Using the GNU Compiler Collection

For ccc version 4.2.1

Richard M. Stallman and the Gcc Developer Community

Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@gnu.org
Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (©) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction e v v v v oo vvve e e e et i eeeenoooenoeeaossns 1
1 Programming Languages Supported by GCC 3
2 Language Standards Supported by GCC D
3 GCC Command Options v e e eveeeeoeeeeooccsoocesss 7
4 C Implementation-defined behavior + . oo vveeeeeeees.. 217
5 Extensions to the C Language Family................ 225
6 Extensions to the C+4 Languagevoeeeeeeeenann. 469
7 GNU Objective-C runtime features.cceeveeeon.. 479
8 Binary Compatibility « « o v oo v v v i i ennneennnnn 485
9 gcov—a Test Coverage Programccevveeenn.. 489
10 Known Causes of Trouble with GCC 497
11 Reporting BugsS e e v v v v v vttt vt eeonnneeeeeonns 515
12 How To Get Help with GCC . . . o v v v e e v e oo e e e e vvnnn 517
13 Contributing to GCC Development « .« oo veeeeeeeeea.. 519
Funding Free Softwarec0veveiieennn. 521
The GNU Project and GNU/LINUX 4 v o v v v v v v v e vvevennnn 523
GNU GENERAL PUBLICLICENSE . . o v v e et v v e e e venn 525
GNU Free Documentation [icense « o o o oo oo v vveeesssnns 531
Contributors to GCC . v v v v i v e ittt eseeeenonns 539
Option INdeX e e e e v oo v e v vveeereeesoooooooooooosas 555

Keyword Index v oo v oo oo et ittt eeeeeeennnnnnns 569

i

Using the GNU Compiler Collection (GCC)

Table of Contents

Introductiono i it i eeeesenennns 1

1 Programming Languages Supported by GCC

2 Language Standards Supported by GCC 5

3 GCC Command Optionsu... 7
3.1 Option SUMMATYttt e 7
3.2 Options Controlling the Kind of Output 18
3.3 Compiling C++ Programs 21
3.4 Options Controlling C Dialect 22
3.5 Options Controlling C+4 Dialect............................ 26
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 33
3.7 Options to Control Diagnostic Messages Formatting........... 38
3.8 Options to Request or Suppress Warnings 38
3.9 Options for Debugging Your Program or GCC................ 56
3.10 Options That Control Optimization 69
3.11 Options Controlling the Preprocessor 100
3.12 Passing Options to the Assembler 109
3.13 Options for Linking i 109
3.14 Options for Directory Search.............................. 112
3.15 Specifying subprocesses and the switches to pass to them.... 114
3.16 Specifying Target Machine and Compiler Version 121
3.17 Hardware Models and Configurations...................... 122

3.17.1 ARC Options ... 122
3.17.2 ARM Optionsoouuiie e 122
3.17.3 AVR Options.t 127
3.17.4 Blackfin Options. ... i 127
3.17.5 CRISOptions....... ..o, 128
3.17.6 CRX Optionso i, 130
3.17.7 Darwin Options 130
3.17.8 DEC Alpha Optionsooo ... 134
3.17.9 DEC Alpha/VMS Optionscovviieeeann... 138
3.17.10 FRV Options. ... 138
3.17.11 GNU/Linux Options............ccooviiiinennnino... 142
3.17.12 H8/300 Optionso, 142
3.17.13 HPPA Optionsoooiii i 143
3.17.14 Intel 386 and AMD x86-64 Options 146
31715 TA-64 Options. 154
3.17.16 M32C Options ..o 157

3.17.17 M32R/D Options. ...t .. 158

iii

v

Using the GNU Compiler Collection (GCC)

