catalogues, ‘exgettext’, a wrapper around gettext to ex-
tract the messages from the GCC sources and create ‘gcc.pot’, which is run
by ‘make gcc.pot’, and ‘EXCLUDES’, a list of files from which messages should
not be extracted.

The GCC testsuites (except for those for runtime libraries). See Section 6.4
[Testsuites], page 38.

6.3.2 Configuration in the ‘gcc’ Directory

The ‘gcc’ directory is configured with an Autoconf-generated script ‘configure’. The

‘configure’

script is generated from ‘configure.ac’ and ‘aclocal.m4’. From the files

‘configure.ac’ and ‘acconfig.h’, Autoheader generates the file ‘config.in’. The file
‘cstamp-h.in’ is used as a timestamp.

26 GNU Compiler Collection (GCC) Internals

6.3.2.1 Scripts Used by ‘configure’

‘configure’ uses some other scripts to help in its work:

e The standard GNU ‘config.sub’ and ‘config.guess’ files, kept in the top level direc-
tory, are used. FIXME: when is the ‘config.guess’ file in the ‘gcc’ directory (that
just calls the top level one) used?

o The file ‘config.gcc’ is used to handle configuration specific to the particular target
machine. The file ‘config.build’ is used to handle configuration specific to the par-
ticular build machine. The file ‘config.host’ is used to handle configuration specific
to the particular host machine. (In general, these should only be used for features
that cannot reasonably be tested in Autoconf feature tests.) See Section 6.3.2.2 [The
‘config.build’; ‘config.host’; and ‘config.gcc’ Files|, page 26, for details of the
contents of these files.

e Dach language subdirectory has a file ‘language/config-lang.in’ that is used for
front-end-specific configuration. See Section 6.3.8.2 [The Front End ‘config-lang.in’
File], page 36, for details of this file.

e A helper script ‘configure.frag’ is used as part of creating the output of ‘configure’.

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’ Files

The ‘config.build’ file contains specific rules for particular systems which GCC is built
on. This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The ‘config.host’ file contains specific rules for particular systems which GCC will run
on. This is rarely needed.

The ‘config.gcc’ file contains specific rules for particular systems which GCC will gen-
erate code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.

FIXME: document the contents of these files, and what variables should be set to control
build, host and target configuration.

6.3.2.3 Files Created by configure

Here we spell out what files will be set up by ‘configure’ in the ‘gcc’ directory. Some
other files are created as temporary files in the configuration process, and are not used in
the subsequent build; these are not documented.

e ‘Makefile’is constructed from ‘Makefile.in’, together with the host and target frag-
ments (see Chapter 17 [Makefile Fragments], page 443) ‘t-target’ and ‘x-host’ from
‘config’, if any, and language Makefile fragments ‘language /Make-lang.in’.

e ‘auto-host.h’ contains information about the host machine determined by
‘configure’. If the host machine is different from the build machine, then
‘auto-build.h’ is also created, containing such information about the build machine.

e ‘config.status’is a script that may be run to recreate the current configuration.

e ‘configargs.h’ is a header containing details of the arguments passed to ‘configure’
to configure GCC, and of the thread model used.

e ‘cstamp-h’ is used as a timestamp.

Chapter 6: Source Tree Structure and Build System 27

e ‘fixinc/Makefile’ is constructed from ‘fixinc/Makefile.in’.

e ‘gccbug’, a script for reporting bugs in GCC, is constructed from ‘gccbug.in’.

e ‘intl/Makefile’ is constructed from ‘intl/Makefile.in’.

e ‘mklibgcc’, a shell script to create a Makefile to build libgce, is constructed from
‘mklibgcc.in’.

e If a language ‘config-lang.in’ file (see Section 6.3.8.2 [The Front End

‘config-lang.in’ File], page 36) sets outputs, then the files listed in outputs there
are also generated.

The following configuration headers are created from the Makefile, using ‘mkconfig.sh’,
rather than directly by ‘configure’. ‘config.h’, ‘bconfig.h’ and ‘tconfig.h’ all contain
the ‘xm-machine.h’ header, if any, appropriate to the host, build and target machines
respectively, the configuration headers for the target, and some definitions; for the host
and build machines, these include the autoconfigured headers generated by ‘configure’.
The other configuration headers are determined by ‘config.gcc’. They also contain the
typedefs for rtx, rtvec and tree.

e ‘config.h’, for use in programs that run on the host machine.

e ‘beconfig.h’, for use in programs that run on the build machine.

e ‘tconfig.h’, for use in programs and libraries for the target machine.

e ‘tm_p.h’, which includes the header ‘machine-protos.h’ that contains prototypes for

functions in the target *.c’ file. FIXME: why is such a separate header necessary?

6.3.3 Build System in the ‘gcc’ Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 8 [Passes], page 55).

6.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all This is the default target. Depending on what your build/host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
‘make man’ and ‘make info’.

dvi Produce DVI-formatted documentation.
pdf Produce PDF-formatted documentation.
html Produce HTML-formatted documentation.
man Generate man pages.

info Generate info-formatted pages.
mostlyclean

Delete the files made while building the compiler.
clean That, and all the other files built by ‘make all’.

28 GNU Compiler Collection (GCC) Internals

distclean
That, and all the files created by configure.

maintainer-clean
Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build gcc.

srcextra Generates files in the source directory that do not exist in CVS but should go
into a release tarball. One example is ‘gcc/java/parse.c’ which is generated
from the CVS source file ‘gcc/java/parse.y’.

srcinfo
srcman Copies the info-formatted and manpage documentation into the source directory
usually for the purpose of generating a release tarball.

install Installs gce.

uninstall
Deletes installed files.

check Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘.1og’ files containing the results of the testing. You can run subsets
with, for example, ‘make check-gcc’. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:
make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as TCL or dejagnu.

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Makefile that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times—once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
‘make compare’ can check. FEach stage is configured separately and compiled into a separate
directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g. that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures'.

Other targets available from the top level include:

L Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case,
it’s best to use make restrap.

Chapter 6: Source Tree Structure and Build System 29

bootstrap-lean
Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

bootstrap2

bootstrap2-lean
Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a “lean” bootstrap is approximately
independent of the number of stages.

stagelN-bubble (N =1...4)
Rebuild all the stages up to N, with the appropriate flags, “bubbling” the
changes as described above.

all-stageN (N =1...4)
Assuming that stage N has already been built, rebuild it with the appropriate
flags. This is rarely needed.

cleanstrap
Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

profiledbootstrap
Builds a compiler with profiling feedback information. For more information,
see section “Building with profile feedback™ in Installing GCC.

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N =1...4)
For each package that is bootstrapped, rename directories so that, for example,
‘gee’ points to the stageN GCC, compiled with the stageN-1 GCC?.

You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run ‘make’ either to rebuild it
or to run test suites), you should be able to work directly in the ‘stageN-gcc’
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the ‘gcc’ directory points to the stage2 GCC, after
invoking this target it will be renamed to ‘stage2-gcc’.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in

2 Customarily, the system compiler is also termed the ‘stage0’ GCC.

30 GNU Compiler Collection (GCC) Internals

the first stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing
‘make’.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompi-
lation caused by the stagel compiler, you may need a command like

make stage2-bubble STAGE1_LANGUAGES=c,fortran

Alternatively, you can use per-language targets to build and test languages that are not
enabled by default in stagel. For example, make £951 will build a Fortran compiler even in
the stagel build directory.

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

FIXME: list here, with explanation, all the C source files and headers under the ‘gcc’
directory that aren’t built into the GCC executable but rather are part of runtime libraries
and object files, such as ‘crtstuff.c’ and ‘unwind-dw2.c’. See Section 6.3.6 [Headers
Installed by GCC], page 30, for more information about the ‘ginclude’ directory.

6.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used
with it. However, GCC will fix those headers if necessary to make them work with GCC,
and will install some headers required of freestanding implementations. These headers are
installed in ‘Iibsubdir/include’. Headers for non-C runtime libraries are also installed
by GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the ‘ginclude’ directory. These headers,
‘is0646.h’, ‘stdarg.h’;, ‘stdbool.h’; and ‘stddef.h’, are installed in ‘libsub-
dir/include’, unless the target Makefile fragment (see Section 17.1 [Target Fragment],
page 443) overrides this by setting USER_H.

In addition to these headers and those generated by fixing system headers to work with
GCC, some other headers may also be installed in ‘libsubdir/include’. ‘config.gcc’
may set extra_headers; this specifies additional headers under ‘config’ to be installed on
some systems.

GCCO installs its own version of <float.h>, from ‘ginclude/float.h’. This is done to
cope with command-line options that change the representation of floating point numbers.

GCCO also installs its own version of <limits.h>; this is generated from ‘glimits.h’; to-
gether with ‘limitx.h’ and ‘limity.h’ if the system also has its own version of <limits.h>.
(GCC provides its own header because it is required of ISO C freestanding implementations,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be defined in <1imits.h>.) The system’s
<limits.h> header is used via ‘libsubdir/include/syslimits.h’, which is copied from
‘gsyslimits.h’ if it does not need fixing to work with GCC; if it needs fixing, ‘syslimits.h’
is the fixed copy.

6.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format; DVI versions may be generated by ‘make dvi’, PDF versions by
‘make pdf’, and HTML versions by make html. In addition, some man pages are generated
from the Texinfo manuals, there are some other text files with miscellaneous documentation,

Chapter 6: Source Tree Structure and Build System 31

and runtime libraries have their own documentation outside the ‘gcc’ directory. FIXME:
document the documentation for runtime libraries somewhere.

6.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files ‘doc/*.texi’.
Other front ends have their own manuals in files ‘language/*.texi’. Common files
‘doc/include/*.texi’ are provided which may be included in multiple manuals; the
following files are in ‘doc/include’:

‘fdl.texi’
The GNU Free Documentation License.

‘funding.texi’
The section “Funding Free Software”.

‘gcc-common. texi’
Common definitions for manuals.

‘gpl.texi’
The GNU General Public License.

‘texinfo.tex’
A copy of ‘texinfo.tex’ known to work with the GCC manuals.

DVI-formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the Make-
file macro $ (TEXI2DVI)). PDF-formatted manuals are generated by ‘make pdf’, which uses
texi2pdf (via the Makefile macro $(TEXI2PDF)). HTML formatted manuals are generated
by make html. Info manuals are generated by ‘make info’ (which is run as part of a boot-
strap); this generates the manuals in the source directory, using makeinfo via the Makefile
macro $(MAKEINFO), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script ‘maintainer-scripts/update_web_docs’. Each manual to be
provided online must be listed in the definition of MANUALS in that file; a file ‘name.texi’
must only appear once in the source tree, and the output manual must have the same
name as the source file. (However, other Texinfo files, included in manuals but not them-
selves the root files of manuals, may have names that appear more than once in the source
tree.) The manual file ‘name.texi’ should only include other files in its own directory or in
‘doc/include’. HTML manuals will be generated by ‘makeinfo --html’, PostScript manu-
als by texi2dvi and dvips, and PDF manuals by texi2pdf. All Texinfo files that are parts
of manuals must be checked into CVS, even if they are generated files, for the generation
of online manuals to work.