3.17.18 M680x0 Options.covveinieii i 159
3.17.19 M68hclx Options.ovviun i 164
3.17.20 MCore Options. oo 165
3.17.21 MIPS Options. ... 165
3.17.22 MMIX Options.couii i 172
3.17.23 MNI0300 Optionsonerei it 173
31724 MT Options. ..ot 174
3.17.25 PDP-11 Options.covuini e 174
3.17.26 PowerPC Options, 176
3.17.27 IBM RS/6000 and PowerPC Options................. 176
3.17.28 S/390 and zSeries Options................coovina... 186
3.17.29 Score Optionsooeiini i 189
3.17.30 SH Optionst 190
3.17.31 SPARC Options ..., 193
3.17.32 Options for System V......, 197
3.17.33 TMS320C3x/C4x Options............oooiuiiiin. .. 197
3.17.34 V850 Options ... 199
3.17.35 VAX Options ... 201
3.17.36 VxWorks Options ..., 201
3.17.37 x86-64 Optionscournii i 201
3.17.38 Xstormyl6 Options. ..., 201
3.17.39 Xtensa Options.ot 201
3.17.40 zSeries Options.oovitin e 203
3.18 Options for Code Generation Conventions.................. 203
3.19 Environment Variables Affecting GCC..................... 210
3.20 Using Precompiled Headers 212
3.21 Running Protoize i 214
C Implementation-defined behavior....... 217
4.1 Translation 217
4.2 Environment..............oi i 217
4.3 Tdentifiers i 217
4.4 Characters.ot 218
4.5 Integerso o 218
4.6 Floating point i 219
4.7 Arraysand pointers ... 220
4.8 Hints. ..ot 221
4.9 Structures, unions, enumerations, and bit-fields.............. 221
410 Qualifiers. 222
411 Declarators 222
412 Statements ... 222
4.13 Preprocessing directives 222
4.14 Library functions........... .. . o i 223
4.15 Architecture 223
4.16 Locale-specific behavior............, 223

5 Extensions to the C Language Family..... 225

5.1 Statements and Declarations in Expressions 225
5.2 Locally Declared Labels 226
5.3 Labelsas Values o i 227
54 Nested Functions. 228
5.5 Constructing Function Calls............... 230
5.6 Referring to a Type with typeof 231
5.7 Conditionals with Omitted Operands 232
5.8 Double-Word Integers i 233
5.9 Complex Numbers i 233
5.10 Decimal Floating Types 234
511 Hex Floats. o 234
5.12 Arrays of Length Zero............ 234
5.13 Structures With No Members 236
5.14 Arrays of Variable Length 236
5.15 Magcros with a Variable Number of Arguments. 237
5.16 Slightly Looser Rules for Escaped Newlines................. 238
5.17 Non-Lvalue Arrays May Have Subscripts................... 238
5.18 Arithmetic on void- and Function-Pointers................. 238
5.19 Non-Constant Initializers 238
5.20 Compound Literals........o i 238
5.21 Designated Initializers............ 239
522 Case Ranges....... ... i 241
5.23 Cast toa Union Type 241
5.24 Mixed Declarations and Code 241
5.25 Declaring Attributes of Functions.......................... 242
5.26 Attribute Syntax............ 256
5.27 Prototypes and Old-Style Function Definitions.............. 259
5.28 C++ Style Commentscoieiiiinn . 260
5.29 Dollar Signs in Identifier Names........................... 260
5.30 The Character inConstants.......................... 260
5.31 Inquiring on Alignment of Types or Variables 261
5.32 Specifying Attributes of Variables 261

5.32.1 M32R/D Variable Attributes 265

5.32.2 386 Variable Attributes........... 266

5.32.3 PowerPC Variable Attributes......................... 267

5.32.4 Xstormyl6 Variable Attributes 268
5.33 Specifying Attributes of Types............................ 268

5.33.1 ARM Type Attributes 272

5.33.2 386 Type Attributes........... ... i 272

5.33.3 PowerPC Type Attributes............................ 273
5.34 An Inline Function is As Fast Asa Macro.................. 273
5.35 Assembler Instructions with C Expression Operands 275

5.35.1 Sizeofanasm........... 280

5.35.2 1386 floating point asm operands...................... 280
5.36 Constraints for asm Operands 281

5.36.1 Simple Constraints i 281

5.36.2 Multiple Alternative Constraints...................... 283

vi

Using the GNU Compiler Collection (GCC)

5.36.3 Constraint Modifier Characters....................... 284
5.36.4 Constraints for Particular Machines................... 285
5.37 Controlling Names Used in Assembler Code 299
5.38 Variables in Specified Registers......................... ... 300
5.38.1 Defining Global Register Variables 300
5.38.2 Specifying Registers for Local Variables 302
5.39 Alternate Keywordso i 302
5.40 Incomplete enum Types........ccoviniiii ... 303
5.41 Function Names as Strings. ..., 303
5.42 Getting the Return or Frame Address of a Function......... 304
5.43 Using vector instructions through built-in functions......... 305
544 Offsetof ... 306
5.45 Built-in functions for atomic memory access................ 306
5.46 Object Size Checking Builtins.................. 308
5.47 Other built-in functions provided by GCC.................. 310
5.48 Built-in Functions Specific to Particular Target Machines. ... 316
5.48.1 Alpha Built-in Functions.......................... ... 316
5.48.2 ARM iWMMX4t Built-in Functions.................... 317
5.48.3 ARM NEON Intrinsics. 320
5.48.3.1 Addition 320
5.48.3.2 Multiplication i 324
5.48.3.3 Multiply-accumulate 326
5.48.3.4 Multiply-subtract L 327
5.48.3.50 Subtraction........... 328
5.48.3.6 Comparison (equal-to)........................... 331
5.48.3.7 Comparison (greater-than-or-equal-to) 332
5.48.3.8 Comparison (less-than-or-equal-to) 333
5.48.3.9 Comparison (greater-than)....................... 333
5.48.3.10 Comparison (less-than)......................... 334
5.48.3.11 Comparison (absolute greater-than-or-equal-to)... 335
5.48.3.12 Comparison (absolute less-than-or-equal-to) 335
5.48.3.13 Comparison (absolute greater-than) 335
5.48.3.14 Comparison (absolute less-than)................. 335
5.48.3.15 Test bitso 335
5.48.3.16 Absolute difference............... 336
5.48.3.17 Absolute difference and accumulate.............. 337
5.48.3.18 Maximum ... oovvnt 338
5.48.3.19 Minimum. 339
5.48.3.20 Pairwise add............l 339
5.48.3.21 Pairwise add, single_opcode widen and accumulate
.. 340
5.48.3.22 Folding maximum........... 341
5.48.3.23 Folding minimum 341
5.48.3.24 Reciprocal stepo 342
5.48.3.25 Vector shift left 342
5.48.3.26 Vector shift left by constant..................... 345
5.48.3.27 Vector shift right by constant 347

5.48.3.28 Vector shift right by constant and accumulate. ... 350

5.48.3.29
5.48.3.30
5.48.3.31
5.48.3.32
0.48.3.33
5.48.3.34
5.48.3.35
5.48.3.36
0.48.3.37
0.48.3.38
5.48.3.39
5.48.3.40
5.48.3.41
5.48.3.42
0.48.3.43
5.48.3.44
5.48.3.45
5.48.3.46
0.48.3.47
0.48.3.48
5.48.3.49
5.48.3.50
5.48.3.51
0.48.3.52
9.48.3.53
5.48.3.54
5.48.3.55
5.48.3.56
0.48.3.57
9.48.3.58

0.48.3.60
0.48.3.61
5.48.3.62
5.48.3.63
5.48.3.64
0.48.3.65
5.48.3.66
5.48.3.67
5.48.3.68
0.48.3.69
0.48.3.70
5.48.3.71
5.48.3.72
5.48.3.73
5.48.3.74

Vector shift right and insert..................... 352
Vector shift left and insert...................... 353
Absolute value....... i 354
Negationoo .. 355
Bitwise not i 355
Count leading sign bits......................... 356
Count leading zeros, 356
Count number of set bits 357
Reciprocal estimate 357
Reciprocal square-root estimate 358
Get lanes from a vector......................... 358
Set lanes ina vector........... ..., 359
Create vector from literal bit pattern............ 360
Set all lanes to the same value 360
Combining vectors 363
Splitting vectorso i 364
Conversionsui et 365
Move, single_opcode narrowing.................. 365
Move, single_opcode long 366
Table lookup o 366
Extended table lookup 367
Multiply, lane. i 368
Long multiply, lane............................. 368
Saturating doubling long multiply, lane 368
Saturating doubling multiply high, lane.......... 369
Multiply-accumulate, lane 369
Multiply-subtract, lane 370
Vector multiply by scalar....................... 371
Vector long multiply by scalar 371
Vector saturating doubling long multiply by scalar

... 371
Vector saturating doubling multiply high by scalar

... 371
Vector multiply-accumulate by scalar............ 372
Vector multiply-subtract by scalar............... 373
Vector extract ..., 373
Reverse elements.............. 375
Bit selection.............. .o 376
Transpose elements............................. 378
Zipelements......... ... 379
Unzipelements 380
Element/structure loads, VLDI1 variants 380
Element /structure stores, VST1 variants......... 384
Element /structure loads, VLD2 variants 386
Element /structure stores, VST2 variants......... 388
Element /structure loads, VLD3 variants 390
Element /structure stores, VST3 variants......... 392

Element /structure loads, VLD4 variants 394

Vil

viii

Using the GNU Compiler Collection (GCC)