The installation manual, ‘doc/install.texi’, is also provided on the GCC web site. The
HTML version is generated by the script ‘doc/install.texi2html’.

6.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using ‘contrib/texi2pod.pl’ and pod2man. (The man page for g++, ‘cp/g++.1",
just contains a ‘.so’ reference to ‘gcc.1’, but all the other man pages are generated from
Texinfo manuals.)

32 GNU Compiler Collection (GCC) Internals

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the ‘configure’ script detects that recent enough tools
are installed, and the Makefiles allow generating man pages to fail without aborting the
build. Man pages are also included in release distributions. They are generated in the
source directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file
go into a man page. Only a subset of Texinfo is supported by ‘texi2pod.pl’, and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
‘doc/include/gcc-common.texi’ which ‘texi2pod.pl’ understands:

Q@gcctabopt
Use in the form ‘@table @gcctabopt’ for tables of options, where for printed
output the effect of ‘Gcode’ is better than that of ‘@option’ but for man page
output a different effect is wanted.

Q@gccoptlist
Use for summary lists of options in manuals.

Qgol Use at the end of each line inside ‘@gccoptlist’. This is necessary to avoid
problems with differences in how the ‘@gccoptlist’ macro is handled by dif-
ferent Texinfo formatters.

FIXME: describe the ‘texi2pod.pl’ input language and magic comments in more detail.

6.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text files with miscellaneous documentation:

‘ABOUT-GCC-NLS’
Notes on GCC’s Native Language Support. FIXME: this should be part of this
manual rather than a separate file.

‘ABOUT-NLS’
Notes on the Free Translation Project.

‘COPYING’ The GNU General Public License.

‘COPYING.LIB’
The GNU Lesser General Public License.

‘xChangeLog#’

‘x/ChangeLog*’
Change log files for various parts of GCC.

‘LANGUAGES’
Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this file should be part of general documentation of the front-end
interface in this manual.

‘ONEWS’ Information about new features in old versions of GCC. (For recent versions,

the information is on the GCC web site.)

Chapter 6: Source Tree Structure and Build System 33

‘README.Portability’
Information about portability issues when writing code in GCC. FIXME: why
isn’t this part of this manual or of the GCC Coding Conventions?

‘SERVICE’ A pointer to the GNU Service Directory.

FIXME: document such files in subdirectories, at least ‘config’, ‘cp’, ‘objc’, ‘testsuite’.

6.3.8 Anatomy of a Language Front End
A front end for a language in GCC has the following parts:

e A directory ‘language’ under ‘gcc’ containing source files for that front end. See
Section 6.3.8.1 [The Front End ‘language’ Directory], page 34, for details.

e A mention of the language in the list of supported languages in ‘gcc/doc/install.texi’]

e A mention of the name under which the language’s runtime library is recog-
nized by ‘--enable-shared=package’ in the documentation of that option in
‘gcc/doc/install.texi’.

e A mention of any special prerequisites for building the front end in the documentation
of prerequisites in ‘gcc/doc/install.texi’.

e Details of contributors to that front end in ‘gcc/doc/contrib.texi’. If the details are
in that front end’s own manual then there should be a link to that manual’s list in
‘contrib.texi’.

e Information about support for that language in ‘gcc/doc/frontends.texi’.

e Information about standards for that language, and the front end’s support for them,
in ‘gcc/doc/standards.texi’. This may be a link to such information in the front
end’s own manual.

e Details of source file suffixes for that language and ‘-x lang’ options supported, in
‘gcc/doc/invoke . texi’.

e Entries in default_compilers in ‘gcc.c’ for source file suffixes for that language.

e Preferably testsuites, which may be under ‘gcc/testsuite’ or runtime library direc-
tories. FIXME: document somewhere how to write testsuite harnesses.

e Probably a runtime library for the language, outside the ‘gcc’ directory. FIXME:
document this further.

e Details of the directories of any runtime libraries in ‘gcc/doc/sourcebuild.texi’.
If the front end is added to the official GCC CVS repository, the following are also
necessary:

e At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be mentioned in ‘gcc/gccbug.in’, as well as being added to the
Bugzilla database.

e Normally, one or more maintainers of that front end listed in ‘MAINTAINERS’.

e Mentions on the GCC web site in ‘index.html’ and ‘frontends.html’, with any rele-
vant links on ‘readings.html’. (Front ends that are not an official part of GCC may
also be listed on ‘frontends.html’, with relevant links.)

e A news item on ‘index.html’, and possibly an announcement on the
gcc-announce@gcc. gnu.org mailing list.

mailto:gcc-announce@gcc.gnu.org

34 GNU Compiler Collection (GCC) Internals

e The front end’s manuals should be mentioned in ‘maintainer-scripts/update_web_docs’}]
(see Section 6.3.7.1 [Texinfo Manuals], page 31) and the online manuals should be
linked to from ‘onlinedocs/index.html’.

e Any old releases or CVS repositories of the front end, before its in-
clusion in GCC, should be made available on the GCC FTP site
ftp://gcc.gnu.org/pub/gcc/old-releases/.

e The release and snapshot script ‘maintainer-scripts/gcc_release’
should be updated to generate appropriate tarballs for this front
end. The associated ‘maintainer-scripts/snapshot-README’ and

‘maintainer-scripts/snapshot-index.html’ files should be updated to list
the tarballs and diffs for this front end.

e If this front end includes its own version files that include the current date,
‘maintainer-scripts/update_version’ should be updated accordingly.

e ‘CVSRO0T/modules’ in the GCC CVS repository should be updated.

6.3.8.1 The Front End ‘language’ Directory

A front end ‘language’ directory contains the source files of that front end (but not of any
runtime libraries, which should be outside the ‘gcc’ directory). This includes documenta-
tion, and possibly some subsidiary programs build alongside the front end. Certain files are
special and other parts of the compiler depend on their names:

‘config-lang.in’
This file is required in all language subdirectories. See Section 6.3.8.2 [The
Front End ‘config-lang.in’ File], page 36, for details of its contents

‘Make-lang.in’

This file is required in all language subdirectories. It contains targets
lang.hook (where lang is the setting of language in ‘config-lang.in’) for
the following values of hook, and any other Makefile rules required to build
those targets (which may if necessary use other Makefiles specified in outputs
in ‘config-lang.in’, although this is deprecated). It also adds any testsuite
targets that can use the standard rule in ‘gcc/Makefile.in’ to the variable
lang_checks.

all.cross
start.encap
rest.encap
FIXME: exactly what goes in each of these targets?

tags Build an etags ‘TAGS’ file in the language subdirectory in the source
tree.
info Build info documentation for the front end, in the build directory.

This target is only called by ‘make bootstrap’ if a suitable version
of makeinfo is available, so does not need to check for this, and
should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory.
This should be done using $(TEXI2DVI), with appropriate ‘-1’ ar-
guments pointing to directories of included files.

ftp://gcc.gnu.org/pub/gcc/old-releases/

Chapter 6: Source Tree Structure and Build System 35

pdf Build PDF documentation for the front end, in the build direc-
tory. This should be done using $(TEXI2PDF), with appropriate
‘-1’ arguments pointing to directories of included files.

html Build HTML documentation for the front end, in the build direc-
tory.
man Build generated man pages for the front end from Texinfo man-

uals (see Section 6.3.7.2 [Man Page Generation], page 31), in the
build directory. This target is only called if the necessary tools are
available, but should ignore errors so as not to stop the build if
errors occur; man pages are optional and the tools involved may be
installed in a broken way.

install-common
Install everything that is part of the front end, apart from the
compiler executables listed in compilers in ‘config-lang.in’.

install-info
Install info documentation for the front end, if it is present in the
source directory. This target should have dependencies on info files
that should be installed.

install-man
Install man pages for the front end. This target should ignore
errors.

srcextra Copies its dependencies into the source directory. This generally
should be used for generated files such as Bison output files
which are not present in CVS, but should be included in any
release tarballs. This target will be executed during a bootstrap
if ‘--enable-generated-files-in-srcdir’ was specified as a
‘configure’ option.

srcinfo

srcman Copies its dependencies into the source directory.
These targets will be executed during a bootstrap if
‘-—enable-generated-files-in-srcdir’ was specified as a
‘configure’ option.

uninstall
Uninstall files installed by installing the compiler. This is currently
documented not to be supported, so the hook need not do anything.

mostlyclean

clean

distclean

maintainer-clean
The language parts of the standard GNU ‘*clean’ targets. See
section “Standard Targets for Users” in GNU Coding Standards,
for details of the standard targets. For GCC, maintainer-clean
should delete all generated files in the source directory that are

36 GNU Compiler Collection (GCC) Internals

not checked into CVS, but should not delete anything checked into

CVS.
stagel
stage2
stage3
staged
stageprofile
stagefeedback

Move to the stage directory files not included in stagestuff in
‘config-lang.in’ or otherwise moved by the main ‘Makefile’.

‘lang.opt’
This file registers the set of switches that the front end accepts on the command
line, and their ‘--help’ text. See Chapter 7 [Options], page 51.

‘lang-specs.h’
This file provides entries for default_compilers in ‘gcc.c’ which override the
default of giving an error that a compiler for that language is not installed.

‘language-tree.def’
This file, which need not exist, defines any language-specific tree codes.

6.3.8.2 The Front End ‘config-lang.in’ File

Each language subdirectory contains a ‘config-lang.in’ file. In addition the main direc-
tory contains ‘c-config-lang.in’, which contains limited information for the C language.
This file is a shell script that may define some variables describing the language:

language This definition must be present, and gives the name of the language for some
purposes such as arguments to ‘-—enable-languages’.

lang_requires
If defined, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Java front end depends on the C++ front
end, so sets ‘lang_requires=c++’.

subdir_requires
If defined, this variable lists (space-separated) front end directories other than
C that this front end requires to be present. For example, the Objective-C++
front end uses source files from the C++ and Objective-C front ends, so sets
‘subdir_requires="cp objc"’.

target_libs
If defined, this variable lists (space-separated) targets in the top level ‘Makefile’
to build the runtime libraries for this language, such as target-1libobjc.

lang_dirs
If defined, this variable lists (space-separated) top level directories (parallel to
‘gec’), apart from the runtime libraries, that should not be configured if this
front end is not built.