5.48.3.75 Element/structure stores, VST4 variants......... 396
5.48.3.76 Logical operations (AND) 398
5.48.3.77 Logical operations (OR) 398
5.48.3.78 Logical operations (exclusive OR) 399
5.48.3.79 Logical operations (AND-NOT) 400
5.48.3.80 Logical operations (OR-NOT)................... 401
5.48.3.81 Reinterpret casts............. oL 402
5.48.4 Blackfin Built-in Functions 407
5.48.5 FR-V Built-in Functions 408
548.5.1 Argument Types............ooiiiiiiiiinno .. 408
5.48.5.2 Directly-mapped Integer Functions 408
5.48.5.3 Directly-mapped Media Functions................ 409
5.48.5.4 Raw read/write Functions 410
5.48.5.5 Other Built-in Functions......................... 411
5.48.6 X86 Built-in Functions............................... 411
5.48.7 MIPS DSP Built-in Functions 418
5.48.8 MIPS Paired-Single Support.......................... 422
5.48.8.1 Paired-Single Arithmetic......................... 423
5.48.8.2 Paired-Single Built-in Functions.................. 423
5.48.8.3 MIPS-3D Built-in Functions 424
5.48.9 PowerPC AltiVec Built-in Functions 427
5.48.10 SPARC VIS Built-in Functions 459
5.49 Format Checks Specific to Particular Target Machines 459
5.49.1 Solaris Format Checks 459
5.50 Pragmas Accepted by GCC......... 460
5.50.1 ARM Pragmas ..., 460
5.50.2 M32C Pragmas. ...t 460
5.50.3 RS/6000 and PowerPC Pragmas...................... 460
0.50.4 Darwin Pragmas.............. 460
5.50.5 Solaris Pragmas L 461
5.50.6 Symbol-Renaming Pragmas 461
5.50.7 Structure-Packing Pragmas.................. 462
5.50.8 Weak Pragmas L. 462
5.50.9 Diagnostic Pragmas............ 463
5.50.10 Visibility Pragmas................ 463
5.51 Unnamed struct/union fields within structs/unions 464
5.52 Thread-Local Storage........... 464

5.52.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage 465
5.52.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage ... 466

6 Extensions to the C++4 Language......... 469
6.1 When is a Volatile Object Accessed?........................ 469
6.2 Restricting Pointer Aliasing 469
6.3 Vague Linkage 470
6.4 #pragma interface and implementation 471
6.5 Where’s the Template? i ... 473
6.6 Extracting the function pointer from a bound pointer to member

function.o 475
6.7 CH+-Specific Variable, Function, and Type Attributes....... 475
6.8 Namespace Association i 476
6.9 Java Exceptions.......... ... i 476
6.10 Deprecated Features........ ..., 477
6.11 Backwards Compatibility 478

7 GNU Objective-C runtime features....... 479

7.1 +load: Executing code before main......................... 479

7.1.1 What you can and what you cannot do in +load........ 480
7.2 Typeencodingot 481
7.3 Garbage Collection..............c i 482
7.4 Constant string objects............... ... L. 483
7.5 compatibility_alias 484

8 Binary Compatibility 485

9 gcov—a Test Coverage Program 489
9.1 Introduction to gCov i 489
9.2 Invoking gCov......... ..o 489
9.3 Using gcov with GCC Optimization 494
9.4 Brief description of gcov datafiles.......................... 495
9.5 Data file relocation to support cross-profiling................ 495

10 Known Causes of Trouble with GCC..... 497
10.1 Actual Bugs We Haven'’t Fixed Yet........................ 497
10.2 Cross-Compiler Problems 497
10.3 Interoperationueiioiniiin i, 497
10.4 Incompatibilities of GCC 499
10.5 Fixed Header Files i 502
10.6 Standard Libraries i 503
10.7 Disappointments and Misunderstandings................... 503
10.8 Common Misunderstandings with GNU C++ 504

10.8.1 Declare and Define Static Members 504
10.8.2 Name lookup, templates, and accessing members of base

ClaSSes . oot 505

10.8.3 Temporaries May Vanish Before You Expect........... 506

10.8.4 TImplicit Copy-Assignment for Virtual Bases 507

10.9 Caveats of using protoize...........cccoiiiiii.. 508

10.10 Certain Changes We Don’t Want to Make................. 509

1X

X Using the GNU Compiler Collection (GCC)

10.11 Warning Messages and Error Messages.................... 512
11 Reporting Bugscccevuuun.. 515
11.1 Have You Found a Bug?........, 515
11.2 How and where to Report Bugs 515
12 How To Get Help with GCC............ 517
13 Contributing to GCC Development...... 519
Funding Free Software 521
The GNU Project and GNU/Linux 523
GNU GENERAL PUBLIC LICENSE........ 525
Preamble.o 525
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION 526
Appendix: How to Apply These Terms to Your New Programs 530
GNU Free Documentation License 531
ADDENDUM: How to use this License for your documents. 537
Contributors to GCC 539
OptionIndexcoiviiiiiineinnnnnnnn 555

Keyword Index, 569

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and in-
compatibilities, and how to report bugs. It corresponds to the compilers version 4.2.1. The
internals of the GNU compilers, including how to port them to new targets and some in-
formation about how to write front ends for new languages, are documented in a separate
manual. See section “Introduction” in GNU Compiler Collection (GCC) Internals.