Chapter 6: Source Tree Structure and Build System 37

build_by_default
If defined to ‘no’, this language front end is not built unless enabled in a
‘--—enable-languages’ argument. Otherwise, front ends are built by default,
subject to any special logic in ‘configure.ac’ (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language
If defined to ‘yes’, this front end is built in stage 1 of the bootstrap. This is
only relevant to front ends written in their own languages.

compilers
If defined, a space-separated list of compiler executables that will be run by the
driver. The names here will each end with ‘\$ (exeext)’.

stagestuff
If defined, a space-separated list of files that should be moved to the ‘stagen’
directories in each stage of bootstrap.

outputs Ifdefined, a space-separated list of files that should be generated by ‘configure’
substituting values in them. This mechanism can be used to create a file ‘1an-
guage /Makefile’ from ‘language/Makefile.in’, but this is deprecated, build-
ing everything from the single ‘gcc/Makefile’ is preferred.

gtfiles If defined, a space-separated list of files that should be scanned by gengtype.c
to generate the garbage collection tables and routines for this language. This
excludes the files that are common to all front ends. See Chapter 20 [Type
Information], page 451.

need_gmp If defined to ‘yes’, this frontend requires the GMP library. Enables configure
tests for GMP, which set GMPLIBS and GMPINC appropriately.

6.3.9 Anatomy of a Target Back End
A back end for a target architecture in GCC has the following parts:

e A directory ‘machine’ under ‘gcc/config’, containing a machine description
‘machine.md’ file (see Chapter 14 [Machine Descriptions|, page 199), header files
‘machine.h’ and ‘machine-protos.h’ and a source file ‘machine.c’ (see Chapter 15
[Target Description Macros and Functions|, page 293), possibly a target Makefile
fragment ‘t-machine’ (see Section 17.1 [The Target Makefile Fragment], page 443),
and maybe some other files. The names of these files may be changed from the
defaults given by explicit specifications in ‘config.gcc’.

e If necessary, a file ‘machine-modes.def’ in the ‘machine’ directory, containing addi-
tional machine modes to represent condition codes. See Section 15.16 [Condition Code],
page 369, for further details.

e An optional ‘machine.opt’ file in the ‘machine’ directory, containing a list of target-
specific options. You can also add other option files using the extra_options variable
in ‘config.gcc’. See Chapter 7 [Options], page 51.

e Entries in ‘config.gcc’ (see Section 6.3.2.2 [The ‘config.gcc’ File], page 26) for the
systems with this target architecture.

38

GNU Compiler Collection (GCC) Internals

Documentation in ‘gcc/doc/invoke. texi’ for any command-line options supported by
this target (see Section 15.3 [Run-time Target Specification], page 301). This means
both entries in the summary table of options and details of the individual options.

Documentation in ‘gcc/doc/extend.texi’ for any target-specific attributes supported
(see Section 15.25 [Defining target-specific uses of __attribute__], page 419), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

Documentation in ‘gcc/doc/extend.texi’ for any target-specific pragmas supported.
Documentation in ‘gcc/doc/extend. texi’ of any target-specific built-in functions sup-
ported.

Documentation in ‘gcc/doc/extend. texi’ of any target-specific format checking styles
supported.

Documentation in ‘gcc/doc/md.texi’ of any target-specific constraint letters (see Sec-
tion 14.8.5 [Constraints for Particular Machines|, page 218).

A note in ‘gcc/doc/contrib.texi’ under the person or people who contributed the
target support.

Entries in ‘gcc/doc/install.texi’ for all target triplets supported with this target

architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

Possibly other support outside the ‘gcc’ directory for runtime libraries. FIXME: refer-
ence docs for this. The libstdc++ porting manual needs to be installed as info for this
to work, or to be a chapter of this manual.

If the back end is added to the official GCC CVS repository, the following are also

necessary:

e An entry for the target architecture in ‘readings.html’ on the GCC web site, with

any relevant links.
Details of the properties of the back end and target architecture in ‘backends.html’
on the GCC web site.

A news item about the contribution of support for that target architecture, in
‘index.html’ on the GCC web site.

Normally, one or more maintainers of that target listed in ‘MAINTAINERS’. Some existing
architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

6.4 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have testsuites. Currently only the C language
testsuites are documented here; FIXME: document the others.

6.4.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing ‘-n.c’, starting with ‘-1.c¢’, in case other testcases
with similar names are added later. If the test is a test of some well-defined feature, it
should have a name referring to that feature such as ‘feature-1.c’. If it does not test a

Chapter 6: Source Tree Structure and Build System 39

well-defined feature but just happens to exercise a bug somewhere in the compiler, and a
bug report has been filed for this bug in the GCC bug database, ‘prbug-number-1.c’ is
the appropriate form of name. Otherwise (for miscellaneous bugs not filed in the GCC bug
database), and previously more generally, test cases are named after the date on which they
were added. This allows people to tell at a glance whether a test failure is because of a
recently found bug that has not yet been fixed, or whether it may be a regression, but does
not give any other information about the bug or where discussion of it may be found. Some
other language testsuites follow similar conventions.

In the ‘gcec.dg’ testsuite, it is often necessary to test that an error is indeed a hard error
and not just a warning—for example, where it is a constraint violation in the C standard,
which must become an error with ‘-pedantic-errors’. The following idiom, where the
first line shown is line line of the file and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } */
/* { dg-error "regexp" "message" { target *-*-* } line } */

It may be necessary to check that an expression is an integer constant expression and has
a certain value. To check that E has value V, an idiom similar to the following is used:

char x[((E) == (V) 21 : -1)]1;

In ‘gcc.dg’ tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, ‘gcc.dg/c99-condexpr-1.c’. The more subtle uses depend
on the exact rules for the types of conditional expressions in the C standard; see, for example,
‘gcc.dg/c99-intconst-1.c’.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where flow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in ‘gcc.c-torture/execute’. Where code should be
optimized away, a call to a nonexistent function such as 1ink_failure () may be inserted;
a definition

#ifndef __OPTIMIZE__
void
link_failure (void)
{

abort ();
}

#endif
will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be defined as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ
by directory.

FIXME: discuss non-C testsuites here.

6.4.2 Directives used within DejaGnu tests

Test directives appear within comments in a test source file and begin with dg-. Some of
these are defined within DejaGnu and others are local to the GCC testsuite.

40 GNU Compiler Collection (GCC) Internals

The order in which test directives appear in a test can be important: directives local to
GCC sometimes override information used by the DejaGnu directives, which know nothing
about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors which are usually preceded by the keyword target
or xfail. A selector is: one or more target triplets, possibly including wildcard charac-
ters; a single effective-target keyword; or a logical expression. Depending on the con-
text, the selector specifies whether a test is skipped and reported as unsupported or is
expected to fail. Use ‘*-x-*’ to match any target. Effective-target keywords are defined in
‘target-supports.exp’ in the GCC testsuite.

A selector expression appears within curly braces and uses a single logical operator: one
of ‘1’ ‘&&’, or ‘| |’. An operand is another selector expression, an effective-target keyword,
a single target triplet, or a list of target triplets within quotes or curly braces. For example:

{ target { ! "hppa*-*—* jia64x—*-*" } }
{ target { powerpck-*-* && 1p64 } }
{ xfail { 1p64 || vect_no_align } }
{ dg-do do-what-keyword [{ target/xfail selector }] }
do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

preprocess
Compile with ‘-E’ to run only the preprocessor.

assemble Compile with ‘=S’ to produce an assembly code file.
compile Compile with ‘-¢’ to produce a relocatable object file.
link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is compile. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

If the directive includes the optional ‘{ target selector }’ then the test is
skipped unless the target system is included in the list of target triplets or
matches the effective-target keyword.

If the directive includes the optional ‘{ xfail selector }’ and the selector is
met then the test is expected to fail. For dg-do run, execution is expected to
fail but compilation is expected to pass.

{ dg-options options [{ target selector }] }
This DejaGnu directive provides a list of compiler options, to be used if the
target system matches selector, that replace the default options used for this
set of tests.

{ dg-skip-if comment { selector } { include-opts } { exclude-opts } }
Skip the test if the test system is included in selector and if each of the options
in include-opts is in the set of options with which the test would be compiled
and if none of the options in exclude-opts is in the set of options with which
the test would be compiled.

Use ‘""" for an empty include-opts list and ‘"""’ for an empty exclude-opts list.

Chapter 6: Source Tree Structure and Build System 41

{ dg-xfail-if comment { selector } { include-opts } { exclude-opts } }
Expect the test to fail if the conditions (which are the same as for dg-skip-if)
are met.

{ dg-require-support args }
Skip the test if the target does not provide the required support; see
‘gcc-dg.exp’ in the GCC testsuite for the actual directives. These directives
must appear after any dg-do directive in the test. They require at least one
argument, which can be an empty string if the specific procedure does not
examine the argument.

{ dg-require-effective-target keyword }
Skip the test if the test target, including current multilib flags, is not covered
by the effective-target keyword. This directive must appear after any dg-do
directive in the test.

{ dg-shouldfail comment { selector } { include-opts } { exclude-opts } }
Expect the test executable to return a nonzero exit status if the conditions
(which are the same as for dg-skip-if) are met.

{ dg-error regexp [comment [{ target/xfail selector } [line] }]1] }
This DejaGnu directive appears on a source line that is expected to get an error
message, or else specifies the source line associated with the message. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message. The check
does not look for the string ‘"error"’ unless it is part of regexp.

{ dg-warning regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that is expected to get a
warning message, or else specifies the source line associated with the message.
If there is no message for that line or if the text of that message is not matched
by regexp then the check fails and comment is included in the FAIL message.
The check does not look for the string ‘"warning"’ unless it is part of regexp.

{ dg-bogus regexp [comment [{ target/xfail selector } [line] }1] }
This DejaGnu directive appears on a source line that should not get a message
matching regexp, or else specifies the source line associated with the bogus
message. [t is usually used with ‘xfail’ to indicate that the message is a
known problem for a particular set of targets.

{ dg-excess-errors comment [{ target/xfail selector }] }
This DejaGnu directive indicates that the test is expected to fail due to compiler
messages that are not handled by ‘dg-error’, ‘dg-warning’ or ‘dg-bogus’.

{ dg-output regexp [{ target/xfail selector }] }
This DejaGnu directive compares regexp to the combined output that the test
executable writes to ‘stdout’ and ‘stderr’.

{ dg-prune-output regexp }
Prune messages matching regexp from test output.

42 GNU Compiler Collection (GCC) Internals

{ dg-additional-files "filelist" }
Specify additional files, other than source files, that must be copied to the
system where the compiler runs.

{ dg-additional-sources "filelist" }
Specify additional source files to appear in the compile line following the main
test file.

{ dg-final { local-directive } }
This DejaGnu directive is placed within a comment anywhere in the source file
and is processed after the test has been compiled and run. Multiple ‘dg-final’
commands are processed in the order in which they appear in the source file.

The GCC testsuite defines the following directives to be used within dg-final.

cleanup-coverage-files
Removes coverage data files generated for this test.

cleanup-repo-files
Removes files generated for this test for ‘~frepo’.

cleanup-rtl-dump suffix
Removes RTL dump files generated for this test.

cleanup-tree-dump suffix
Removes tree dump files matching suffix which were generated for
this test.

cleanup-saved-temps
Removes files for the current test which were kept for
‘~--save-temps’.

scan-file filename regexp [{ target/xfail selector }]
Passes if regexp matches text in filename.

scan-file-not filename regexp [{ target/xfail selector }]
Passes if regexp does not match text in filename.

scan-hidden symbol [{ target/xfail selector }]
Passes if symbol is defined as a hidden symbol in the test’s assembly
output.

scan-not-hidden symbol [{ target/xfail selector 1}]
Passes if symbol is not defined as a hidden symbol in the test’s
assembly output.

scan-assembler-times regex num [{ target/xfail selector }]
Passes if regex is matched exactly num times in the test’s assembler
output.

scan-assembler regex [{ target/xfail selector }]
Passes if regex matches text in the test’s assembler output.

scan-assembler-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s assembler output.

Chapter 6: Source Tree Structure and Build System 43

scan-assembler-dem regex [{ target/xfail selector }]
Passes if regex matches text in the test’s demangled assembler out-
put.

scan-assembler-dem-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s demangled assem-
bler output.

scan-tree-dump-times regex num suffix [{ target/xfail selector }]
Passes if regex is found exactly num times in the dump file with
suffix suffix.

scan-tree-dump regex suffix [{ target/xfail selector }]
Passes if regex matches text in the dump file with suffix suffix.

scan-tree-dump-not regex suffix [{ target/xfail selector }]
Passes if regex does not match text in the dump file with suffix
suffix.

scan-tree-dump-dem regex suffix [{ target/xfail selector }]
Passes if regex matches demangled text in the dump file with suffix
suffix.

scan-tree-dump-dem—not regex suffix [{ target/xfail selector }]
Passes if regex does not match demangled text in the dump file
with suffix suffix.

output-exists [{ target/xfail selector }]
Passes if compiler output file exists.

output-exists-not [{ target/xfail selector }]
Passes if compiler output file does not exist.

run-gcov sourcefile
Check line counts in gcov tests.

run-gcov [branches] [calls] { opts sourcefile }
Check branch and/or call counts, in addition to line counts, in gcov
tests.

6.4.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS 2.5 testsuite, publicly available
at http://www.adaic.org/compilers/acats/2.5

These tests are integrated in the GCC testsuite in the ‘gcc/testsuite/ada/acats’ di-
rectory, and enabled automatically when running make check, assuming the Ada language
has been enabled when configuring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset
of the tests by specifying which chapter to run, e.g.:
$ make check-ada CHAPTERS="c3 c9"

The tests are organized by directory, each directory corresponding to a chapter of the Ada
Reference Manual. So for example, ¢9 corresponds to chapter 9, which deals with tasking
features of the language.

http://www.adaic.org/compilers/acats/2.5

44 GNU Compiler Collection (GCC) Internals

There is also an extra chapter called ‘gcc’ containing a template for creating new exe-
cutable tests.

The tests are run using two sh scripts: ‘run_acats’ and ‘run_all.sh’. To run the
tests using a simulator or a cross target, see the small customization section at the top of
‘run_all.sh’.

These tests are run using the build tree: they can be run without doing a make install.

6.4.4 C Language Testsuites

GCC contains the following C language testsuites, in the ‘gcc/testsuite’ directory:

‘gcc.dg’ This contains tests of particular features of the C compiler, using the more
modern ‘dg’ harness. Correctness tests for various compiler features should go
here if possible.

Magic comments determine whether the file is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options ‘~ansi -pedantic’ unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

gcc.dg/compat’
This subdirectory contains tests for binary compatibility using ‘compat.exp’,
which in turn uses the language-independent support (see Section 6.4.8 [Support
for testing binary compatibility], page 47).

gcc.dg/cpp’
This subdirectory contains tests of the preprocessor.

‘gcc.dg/debug’
This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

gcc.dg/format’
This subdirectory contains tests of the ‘-Wformat’ format checking. Tests in
this directory are run with and without ‘~-DWIDE’.

gcc.dg/noncompile’
This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.

gcc.dg/special’
FIXME: describe this.

gcc.c-torture’
This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn’t
been done yet.

Chapter 6: Source Tree Structure and Build System 45

‘gece.

‘gece.

gcc.

gcc.

gcce.

gcce.

c-torture/compat’
FIXME: describe this.

This directory should probably not be used for new tests.

c-torture/compile’

This testsuite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several different combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
specific platforms, by the use of ‘.x’ files, mostly these test cases should not
contain platform dependencies. FIXME: discuss how defines such as NO_LABEL _
VALUES and STACK_SIZE are used.

c-torture/execute’
This testsuite contains test cases that should compile, link and run; otherwise
the same comments as for ‘gcc.c-torture/compile’ apply.

c-torture/execute/ieee’
This contains tests which are specific to IEEE floating point.

c-torture/unsorted’
FIXME: describe this.

This directory should probably not be used for new tests.

c-torture/misc-tests’
This directory contains C tests that require special handling. Some of these
tests have individual expect files, and others share special-purpose expect files:

‘bprobx*.c’
Test ‘-fbranch-probabilities’ using ‘bprob.exp’, which in
turn uses the generic, language-independent framework (see
Section 6.4.7 [Support for testing profile-directed optimizations],
page 47).

‘dg-*.c’ Test the testsuite itself using ‘dg-test.exp’.

‘gecovk.c’ Test gcov output using ‘gcov.exp’, which in turn uses the
language-independent support (see Section 6.4.6 [Support for
testing gcov], page 46).

‘386-pf-*.c’
Test i386-specific support for data prefetch using
‘1386-prefetch.exp’.

FIXME: merge in ‘testsuite/README.gcc’ and discuss the format of test cases and
magic comments more.

6.4.5 The Java library testsuites.

Runtime tests are executed via ‘make check’in the ‘target/libjava/testsuite’ directory
in the build tree. Additional runtime tests can be checked into this testsuite.

46 GNU Compiler Collection (GCC) Internals

Regression testing of the core packages in libgcj is also covered by the Mauve testsuite.
The Mauve Project develops tests for the Java Class Libraries. These tests are run as
part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at
‘libjava/testsuite/libjava.mauve/mauve’, or by specifying the location of that tree
when invoking ‘make’, as in ‘make MAUVEDIR="/mauve check’.

To detect regressions, a mechanism in ‘mauve.exp’ compares the failures for a test run
against the list of expected failures in ‘libjava/testsuite/libjava.mauve/xfails’ from
the source hierarchy. Update this file when adding new failing tests to Mauve, or when
fixing bugs in libgcj that had caused Mauve test failures.

The Jacks project provides a testsuite for Java compilers that can be used
to test changes that affect the GCJ front end. This testsuite is run as part
of Java testing by placing the Jacks tree within the libjava testsuite sources at
‘libjava/testsuite/libjava.jacks/jacks’.

We encourage developers to contribute test cases to Mauve and Jacks.

6.4.6 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling
produces expected values, is provided by the expect file ‘gcov.exp’. gcov tests also rely
on procedures in ‘gcc.dg.exp’ to compile and run the test program. A typical gcov test
contains the following DejaGnu commands within comments:

{ dg-options "-fprofile-arcs -ftest-coverage" }

{ dg-do run { target native } }
{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return per-
centages. All of these checks are requested via commands that appear in comments in the
test’s source file. Commands to check line counts are processed by default. Commands to
check branch percentages and call return percentages are processed if the run-gcov com-
mand has arguments branches or calls, respectively. For example, the following specifies
checking both, as well as passing ‘-b’ to gcov:

{ dg-final { run-gcov branches calls { -b sourcefile } } }

A line count command appears within a comment on the source line that is expected to
get the specified count and has the form count (cnt). A test should only check line counts
for lines that will get the same count for any architecture.

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the first of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 & j > i & j < 20) /* branch(27 50 75) */
/* branch(end) */
foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to

return. For a branch percentage, the value is either the expected percentage or 100 mi-

http://sourceware.org/mauve/
http://sourceware.org/mauve/jacks.html

Chapter 6: Source Tree Structure and Build System 47

nus that value, since the direction of a branch can differ depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don’t check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

6.4.7 Support for testing profile-directed optimizations

The file ‘profopt.exp’ provides language-independent support for checking correct execu-
tion of a test built with profile-directed optimization. This testing requires that a test
program be built and executed twice. The first time it is compiled to generate profile data,
and the second time it is compiled to use the data that was generated during the first
execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with the
profile-directed optimizations. ‘profopt.exp’ has the beginnings of this kind of support.

‘profopt.exp’ provides generic support for profile-directed optimizations. Each set of
tests that uses it provides information about a specific optimization:

tool tool being tested, e.g., gcc

profile_option
options used to generate profile data

feedback_option
options used to optimize using that profile data

prof_ext suffix of profile data files

PROFOPT_OPTIONS
list of options with which to run each test, similar to the lists for torture tests

6.4.8 Support for testing binary compatibility

The file ‘compat . exp’ provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not affect binary compatibility. It is intended
to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source file: a main
program and two pieces that interact with each other to split up the functionality being
tested.

‘testname _main.suffix’
Contains the main program, which calls a function in file ‘testname _x.suffix’.

‘testname _x.suffix’
Contains at least one call to a function in ‘testname_y.suffix’.

48 GNU Compiler Collection (GCC) Internals

‘testname _y.suffix’
Shares data with, or gets arguments from, ‘testname _x.suffix’.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is specified, then all three source files are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The first element of such a pair specifies
options used with the GCC under test, and the second element of the pair specifies options
used with the alternate compiler. Each test is compiled with each pair of options.

‘compat . exp’ defines default pairs of compiler options. These can be overridden by defin-

ing the environment variable COMPAT_OPTIONS as:
COMPAT_QPTIONS="[list [list {tst1} {alt1}]
...[1list {tstn} {altn}]1]1"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [1ist [list {-g -00} {-03}] [list
{-fpic} {-fPIC -02}1], the test is first built with ‘-g -00’ by the compiler under test and
with ‘=03" by the alternate compiler. The test is built a second time using ‘-fpic’ by the
compiler under test and ‘-fPIC -02’ by the alternate compiler.

An alternate compiler is specified by defining an environment variable to be the full
pathname of an installed compiler; for C define ALT_CC_UNDER_TEST, and for C++ define
ALT_CXX_UNDER_TEST. These will be written to the ‘site.exp’ file used by DejaGnu. The
default is to build each test with the compiler under test using the first of each pair of
compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_
TEST is same, each test is built using the compiler under test but with combinations of the
options from COMPAT_OPTIONS.

To run only the C++ compatibility suite using the compiler under test and another version
of GCC using specific compiler options, do the following from ‘objdir/gcc’:

rm site.exp

make -k \
ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
COMPAT_OPTIONS="lists as shown above" \
check-c++ \
RUNTESTFLAGS="compat.exp"

A test that fails when the source files are compiled with different compilers, but passes
when the files are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was fixed in the compiler under
test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that
appear within comments in a test file.

dg-require-*
These commands can be used in ‘testname _main.suffix’ to skip the test if
specific support is not available on the target.

dg-options
The specified options are used for compiling this particular source file, ap-

pended to the options from COMPAT_OPTIONS. When this command appears in
‘testname _main.suffix’ the options are also used to link the test program.