Using the GNU Compiler Collection (GCC)

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, and Ada.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Using the GNU Compiler Collection (GCC)

Chapter 2: Language Standards Supported by GCC)

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

GCC supports three versions of the C standard, although support for the most recent
version is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/TEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c89’ or
‘~std=1809899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 22.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘~std=1509899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/gcc-4.2/c99status.html for details. To select this standard, use
‘~std=c99’ or ‘-std=1509899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in two Technical Corrigenda published
in 2001 and 2004. GCC does not support the uncorrected version.

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 5 [Extensions to the C Language Family], page 225.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-std=gnu89’ (for C89 with GNU extensions) or ‘-std=gnu99’ (for C99 with
GNU extensions). The default, if no C language dialect options are given, is ‘~std=gnu89’;
this will change to ‘-std=gnu99’ in some future release when the C99 support is complete.
Some features that are part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <is0646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In ad-
dition, complex types, added in C99, are not required for freestanding implementations. The

http://gcc.gnu.org/gcc-4.2/c99status.html

6 Using the GNU Compiler Collection (GCC)

standard also defines two environments for programs, a freestanding environment, required
of all implementations and which may not have library facilities beyond those required of
freestanding implementations, where the handling of program startup and termination are
implementation-defined, and a hosted environment, which is not required, in which all the
library facilities are provided and startup is through a function int main (void) or int
main (int, char *[]). An OS kernel would be a freestanding environment; a program
using the facilities of an operating system would normally be in a hosted implementation.

GCCO aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~-ffreestanding’; it will then define __STDC_HOSTED__ to 0 and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 22.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 10.6 [Standard Libraries|, page 503.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C or Objective-C++. The most author-
itative manual is “Object-Oriented Programming and the Objective-C Language”, available
at a number of web sites:

e http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ is
a recent (and periodically updated) version;
e http://www.toodarkpark.org/computers/objc/ is an older example;

e http://www.gnustep.org and http://gcc.gnu.org/readings.html have additional
useful information.

There is no standard for treelang, which is a sample language front end for GCC. Its only
purpose is as a sample for people wishing to write a new language for GCC. The language
is documented in ‘gcc/treelang/treelang.texi’ which can be turned into info or H'TML
format.

See section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See section “Standards” in The GNU Fortran Compiler, for details of standards supported
by GNU Fortran.

See section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.

http://gcc.gnu.org/readings.html
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
http://www.toodarkpark.org/computers/objc/
http://www.gnustep.org
http://gcc.gnu.org/readings.html

Chapter 3: GCC Command Options 7

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=¢’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 21, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very
different from ‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘~L’ more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W—for example,

‘~fmove-loop-invariants’, ‘~Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘~ffoo’ would be ‘~fno-foo’. This manual documents
only one of these two forms, whichever one is not the default.

See [Option Index], page 555, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 18.

-c¢ -8 -E -o file -combine -pipe -pass-exit-codes
-x language -v -### --help --target-help --version Q@file

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 22.
-ansi -std=standard -fgnu89-inline
—aux-info filename
-fno-asm -fno-builtin -fno-builtin-function
-fhosted -ffreestanding -fopenmp -fms-extensions
-trigraphs -no-integrated-cpp -traditional -traditional-cpp
-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char

C++ Language Options)
See Section 3.5 [Options Controlling C++ Dialect], page 26.

8 Using the GNU Compiler Collection (GCC)

-fabi-version=n -fno-access-control -fcheck-new
-fconserve-space -ffriend-injection
-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fno-operator-names
-fno-optional-diags -fpermissive

-frepo -fno-rtti -fstats -ftemplate-depth-n
-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -fvisibility-inlines-hidden
-Wabi -Wctor-dtor-privacy

-Wnon-virtual-dtor -Wreorder

-Weffc++ -Wno-deprecated -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions
-Wsign-promo

Objective-C and Objective-C++ Language Optlions
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 33.

-fconstant-string-class=class-name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions

-fobjc-gc
-freplace-objc-classes
-fzero-link

-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 38.