Chapter 6: Source Tree Structure and Build System 49

dg-xfail-if
This command can be used in a secondary source file to specify that compilation
is expected to fail for particular options on particular targets.

o0

GNU Compiler Collection (GCC) Internals

Chapter 7: Option specification files o1

7 Option specification files

Most GCC command-line options are described by special option definition files, the names
of which conventionally end in .opt. This chapter describes the format of these files.

7.1 Option file format

Option files are a simple list of records in which each field occupies its own line and in which
the records themselves are separated by blank lines. Comments may appear on their own
line anywhere within the file and are preceded by semicolons. Whitespace is allowed before
the semicolon.

The files can contain the following types of record:

e A language definition record. These records have two fields: the string ‘Language’ and
the name of the language. Once a language has been declared in this way, it can be
used as an option property. See Section 7.2 [Option properties], page 51.

e An option definition record. These records have the following fields:

“_n

1. the name of the option, with the leading removed

2. a space-separated list of option properties (see Section 7.2 [Option properties],
page 51)

3. the help text to use for ‘--help’ (omitted if the second field contains the
Undocumented property).

By default, all options beginning with “f”, “W” or “m” are implicitly assumed to take a
“no-" form. This form should not be listed separately. If an option beginning with one
of these letters does not have a “no-" form, you can use the RejectNegative property
to reject it.

The help text is automatically line-wrapped before being displayed. Normally the name
of the option is printed on the left-hand side of the output and the help text is printed
on the right. However, if the help text contains a tab character, the text to the left of
the tab is used instead of the option’s name and the text to the right of the tab forms
the help text. This allows you to elaborate on what type of argument the option takes.

e A target mask record. These records have one field of the form ‘Mask(x)’. The options-
processing script will automatically allocate a bit in target_flags (see Section 15.3
[Run-time Target|, page 301) for each mask name x and set the macro MASK_x to the
appropriate bitmask. It will also declare a TARGET_x macro that has the value 1 when
bit MASK_x is set and 0 otherwise.

They are primarily intended to declare target masks that are not associated with user
options, either because these masks represent internal switches or because the options
are not available on all configurations and yet the masks always need to be defined.

7.2 Option properties
The second field of an option record can specify the following properties:

Common The option is available for all languages and targets.

Target The option is available for all languages but is target-specific.

52 GNU Compiler Collection (GCC) Internals

language The option is available when compiling for the given language.

It is possible to specify several different languages for the same option. FEach
language must have been declared by an earlier Language record. See Sec-
tion 7.1 [Option file format], page 51.

RejectNegative
The option does not have a “no-” form. All options beginning with “f”, “W”
or “m” are assumed to have a “no-" form unless this property is used.

Negative (othername)
The option will turn off another option othername, which is the the option
name with the leading “-” removed. This chain action will propagate through
the Negative property of the option to be turned off.

Joined

Separate 'The option takes a mandatory argument. Joined indicates that the option and
argument can be included in the same argv entry (as with -mflush-func=name,
for example). Separate indicates that the option and argument can be separate
argv entries (as with -0). An option is allowed to have both of these properties.

JoinedOrMissing
The option takes an optional argument. If the argument is given, it will be part
of the same argv entry as the option itself.

This property cannot be used alongside Joined or Separate.

UInteger The option’s argument is a non-negative integer. The option parser will check
and convert the argument before passing it to the relevant option handler.

Var(var) The state of this option should be stored in variable var. The way that the
state is stored depends on the type of option:

e If the option uses the Mask or InverseMask properties, var is the integer
variable that contains the mask.

e If the option is a normal on/off switch, var is an integer variable that is
nonzero when the option is enabled. The options parser will set the variable
to 1 when the positive form of the option is used and 0 when the “no-”
form is used.

e If the option takes an argument and has the UInteger property, var is an
integer variable that stores the value of the argument.

e Otherwise, if the option takes an argument, var is a pointer to the argument
string. The pointer will be null if the argument is optional and wasn’t given.

The option-processing script will usually declare var in ‘options.c’ and leave
it to be zero-initialized at start-up time. You can modify this behavior using
VarExists and Init.

Var(var, set)
The option controls an integer variable var and is active when var equals set.
The option parser will set var to set when the positive form of the option is
used and !set when the “no-” form is used.

var is declared in the same way as for the single-argument form described above.

Chapter 7: Option specification files 53

VarExists
The variable specified by the Var property already exists. No definition should
be added to ‘options.c’ in response to this option record.

You should use this property only if the variable is declared outside ‘options.c’.

Init(value)
The variable specified by the Var property should be statically initialized to
value.

Mask (name)
The option is associated with a bit in the target_flags variable (see Sec-
tion 15.3 [Run-time Target], page 301) and is active when that bit is set. You
may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the
option. If the option is attached to ‘target_flags’, the script will set the
macro MASK_name to the appropriate bitmask. It will also declare a TARGET_
name macro that has the value 1 when the option is active and 0 otherwise. If
you use Var to attach the option to a different variable, the associated macros
are called OPTION_MASK_name and OPTION_name respectively.

You can disable automatic bit allocation using MaskExists.

InverseMask (othername)

InverseMask(othername, thisname)
The option is the inverse of another option that has the Mask (othername) prop-
erty. If thisname is given, the options-processing script will declare a TARGET_
thisname macro that is 1 when the option is active and 0 otherwise.

MaskExists
The mask specified by the Mask property already exists. No MASK or TARGET
definitions should be added to ‘options.h’ in response to this option record.

The main purpose of this property is to support synonymous options. The
first option should use ‘Mask(name)’ and the others should use ‘Mask (name)
MaskExists’.

Report The state of the option should be printed by ‘~fverbose-asm’.

Undocumented
The option is deliberately missing documentation and should not be included
in the ‘~-help’ output.

Condition(cond)
The option should only be accepted if preprocessor condition cond is true. Note
that any C declarations associated with the option will be present even if cond
is false; cond simply controls whether the option is accepted and whether it is
printed in the ‘--help’ output.

o4

GNU Compiler Collection (GCC) Internals

Chapter 8: Passes and Files of the Compiler 95

8 Passes and Files of the Compiler

This chapter is dedicated to giving an overview of the optimization and code generation
passes of the compiler. In the process, it describes some of the language front end interface,
though this description is no where near complete.

8.1 Parsing pass

The language front end is invoked only once, via lang_hooks.parse_file, to parse the
entire input. The language front end may use any intermediate language representation
deemed appropriate. The C front end uses GENERIC trees (CROSSREF), plus a double
handful of language specific tree codes defined in ‘c-common.def’. The Fortran front end
uses a completely different private representation.

At some point the front end must translate the representation used in the front end to a
representation understood by the language-independent portions of the compiler. Current
practice takes one of two forms. The C front end manually invokes the gimplifier (CROSS-
REF) on each function, and uses the gimplifier callbacks to convert the language-specific
tree nodes directly to GIMPLE (CROSSREF) before passing the function off to be com-
piled. The Fortran front end converts from a private representation to GENERIC, which is
later lowered to GIMPLE when the function is compiled. Which route to choose probably
depends on how well GENERIC (plus extensions) can be made to match up with the source
language and necessary parsing data structures.

BUG: Gimplification must occur before nested function lowering, and nested function
lowering must be done by the front end before passing the data off to cgraph.

TODO: Cgraph should control nested function lowering. It would only be invoked when
it is certain that the outer-most function is used.

TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is
certain that the function is used, (2) warning flags specified by the user require some amount
of compilation in order to honor, (3) the language indicates that semantic analysis is not
complete until gimplification occurs. Hum. . . this sounds overly complicated. Perhaps we
should just have the front end gimplify always; in most cases it’s only one function call.

The front end needs to pass all function definitions and top level declarations off to the
middle-end so that they can be compiled and emitted to the object file. For a simple
procedural language, it is usually most convenient to do this as each top level declaration
or definition is seen. There is also a distinction to be made between generating functional
code and generating complete debug information. The only thing that is absolutely required
for functional code is that function and data definitions be passed to the middle-end. For
complete debug information, function, data and type declarations should all be passed as
well.

In any case, the front end needs each complete top-level function or data declaration,
and each data definition should be passed to rest_of_decl_compilation. Each complete
type definition should be passed to rest_of_type_compilation. Each function definition
should be passed to cgraph_finalize_function.

TODO: T know rest_of_compilation currently has all sorts of rtl-generation semantics.
I plan to move all code generation bits (both tree and rtl) to compile_function. Should
we hide cgraph from the front ends and move back to rest_of_compilation as the official

56 GNU Compiler Collection (GCC) Internals

interface? Possibly we should rename all three interfaces such that the names match in
some meaningful way and that is more descriptive than "rest_of".

The middle-end will, at its option, emit the function and data definitions immediately or
queue them for later processing.

8.2 Gimplification pass

Gimplification is a whimsical term for the process of converting the intermediate repre-
sentation of a function into the GIMPLE language (CROSSREF). The term stuck, and so
words like “gimplification”, “gimplify”, “gimplifier” and the like are sprinkled throughout
this section of code.

While a front end may certainly choose to generate GIMPLE directly if it chooses, this
can be a moderately complex process unless the intermediate language used by the front
end is already fairly simple. Usually it is easier to generate GENERIC trees plus extensions
and let the language-independent gimplifier do most of the work.

The main entry point to this pass is gimplify_function_tree located in ‘gimplify.c’.
From here we process the entire function gimplifying each statement in turn. The main
workhorse for this pass is gimplify_expr. Approximately everything passes through here
at least once, and it is from here that we invoke the lang_hooks.gimplify_expr callback.

The callback should examine the expression in question and return GS_UNHANDLED if the
expression is not a language specific construct that requires attention. Otherwise it should
alter the expression in some way to such that forward progress is made toward producing
valid GIMPLE. If the callback is certain that the transformation is complete and the
expression is valid GIMPLE, it should return GS_ALL_DONE. Otherwise it should return
GS_0K, which will cause the expression to be processed again. If the callback encounters
an error during the transformation (because the front end is relying on the gimplification
process to finish semantic checks), it should return GS_ERROR.

8.3 Pass manager

The pass manager is located in ‘passes.c’, ‘tree-optimize.c’ and ‘tree-pass.h’. Its
job is to run all of the individual passes in the correct order, and take care of standard
bookkeeping that applies to every pass.

The theory of operation is that each pass defines a structure that represents everything
we need to know about that pass—when it should be run, how it should be run, what
intermediate language form or on-the-side data structures it needs. We register the pass to
be run in some particular order, and the pass manager arranges for everything to happen
in the correct order.

The actuality doesn’t completely live up to the theory at present. Command-line switches
and timevar_id_t enumerations must still be defined elsewhere. The pass manager vali-
dates constraints but does not attempt to (re-)generate data structures or lower intermediate
language form based on the requirements of the next pass. Nevertheless, what is present is
useful, and a far sight better than nothing at all.

TODO: describe the global variables set up by the pass manager, and a brief description
of how a new pass should use it. I need to look at what info rtl passes use first...

Chapter 8: Passes and Files of the Compiler o7

8.4 Tree-SSA passes

The following briefly describes the tree optimization passes that are run after gimplification
and what source files they are located in.

e Remove useless statements

This pass is an extremely simple sweep across the gimple code in which we identify
obviously dead code and remove it. Here we do things like simplify if statements
with constant conditions, remove exception handling constructs surrounding code that
obviously cannot throw, remove lexical bindings that contain no variables, and other
assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather
than wait until later when it’s more work to get rid of it. This pass is located in
‘tree-cfg.c’ and described by pass_remove_useless_stmts.

e Mudflap declaration registration

If mudflap (see section “-fmudflap -fmudflapth -fmudflapir” in Using the GNU Compiler
Collection (GCC)) is enabled, we generate code to register some variable declarations
with the mudflap runtime. Specifically, the runtime tracks the lifetimes of those variable
declarations that have their addresses taken, or whose bounds are unknown at compile
time (extern). This pass generates new exception handling constructs (try/finally),
and so must run before those are lowered. In addition, the pass enqueues declarations
of static variables whose lifetimes extend to the entire program. The pass is located in
‘tree-mudflap.c’ and is described by pass_mudflap_1.

e OpenMP lowering

If OpenMP generation (‘-fopenmp’) is enabled, this pass lowers OpenMP constructs
into GIMPLE.

Lowering of OpenMP constructs involves creating replacement expressions for local
variables that have been mapped using data sharing clauses, exposing the control flow
of most synchronization directives and adding region markers to facilitate the creation
of the control flow graph. The pass is located in ‘omp-low.c’ and is described by
pass_lower_omp.

e OpenMP expansion

If OpenMP generation (‘-fopenmp’) is enabled, this pass expands parallel regions
into their own functions to be invoked by the thread library. The pass is located
in ‘omp-low.c’ and is described by pass_expand_omp.

e Lower control flow
This pass flattens if statements (COND_EXPR) and moves lexical bindings (BIND_EXPR)
out of line. After this pass, all if statements will have exactly two goto statements in
its then and else arms. Lexical binding information for each statement will be found

in TREE_BLOCK rather than being inferred from its position under a BIND_EXPR. This
pass is found in ‘gimple-low.c’ and is described by pass_lower_cf.

e Lower exception handling control flow

This pass decomposes high-level exception handling constructs (TRY_FINALLY_EXPR and
TRY_CATCH_EXPR) into a form that explicitly represents the control flow involved. After
this pass, lookup_stmt_eh_region will return a non-negative number for any state-
ment that may have EH control flow semantics; examine tree_can_throw_internal

o8

GNU Compiler Collection (GCC) Internals

or tree_can_throw_external for exact semantics. Exact control flow may be ex-
tracted from foreach_reachable_handler. The EH region nesting tree is defined in
‘except.h’ and built in ‘except.c’. The lowering pass itself is in ‘tree-eh.c’ and is
described by pass_lower_eh.

Build the control flow graph

This pass decomposes a function into basic blocks and creates all of the edges that
connect them. It is located in ‘tree-cfg.c’ and is described by pass_build_cfg.

Find all referenced variables

This pass walks the entire function and collects an array of all variables referenced
in the function, referenced_vars. The index at which a variable is found in the
array is used as a UID for the variable within this function. This data is needed by
the SSA rewriting routines. The pass is located in ‘tree-dfa.c’ and is described by
pass_referenced_vars.

Enter static single assignment form

This pass rewrites the function such that it is in SSA form. After this pass, all is_
gimple_reg variables will be referenced by SSA_NAME, and all occurrences of other
variables will be annotated with VDEFS and VUSES; PHI nodes will have been inserted
as necessary for each basic block. This pass is located in ‘tree-ssa.c’ and is described
by pass_build_ssa.

Warn for uninitialized variables

This pass scans the function for uses of SSA_NAMEs that are fed by default definition.
For non-parameter variables, such uses are uninitialized. The pass is run twice, before
and after optimization. In the first pass we only warn for uses that are positively
uninitialized; in the second pass we warn for uses that are possibly uninitialized. The
pass is located in ‘tree-ssa.c’ and is defined by pass_early_warn_uninitialized
and pass_late_warn_uninitialized.

Dead code elimination

This pass scans the function for statements without side effects whose result is unused.
It does not do memory life analysis, so any value that is stored in memory is considered
used. The pass is run multiple times throughout the optimization process. It is located
in ‘tree-ssa-dce.c’ and is described by pass_dce.

Dominator optimizations
This pass performs trivial dominator-based copy and constant propagation, expression

simplification, and jump threading. It is run multiple times throughout the optimiza-
tion process. It it located in ‘tree-ssa-dom.c’ and is described by pass_dominator.

Redundant PHI elimination

This pass removes PHI nodes for which all of the arguments are the same value, ex-
cluding feedback. Such degenerate forms are typically created by removing unreachable
code. The pass is run multiple times throughout the optimization process. It is located
in ‘tree-ssa.c’ and is described by pass_redundant_phi.o

Forward propagation of single-use variables

This pass attempts to remove redundant computation by substituting variables that are
used once into the expression that uses them and seeing if the result can be simplified.
It is located in ‘tree-ssa-forwprop.c’ and is described by pass_forwprop.

Chapter 8: Passes and Files of the Compiler 99

e Copy Renaming

This pass attempts to change the name of compiler temporaries involved in copy oper-
ations such that SSA->normal can coalesce the copy away. When compiler temporaries
are copies of user variables, it also renames the compiler temporary to the user variable
resulting in better use of user symbols. It is located in ‘tree-ssa-copyrename.c’ and
is described by pass_copyrename.

e PHI node optimizations

This pass recognizes forms of PHI inputs that can be represented as conditional expres-
sions and rewrites them into straight line code. It is located in ‘tree-ssa-phiopt.c’
and is described by pass_phiopt.
e May-alias optimization

This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-
alias, must-alias, and escape analysis information is used to promote variables from
in-memory addressable objects to non-aliased variables that can be renamed into SSA
form. We also update the VDEF/VUSE memory tags for non-renameable aggregates so
that we get fewer false kills. The pass is located in ‘tree-ssa-alias.c’ and is described
by pass_may_alias.

Interprocedural points-to information is located in ‘tree-ssa-structalias.c’ and de-
scribed by pass_ipa_pta.

e Profiling
This pass rewrites the function in order to collect runtime block and value profiling
data. Such data may be fed back into the compiler on a subsequent run so as to
allow optimization based on expected execution frequencies. The pass is located in
‘predict.c’ and is described by pass_profile.

e Lower complex arithmetic
This pass rewrites complex arithmetic operations into their component scalar arith-
metic operations. The pass is located in ‘tree-complex.c’ and is described by pass_
lower_complex.

e Scalar replacement of aggregates

This pass rewrites suitable non-aliased local aggregate variables into a set of scalar
variables. The resulting scalar variables are rewritten into SSA form, which allows
subsequent optimization passes to do a significantly better job with them. The pass is
located in ‘tree-sra.c’ and is described by pass_sra.

e Dead store elimination

This pass eliminates stores to memory that are subsequently overwritten by another
store, without any intervening loads. The pass is located in ‘tree-ssa-dse.c’ and is
described by pass_dse.

e Tail recursion elimination

This pass transforms tail recursion into a loop. It is located in ‘tree-tailcall.c’ and
is described by pass_tail_recursion.

e Forward store motion

This pass sinks stores and assignments down the flowgraph closer to it’s use point. The
pass is located in ‘tree-ssa-sink.c’ and is described by pass_sink_code.

60

GNU Compiler Collection (GCC) Internals

e Partial redundancy elimination

This pass eliminates partially redundant computations, as well as performing load
motion. The pass is located in ‘tree-ssa-pre.c’ and is described by pass_pre.

Just before partial redundancy elimination, if ‘-funsafe-math-optimizations’ is on,
GCC tries to convert divisions to multiplications by the reciprocal. The pass is located
in ‘tree-ssa-math-opts.c’ and is described by pass_cse_reciprocal.

Full redundancy elimination

This is a simpler form of PRE that only eliminate redundancies that occur an all paths.
It is located in ‘tree-ssa-pre.c’ and described by pass_fre.

Loop optimization
The main driver of the pass is placed in ‘tree-ssa-loop.c’ and described by pass_
loop.

The optimizations performed by this pass are:

Loop invariant motion. This pass moves only invariants that would be hard to handle
on rtl level (function calls, operations that expand to nontrivial sequences of insns).
With ‘-funswitch-loops’ it also moves operands of conditions that are invariant out of
the loop, so that we can use just trivial invariantness analysis in loop unswitching. The
pass also includes store motion. The pass is implemented in ‘tree-ssa-loop-im.c’.

Canonical induction variable creation. This pass creates a simple counter for number
of iterations of the loop and replaces the exit condition of the loop using it, in case
when a complicated analysis is necessary to determine the number of iterations. Later
optimizations then may determine the number easily. The pass is implemented in
‘tree-ssa-loop-ivcanon.c’.

Induction variable optimizations. This pass performs standard induction variable op-
timizations, including strength reduction, induction variable merging and induction
variable elimination. The pass is implemented in ‘tree-ssa-loop-ivopts.c’.

Loop unswitching. This pass moves the conditional jumps that are invariant out of the
loops. To achieve this, a duplicate of the loop is created for each possible outcome of
conditional jump(s). The pass is implemented in ‘tree-ssa-loop-unswitch.c’. This
pass should eventually replace the rtl-level loop unswitching in ‘loop-unswitch.c’, but
currently the rtl-level pass is not completely redundant yet due to deficiencies in tree
level alias analysis.

The optimizations also use various utility functions contained in ‘tree-ssa-loop-manip.

‘cfgloop.c’, ‘cfgloopanal.c’ and ‘cfgloopmanip.c’.

Vectorization. This pass transforms loops to operate on vector types instead of scalar
types. Data parallelism across loop iterations is exploited to group data elements from
consecutive iterations into a vector and operate on them in parallel. Depending on
available target support the loop is conceptually unrolled by a factor VF (vectorization
factor), which is the number of elements operated upon in parallel in each iteration, and
the VF copies of each scalar operation are fused to form a vector operation. Additional
loop transformations such as peeling and versioning may take place to align the number
of iterations, and to align the memory accesses in the loop. The pass is implemented in
‘tree-vectorizer.c’ (the main driver and general utilities), ‘tree-vect-analyze.c’
and ‘tree-vect-transform.c’. Analysis of data references is in ‘tree-data-ref.c’.

Chapter 8: Passes and Files of the Compiler 61

e Tree level if-conversion for vectorizer

This pass applies if-conversion to simple loops to help vectorizer. We identify if con-
vertible loops, if-convert statements and merge basic blocks in one big block. The idea
is to present loop in such form so that vectorizer can have one to one mapping between
statements and available vector operations. This patch re-introduces COND_EXPR, at
GIMPLE level. This pass is located in ‘tree-if-conv.c’ and is described by pass_
if_conversion.

e Conditional constant propagation

This pass relaxes a lattice of values in order to identify those that must be constant
even in the presence of conditional branches. The pass is located in ‘tree-ssa-ccp.c’
and is described by pass_ccp.