-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]
-fdiagnostics—show-option

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 38.

-fsyntax-only -pedantic -pedantic-errors

-w -Wextra -Wall -Waddress -Waggregate-return -Wno-attributes
-Wc++-compat -Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment
-Wconversion -Wno-deprecated-declarations
-Wdisabled-optimization -Wno-div-by-zero -Wno-endif-labels
-Werror -Werror=* -Werror-implicit-function-declaration
-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2
-Wno-format-extra-args -Wformat-nonliteral

-Wformat-security -Wformat-y2k

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Wimport -Wno-import -Winit-self -Winline
-Wno-int-to-pointer-cast

Chapter 3: GCC Command Options

-Wno-invalid-offsetof -Winvalid-pch

-Wlarger-than-len -Wunsafe-loop-optimizations -Wlong-long
-Wmain -Wmissing-braces -Wmissing-field-initializers
-Wmissing-format-attribute -Wmissing-include-dirs
-Wmissing-noreturn

-Wno-multichar -Wnonnull -Wno-overflow
-Woverlength-strings -Wpacked -Wpadded

-Wparentheses -Wpointer-arith -Wno-pointer-to-int-cast
-Wno-poison-system-directories

-Wredundant-decls

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wstack-protector

-Wstrict-aliasing -Wstrict-aliasing=2

-Wstrict-overflow -Wstrict-overflow=n

-Wswitch -Wswitch-default -Wswitch-enum

-Wsystem-headers -Wtrigraphs -Wundef -Wuninitialized
-Wunknown-pragmas -Wno-pragmas -Wunreachable-code
-Wunused -Wunused-function -Wunused-label -Wunused-parameter
-Wunused-value -Wunused-variable -Wvariadic-macros
-Wvolatile-register-var -Wwrite-strings

C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs -Wold-style-definition
-Wstrict-prototypes -Wtraditional
-Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 56.
-dletters -dumpspecs -dumpmachine -dumpversion
-fdump-noaddr -fdump-unnumbered -fdump-translation-unit|[-n]
-fdump-class-hierarchy[-n]
-fdump-ipa-all -fdump-ipa-cgraph
-fdump-tree-all
-fdump-tree-original[-n]
-fdump-tree-optimized|-n]
-fdump-tree-inlined[-n]
-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias
-fdump-tree-ch
-fdump-tree-ssa[-n| -fdump-tree-pre[-n]
-fdump-tree-ccp[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw] -fdump-tree-mudflap[-n]
-fdump-tree-dom[-n]
-fdump-tree-dse[-n]
-fdump-tree-phiopt|-n]
-fdump-tree-foruprop[-n]
-fdump-tree-copyrename[-n]
-fdump-tree-nrv -fdump-tree-vect
-fdump-tree-sink
-fdump-tree-sra[-n]|
-fdump-tree-salias
-fdump-tree-fre[-n]
-fdump-tree-vrp[-n]
-ftree-vectorizer-verbose=n
-fdump-tree-storeccp[-n]
-feliminate-dwarf2-dups -feliminate-unused-debug-types
-feliminate-unused-debug-symbols -femit-class-debug-always
-fmem-report -fprofile-arcs
-frandom-seed=string -fsched-verbose=n

10 Using the GNU Compiler Collection (GCC)

-ftest-coverage -ftime-report -fvar-tracking

-g —glevel -gcoff -gdwarf-2

-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+
-fdebug-prefix-map=old=new

-p -pg -print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib
-print-prog-name=program -print-search-dirs -Q
-print-sysroot-headers-suffix

-save-temps -time

Optimization Options
See Section 3.10 [Options that Control Optimization|, page 69.

-falign-arrays -falign-functions=n -falign-jumps=n
-falign-labels=n -falign-loops=n

-fbounds-check -fmudflap -fmudflapth -fmudflapir
-fbranch-probabilities -fprofile-values -fvpt -fbranch-target-load-optimize i
-fbranch-target-load-optimize2 -fbtr-bb-exclusive

-fcaller-saves -fcprop-registers -fcse-follow-jumps
-fcse-skip-blocks -fcx-limited-range -fdata-sections
-fdelayed-branch -fdelete-null-pointer-checks -fearly-inlining
-fexpensive-optimizations -ffast-math -ffloat-store

-fforce-addr —-ffunction-sections

-fgcse -fgecse-1m -fgecse-sm -fgecse-las -fgcse-after-reload
-fcrossjumping -fif-conversion -fif-conversion2