A related pass that works on memory loads and stores, and not just register values, is
located in ‘tree-ssa-ccp.c’ and described by pass_store_ccp.

e Conditional copy propagation

This is similar to constant propagation but the lattice of values is the “copy-of” relation.
It eliminates redundant copies from the code. The pass is located in ‘tree-ssa-copy.c’
and described by pass_copy_prop.

A related pass that works on memory copies, and not just register copies, is located in
‘tree-ssa-copy.c’ and described by pass_store_copy_prop.

e Value range propagation

This transformation is similar to constant propagation but instead of propagating sin-
gle constant values, it propagates known value ranges. The implementation is based on
Patterson’s range propagation algorithm (Accurate Static Branch Prediction by Value
Range Propagation, J. R. C. Patterson, PLDI ’95). In contrast to Patterson’s algo-
rithm, this implementation does not propagate branch probabilities nor it uses more
than a single range per SSA name. This means that the current implementation cannot
be used for branch prediction (though adapting it would not be difficult). The pass is
located in ‘tree-vrp.c’ and is described by pass_vrp.

e Folding built-in functions

This pass simplifies built-in functions, as applicable, with constant arguments or with
inferrable string lengths. It is located in ‘tree-ssa-ccp.c’ and is described by pass_
fold_builtins.

e Split critical edges
This pass identifies critical edges and inserts empty basic blocks such that the edge
is no longer critical. The pass is located in ‘tree-cfg.c’ and is described by pass_
split_crit_edges.

e Control dependence dead code elimination

This pass is a stronger form of dead code elimination that can eliminate unnecessary
control flow statements. It is located in ‘tree-ssa-dce.c’ and is described by pass_
cd_dce.

e Tail call elimination

This pass identifies function calls that may be rewritten into jumps. No code trans-
formation is actually applied here, but the data and control flow problem is solved.

62

GNU Compiler Collection (GCC) Internals

The code transformation requires target support, and so is delayed until RTL. In the
meantime CALL_EXPR_TAILCALL is set indicating the possibility. The pass is located in
‘tree-tailcall.c’ and is described by pass_tail_calls. The RTL transformation
is handled by fixup_tail_calls in ‘calls.c’.

Warn for function return without value

For non-void functions, this pass locates return statements that do not specify a value
and issues a warning. Such a statement may have been injected by falling off the end
of the function. This pass is run last so that we have as much time as possible to prove
that the statement is not reachable. It is located in ‘tree-cfg.c’ and is described by
pass_warn_function_return.

Mudflap statement annotation

If mudflap is enabled, we rewrite some memory accesses with code to validate that
the memory access is correct. In particular, expressions involving pointer dereferences
(INDIRECT_REF, ARRAY_REF, etc.) are replaced by code that checks the selected address
range against the mudflap runtime’s database of valid regions. This check includes
an inline lookup into a direct-mapped cache, based on shift/mask operations of the
pointer value, with a fallback function call into the runtime. The pass is located in
‘tree-mudflap.c’ and is described by pass_mudflap_2.

Leave static single assignment form

This pass rewrites the function such that it is in normal form. At the same time, we
eliminate as many single-use temporaries as possible, so the intermediate language is
no longer GIMPLE, but GENERIC. The pass is located in ‘tree-outof-ssa.c’ and
is described by pass_del_ssa.

Merge PHI nodes that feed into one another

This is part of the CFG cleanup passes. It attempts to join PHI nodes from a
forwarder CFG block into another block with PHI nodes. The pass is located in
‘tree-cfgcleanup.c’ and is described by pass_merge_phi.

Return value optimization

If a function always returns the same local variable, and that local variable is an
aggregate type, then the variable is replaced with the return value for the function
(i.e., the function’s DECL_RESULT). This is equivalent to the C++ named return
value optimization applied to GIMPLE. The pass is located in ‘tree-nrv.c’ and is
described by pass_nrv.

Return slot optimization

If a function returns a memory object and is called as var = foo(), this pass tries to
change the call so that the address of var is sent to the caller to avoid an extra memory
copy. This pass is located in tree-nrv.c and is described by pass_return_slot.
Optimize calls to __builtin_object_size

This is a propagation pass similar to CCP that tries to remove calls to __builtin_
object_size when the size of the object can be computed at compile-time. This pass
is located in ‘tree-object-size.c’ and is described by pass_object_sizes.

Loop invariant motion

This pass removes expensive loop-invariant computations out of loops. The pass is
located in ‘tree-ssa-loop.c’ and described by pass_1lim.

Chapter 8: Passes and Files of the Compiler 63

e Loop nest optimizations

This is a family of loop transformations that works on loop nests. It includes loop
interchange, scaling, skewing and reversal and they are all geared to the optimiza-
tion of data locality in array traversals and the removal of dependencies that hamper
optimizations such as loop parallelization and vectorization. The pass is located in
‘tree-loop-linear.c’ and described by pass_linear_transform.

e Removal of empty loops
This pass removes loops with no code in them. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_empty_loop.

e Unrolling of small loops
This pass completely unrolls loops with few iterations. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_complete_unroll.

e Array prefetching

This pass issues prefetch instructions for array references inside loops. The pass is
located in ‘tree-ssa-loop-prefetch.c’ and described by pass_loop_prefetch.

e Reassociation

This pass rewrites arithmetic expressions to enable optimizations that operate
on them, like redundancy elimination and vectorization. The pass is located in
‘tree-ssa-reassoc.c’ and described by pass_reassoc.

e Optimization of stdarg functions

This pass tries to avoid the saving of register arguments into the stack on entry to
stdarg functions. If the function doesn’t use any va_start macros, no registers need
to be saved. If va_start macros are used, the va_list variables don’t escape the
function, it is only necessary to save registers that will be used in va_arg macros.
For instance, if va_arg is only used with integral types in the function, floating point
registers don’t need to be saved. This pass is located in tree-stdarg.c and described
by pass_stdarg.

8.5 RTL passes

The following briefly describes the rtl generation and optimization passes that are run after
tree optimization.

e RTL generation

The source files for RTL generation include ‘stmt.c’, ‘calls.c’, ‘expr.c’, ‘explow.c’,
‘expmed.c’, ‘function.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’,
generated from the machine description by the program genemit, is used in this pass.
The header file ‘expr.h’ is used for communication within this pass.

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

e Generate exception handling landing pads

This pass generates the glue that handles communication between the exception han-
dling library routines and the exception handlers within the function. Entry points in

64

GNU Compiler Collection (GCC) Internals

the function that are invoked by the exception handling library are called landing pads.
The code for this pass is located within ‘except.c’.

Cleanup control flow graph

This pass removes unreachable code, simplifies jumps to next, jumps to jump, jumps
across jumps, etc. The pass is run multiple times. For historical reasons, it is occasion-
ally referred to as the “jump optimization pass”. The bulk of the code for this pass is
in ‘cfgcleanup.c’, and there are support routines in ‘cfgrtl.c’ and ‘jump.c’.

Common subexpression elimination

This pass removes redundant computation within basic blocks, and optimizes address-
ing modes based on cost. The pass is run twice. The source is located in ‘cse.c’.

Global common subexpression elimination.

This pass performs two different types of GCSE depending on whether you are opti-
mizing for size or not (LCM based GCSE tends to increase code size for a gain in speed,
while Morel-Renvoise based GCSE does not). When optimizing for size, GCSE is done
using Morel-Renvoise Partial Redundancy Elimination, with the exception that it does
not try to move invariants out of loops—that is left to the loop optimization pass. If
MR PRE GCSE is done, code hoisting (aka unification) is also done, as well as load
motion. If you are optimizing for speed, LCM (lazy code motion) based GCSE is done.
LCM is based on the work of Knoop, Ruthing, and Steffen. LCM based GCSE also does
loop invariant code motion. We also perform load and store motion when optimizing
for speed. Regardless of which type of GCSE is used, the GCSE pass also performs
global constant and copy propagation. The source file for this pass is ‘gcse.c’; and the
LCM routines are in ‘lcm.c’.

Loop optimization

This pass performs several loop related optimizations. The source files ‘cfgloopanal.c’
and ‘cfgloopmanip.c’ contain generic loop analysis and manipulation code. Initializa-
tion and finalization of loop structures is handled by ‘loop-init.c’. A loop invariant
motion pass is implemented in ‘loop-invariant.c’. Basic block level optimizations—
unrolling, peeling and unswitching loops— are implemented in ‘loop-unswitch.c’
and ‘loop-unroll.c’. Replacing of the exit condition of loops by special machine-
dependent instructions is handled by ‘loop-doloop.c’.

Jump bypassing

This pass is an aggressive form of GCSE that transforms the control flow graph of a
function by propagating constants into conditional branch instructions. The source file
for this pass is ‘gcse.c’.

If conversion

This pass attempts to replace conditional branches and surrounding assignments with
arithmetic, boolean value producing comparison instructions, and conditional move
instructions. In the very last invocation after reload, it will generate predicated in-
structions when supported by the target. The pass is located in ‘ifcvt.c’.

Web construction

This pass splits independent uses of each pseudo-register. This can improve effect of the
other transformation, such as CSE or register allocation. Its source files are ‘web.c’.

Chapter 8: Passes and Files of the Compiler 65

e Life analysis

This pass computes which pseudo-registers are live at each point in the program, and
makes the first instruction that uses a value point at the instruction that computed the
value. It then deletes computations whose results are never used, and combines memory
references with add or subtract instructions to make autoincrement or autodecrement
addressing. The pass is located in ‘flow.c’.

e Instruction combination

This pass attempts to combine groups of two or three instructions that are related by
data flow into single instructions. It combines the RTL expressions for the instructions
by substitution, simplifies the result using algebra, and then attempts to match the
result against the machine description. The pass is located in ‘combine.c’.

e Register movement

This pass looks for cases where matching constraints would force an instruction to
need a reload, and this reload would be a register-to-register move. It then attempts
to change the registers used by the instruction to avoid the move instruction. The pass
is located in ‘regmove.c’.

e Optimize mode switching

This pass looks for instructions that require the processor to be in a specific “mode”
and minimizes the number of mode changes required to satisfy all users. What these
modes are, and what they apply to are completely target-specific. The source is located
in ‘mode-switching.c’.

e Modulo scheduling

This pass looks at innermost loops and reorders their instructions by overlapping differ-
ent iterations. Modulo scheduling is performed immediately before instruction schedul-
ing. The pass is located in (‘modulo-sched.c’).

e Instruction scheduling

This pass looks for instructions whose output will not be available by the time that it
is used in subsequent instructions. Memory loads and floating point instructions often
have this behavior on RISC machines. It re-orders instructions within a basic block to
try to separate the definition and use of items that otherwise would cause pipeline stalls.
This pass is performed twice, before and after register allocation. The pass is located in
‘haifa-sched.c’, ‘sched-deps.c’, ‘sched-ebb.c’, ‘sched-rgn.c’ and ‘sched-vis.c’.

e Register allocation

These passes make sure that all occurrences of pseudo registers are eliminated, either
by allocating them to a hard register, replacing them by an equivalent expression (e.g.
a constant) or by placing them on the stack. This is done in several subpasses:

o Register class preferencing. The RTL code is scanned to find out which register
class is best for each pseudo register. The source file is ‘regclass.c’.

e Local register allocation. This pass allocates hard registers to pseudo registers
that are used only within one basic block. Because the basic block is linear, it
can use fast and powerful techniques to do a decent job. The source is located in
‘local-alloc.c’.

66

GNU Compiler Collection (GCC) Internals

e Global register allocation. This pass allocates hard registers for the remaining
pseudo registers (those whose life spans are not contained in one basic block). The
pass is located in ‘global.c’.

e Reloading. This pass renumbers pseudo registers with the hardware registers num-
bers they were allocated. Pseudo registers that did not get hard registers are re-
placed with stack slots. Then it finds instructions that are invalid because a value
has failed to end up in a register, or has ended up in a register of the wrong kind.
It fixes up these instructions by reloading the problematical values temporarily
into registers. Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instruc-
tions to save and restore call-clobbered registers around calls.

Source files are ‘reload.c’ and ‘reloadl.c’, plus the header ‘reload.h’ used for
communication between them.

Basic block reordering

This pass implements profile guided code positioning. If profile information is not avail-
able, various types of static analysis are performed to make the predictions normally
coming from the profile feedback (IE execution frequency, branch probability, etc). It
is implemented in the file ‘bb-reorder.c’, and the various prediction routines are in
‘predict.c’.

Variable tracking

This pass computes where the variables are stored at each position in code and gener-
ates notes describing the variable locations to RTL code. The location lists are then
generated according to these notes to debug information if the debugging information
format supports location lists.

Delayed branch scheduling

This optional pass attempts to find instructions that can go into the delay slots of other
instructions, usually jumps and calls. The source file name is ‘reorg.c’.

Branch shortening

On many RISC machines, branch instructions have a limited range. Thus, longer
sequences of instructions must be used for long branches. In this pass, the compiler
figures out what how far each instruction will be from each other instruction, and
therefore whether the usual instructions, or the longer sequences, must be used for
each branch.

Register-to-stack conversion

Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The source file name is ‘reg-stack.c’.

Final

This pass outputs the assembler code for the function. The source files are ‘final.c’
plus ‘insn-output.c’; the latter is generated automatically from the machine descrip-
tion by the tool ‘genoutput’. The header file ‘conditions.h’ is used for communication
between these files. If mudflap is enabled, the queue of deferred declarations and any
addressed constants (e.g., string literals) is processed by mudflap_finish_file into a
synthetic constructor function containing calls into the mudflap runtime.

Chapter 8: Passes and Files of the Compiler 67

e Debugging information output

This is run after final because it must output the stack slot offsets for pseudo registers
that did not get hard registers. Source files are ‘dbxout.c’ for DBX symbol table
format, ‘sdbout.c’ for SDB symbol table format, ‘dwarfout.c’ for DWARF symbol
table format, files ‘dwarf2out.c’ and ‘dwarf2asm.c’ for DWARF2 symbol table format,
and ‘vmsdbgout.c’ for VMS debug symbol table format.

68

GNU Compiler Collection (GCC) Internals

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 69

9 Trees: The intermediate representation used by
the C and C++ front ends

This chapter documents the internal representation used by GCC to represent C and C++
source programs. When presented with a C or C++ source program, GCC parses the
program, performs semantic analysis (including the generation of error messages), and then
produces the internal representation described here. This representation contains a complete
representation for the entire translation unit provided as input to the front end. This
representation is then typically processed by a code-generator in order to produce machine
code, but could also be used in the creation of source browsers, intelligent editors, automatic
documentation generators, interpreters, and any other programs needing the ability to
process C or C++ code.

This chapter explains the internal representation. In particular, it documents the internal
representation for C and C++ source constructs, and the macros, functions, and variables
that can be used to access these constructs. The C++ representation is largely a superset
of the representation used in the C front end. There is only one construct used in C that
does not appear in the C++ front end and that is the GNU “nested function” extension.
Many of the macros documented here do not apply in C because the corresponding language
constructs do not appear in C.

If you are developing a “back end”, be it is a code-generator or some other tool, that uses
this representation, you may occasionally find that you need to ask questions not easily
answered by the functions and macros available here. If that situation occurs, it is quite
likely that GCC already supports the functionality you desire, but that the interface is
simply not documented here. In that case, you should ask the GCC maintainers (via mail
to gcclgec.gnu.org) about documenting the functionality you require. Similarly, if you
find yourself writing functions that do not deal directly with your back end, but instead
might be useful to other people using the GCC front end, you should submit your patches
for inclusion in GCC.

9.1 Deficiencies

There are many places in which this document is incomplet and incorrekt. It is, as of yet,
only preliminary documentation.

9.2 Overview

The central data structure used by the internal representation is the tree. These nodes,
while all of the C type tree, are of many varieties. A tree is a pointer type, but the object
to which it points may be of a variety of types. From this point forward, we will refer to
trees in ordinary type, rather than in this font, except when talking about the actual C
type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many,
many macros take trees as input and return trees as output. However, most macros require
a certain kind of tree node as input. In other words, there is a type-system for trees, but it
is not reflected in the C type-system.

For safety, it is useful to configure GCC with ‘~-enable-checking’. Although this results
in a significant performance penalty (since all tree types are checked at run-time), and is

mailto:gcc@gcc.gnu.org

70 GNU Compiler Collection (GCC) Internals

therefore inappropriate in a release version, it is extremely helpful during the development
process.

Many macros behave as predicates. Many, although not all, of these predicates end in
‘_P’. Do not rely on the result type of these macros being of any particular type. You may,
however, rely on the fact that the type can be compared to 0, so that statements like

if (TEST_P (t) && !TEST_P (y))
x =1;
and
int i = (TEST_P (t) != 0);

are legal. Macros that return int values now may be changed to return tree values, or
other pointers in the future. Even those that continue to return int may return multiple
nonzero codes where previously they returned only zero and one. Therefore, you should not
write code like

if (TEST_P (t) == 1)
as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described
here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are
entirely in lowercase. There are rare exceptions to this rule. You should assume that any
macro or function whose name is made up entirely of uppercase letters may evaluate its
arguments more than once. You may assume that a macro or function whose name is made
up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is
only ever one node with that code, the usual practice is to compare the tree against error_
mark_node. (This test is just a test for pointer equality.) If an error has occurred during
front-end processing the flag errorcount will be set. If the front end has encountered code
it cannot handle, it will issue a message to the user and set sorrycount. When these
flags are set, any macro or function which normally returns a tree of a particular kind may
instead return the error_mark_node. Thus, if you intend to do any processing of erroneous
code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular field
in a declaration) will be referred to as “reserved for the back end”. These slots are used to
store RTL when the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked up to an intelligent
editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes of
types not mentioned here, or macros documented to return entities of a particular kind that
instead return entities of some different kind, you have found a bug, either in the front end
or in the documentation. Please report these bugs as you would any other bug.

9.2.1 Trees

This section is not here yet.

9.2.2 Identifiers

An IDENTIFIER_NODE represents a slightly more general concept that the standard C or
C++ concept of identifier. In particular, an IDENTIFIER_NODE may contain a ‘$’, or other
extraordinary characters.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 71

There are never two distinct IDENTIFIER_NODESs representing the same identifier. There-
fore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a
routine like strcmp.

You can use the following macros to access identifiers:

IDENTIFIER_POINTER
The string represented by the identifier, represented as a char*. This string is
always NUL-terminated, and contains no embedded NUL characters.

IDENTIFIER_LENGTH
The length of the string returned by IDENTIFIER_POINTER, not including the
trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as
strlen (IDENTIFIER_POINTER (x)).

IDENTIFIER_OPNAME_P
This predicate holds if the identifier represents the name of an overloaded
operator. In this case, you should not depend on the contents of either the
IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.

IDENTIFIER_TYPENAME_P
This predicate holds if the identifier represents the name of a user-defined con-
version operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds
the type to which the conversion operator converts.

9.2.3 Containers

Two common container data structures can be represented directly with tree nodes. A
TREE_LIST is a singly linked list containing two trees per node. These are the TREE_
PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of
tag, or additional information, while the TREE_VALUE contains the majority of the payload.
In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_
PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node
is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have
reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving the
number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_ELT
macro, which takes two arguments. The first is the TREE_VEC in question; the second is an
integer indicating which element in the vector is desired. The elements are indexed from
Z€ero.

9.3 Types

All types have corresponding tree nodes. However, you should not assume that there is
exactly one tree node corresponding to each type. There are often several nodes each of
which correspond to the same type.

For the most part, different kinds of types have different tree codes. (For example, pointer
types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However, pointers to
member functions use the RECORD_TYPE code. Therefore, when writing a switch statement
that depends on the code associated with a particular type, you should take care to handle
pointers to member functions under the RECORD_TYPE case label.

72 GNU Compiler Collection (GCC) Internals

In C++, an array type is not qualified; rather the type of the array elements is qualified.
This situation is reflected in the intermediate representation. The macros described here
will always examine the qualification of the underlying element type when applied to an
array type. (If the element type is itself an array, then the recursion continues until a
non-array type is found, and the qualification of this type is examined.) So, for example,
CP_TYPE_CONST_P will hold of the type const int () [7], denoting an array of seven ints.

The following functions and macros deal with cv-qualification of types:

CP_TYPE_QUALS
This macro returns the set of type qualifiers applied to this type. This value is
TYPE_UNQUALIFIED if no qualifiers have been applied. The TYPE_QUAL_CONST
bit is set if the type is const-qualified. The TYPE_QUAL_VOLATILE bit is set if
the type is volatile-qualified. The TYPE_QUAL_RESTRICT bit is set if the type
is restrict-qualified.

CP_TYPE_CONST_P
This macro holds if the type is const-qualified.

CP_TYPE_VOLATILE_P
This macro holds if the type is volatile-qualified.

CP_TYPE_RESTRICT_P
This macro holds if the type is restrict-qualified.

CP_TYPE_CONST_NON_VOLATILE_P
This predicate holds for a type that is const-qualified, but not volatile-
qualified; other cv-qualifiers are ignored as well: only the const-ness is tested.

TYPE_MAIN_VARIANT
This macro returns the unqualified version of a type. It may be applied to an
unqualified type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE
The number of bits required to represent the type, represented as an INTEGER_
CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN
The alignment of the type, in bits, represented as an int.

TYPE_NAME
This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return a IDENTIFIER_NODE, as you might expect,
given its name!) You can