-finline-functions -finline-functions-called-once

-finline-limit=n -fkeep-inline-functions

-fkeep-static-consts -fmerge-constants -fmerge-all-constants
-fmodulo-sched -fno-branch-count-reg

-fno-default-inline -fno-defer-pop -fmove-loop-invariants
-fno-function-cse -fno-guess-branch-probability

-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-funsafe-math-optimizations -funsafe-loop-optimizations -ffinite-math-only [}
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-register-move
-foptimize-sibling-calls -fprefetch-loop-arrays

-fprofile-generate -fprofile-use

-fregmove -frename-registers

-freorder-blocks -freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop

-frounding-math -frtl-abstract-sequences

-fschedule-insns -fschedule-insns2

-fno-sched-interblock -fno-sched-spec -fsched-spec-load
-fsched-spec-load-dangerous

-fsched-stalled-insns=n -fsched-stalled-insns-dep=n
-fsched2-use-superblocks

-fsched2-use-traces -fsee -freschedule-modulo-scheduled-loops
-fsection-anchors -fsignaling-nans -fsingle-precision-constant
-fstack-protector -fstack-protector-all

-fstrict-aliasing -fstrict-overflow -ftracer -fthread-jumps
-funroll-all-loops —-funroll-loops -fpeel-loops
-fsplit-ivs-in-unroller -funswitch-loops
-fvariable-expansion-in-unroller

-ftree-pre -ftree-ccp -ftree-dce -ftree-loop-optimize
-ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -fivopts
-ftree-dominator-opts -ftree-dse -ftree-copyrename -ftree-sink
-ftree-ch -ftree-sra -ftree-ter -ftree-lrs -ftree-fre -ftree-vectorize
-ftree-vect-loop-version -ftree-salias -fipa-pta -fweb

Chapter 3: GCC Command Options

11

-ftree-copy-prop -ftree-store-ccp -ftree-store-copy-prop -fwhole-program

--param name=value -0 -00 -01 -02 -03 -Os

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor|, page 100.

-Aquestion=answer
-A-question[=answer]|

-C -dD -dI -dM -dN

-Dmacro[=defn] -E -H

-idirafter dir

-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-imultilib dir -isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc
-P -fworking-directory -remap
-trigraphs -undef -Umacro -Wp,option
-Xpreprocessor option

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 109.

-Wa,option -Xassembler option

Linker Options
See Section 3.13 [Options for Linking], page 109.
object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
-s -static -static-libgcc -shared -shared-libgcc -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 112.

-Bprefix -Idir -iquotedir -Ldir -specs=file -I- --sysroot=dir

Target Options
See Section 3.16 [Target Options], page 121.

-V version -b machine

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations|, page 122.
ARC Options
-EB -EL
-mmangle-cpu -mcpu=cpu -mtext=text-section
-mdata=data-section -mrodata=readonly-data-section
ARM Options
-mapcs-frame -mno-apcs-frame
-mabi=name
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=name -msoft-float -mhard-float -mfpe
-mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mmarvell-div

12

Using the GNU Compiler Collection (GCC)

-mstructure-size-boundary=n

-mabort-on-noreturn

-mlong-calls -mno-long-calls

-msingle-pic-base -mno-single-pic-base
-mpic-register=reg

-mnop-fun-dllimport

-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns
-mpoke-function-name

-mthumb -marm

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name

-mlow-irqg-latency

AVR Options

-mmcu=mcu -msize -minit-stack=n -mno-interrupts
-mcall-prologues -mno-tablejump -mtiny-stack -mint8

Blackfin Options

-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer

-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mid-shared-library

-mno-id-shared-library -mshared-library-id=n

-mlong-calls -mno-long-calls

CRIS Options

-mcpu=cpu -march=cpu -mtune=cpu

-mmax-stack-frame=n -melinux-stacksize=n

-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CRX Options
-mmac -mpush-args
Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches

Chapter 3: GCC Command Options 13

-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mkernel -mone-byte-bool
DEC Alpha Options
-mno-fp-regs -msoft-float -malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time
DEC Alpha/VMS Options
-mvms-return-codes
FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=cpu
GNU/Linuxz Options
-muclibc
H8/300 Options
-mrelax -mh -ms -mn -mint32 -malign-300

HPPA Options

-march=architecture-type
-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-ld -mhp-1d
-mfixed-range=register-range
-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float
-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

1386 and z86-64 Options
-mtune=cpu-type -march=cpu-type
-mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib

Using the GNU Compiler Collection (GCC)

-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num
-mmmx -msse -msse2 -msse3 -m3dnow
-mthreads -mno-align-stringops -minline-all-stringops
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=num -msseregparm
-mstackrealign
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model
-m32 -m64 -mlarge-data-threshold=num

IA-64 Options
-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -mno-sdata
-mconstant-gp -mauto-pic -minline-float-divide-min-latency
-minline-float-divide-max-throughput
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-dwarf2-asm -mearly-stop-bits
-mfixed-range=register-range -mtls-size=tls-size
-mtune=cpu-type -mt -pthread -milp32 -mlp64
-mno-sched-br-data-spec -msched-ar-data-spec -mno-sched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-ldc -mno-sched-control-ldc -mno-sched-spec-verbose
-mno-sched-prefer-non-data-spec-insns
-mno-sched-prefer-non-control-spec-insns
-mno-sched-count-spec-in-critical-path

M32R/D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

M32C Oplions
-mcpu=cpu -msim -memregs=number
M680z0 Options

-march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40 -m68020-60 -
m68030 -m68040
-m68060 -mcpu3d2 -m5200 -m5206e -mb28x -mb307 -mb5407
-mcfvde -mbitfield -mno-bitfield -mc68000 -mc68020
-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort
-mno-short -mhard-float -m68881 -msoft-float -mpcrel
-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
M68hclx Options
-m6811 -m6812 -m68hcll -m68hcl2 -m68hcs12
-mauto-incdec -minmax -mlong-calls -mshort
-msoft-reg-count=count
MCore Options
-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields

Chapter 3: GCC Command Options

-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MIPS Options

-EL -EB -march=arch -mtune=arch
-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips64
-mipsl6 -mipsl6e -mno-mips16
-mabi=abi -mabicalls -mno-abicalls
-mshared -mno-shared -mxgot -mno-xgot -mgp32 -mgp64
-mfp32 -mfp64 -mhard-float -msoft-float
-msingle-float -mdouble-float -mdsp -mno-dsp -mdspr2 -mno-dspr2
-msmartmips -mno-smartmips
-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt
-mlong64 -mlong32 -msym32 -mno-sym32
-Gnum -membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks
-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp
-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-vr4120 -mno-fix-vr4120 -mfix-vr4130 -mno-fix-vr4130
-mfix-sbl -mno-fix-sbl
-mflush-func=func -mno-flush-func
-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions
-mvr4130-align -mno-vr4130-align
MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit
MN10300 Options
-mmult-bug -mno-mult-bug
-mam33 -mno-am33
-mam33-2 -mno-am33-2
-mreturn-pointer-on-do0
-mno-crt0 -mrelax

MT Options
-mno-crt0 -mbacc -msim
-march=cpu-type
PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -mi10
-mbcopy -mbcopy-builtin -mint32 -mno-int16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-msplit -mno-split -munix-asm -mdec-asm

PowerPC Options See RS/6000 and PowerPC Options.
RS/6000 and PowerPC Options

-mcpu=cpu-type
-mtune=cpu-type

15

16

Using the GNU Compiler Collection (GCC)

-mpower —mno-power -mpower2 —mno-power2

-mpowerpc -mpowerpc64 -mno-powerpc

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mfprnd -mno-fprnd
-mnew-mnemonics -mold-mnemonics

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mupdate -mno-update

-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd

-maix-struct-return -msvr4-struct-return

-mabi=abi-type -msecure-plt -mbss-plt

-misel -mno-isel

-misel=yes -misel=no

-mspe -mno-spe

-mspe=yes -mspe=no

-mvrsave -mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=opt -mvxworks -mwindiss -G num -pthread

S/390 and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mlong-double-64 -mlong-double-128
-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec —-mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard

Score Options

-meb -mel
-mnhwloop
-muls
—mmac
-mscoreb -mscorebu -mscore7 -mscore7d
SH Options
-ml -m2 -m2e -m3 -m3e
-m4-nofpu -mé4-single-only -mé4-single -mé
-m4a-nofpu -m4a-single-only -m4a-single -m4a -mdal
-mb-64media -mb5-64media-nofpu
-mb5-32media -m5-32media-nofpu
-mb-compact -mbS-compact-nofpu
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave

Chapter 3: GCC Command Options

-mieee -misize -mpadstruct -mspace
-mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name
-madjust-unroll -mindexed-addressing -mgettrcost=number -mpt-fixed
-minvalid-symbols
SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mimpure-text -mno-impure-text -mlittle-endian
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis -threads -pthreads -pthread
System V Options
-Qy -Qn -YP,paths -Ym,dir
TMS320C3z/Chz Options
-mcpu=cpu -mbig -msmall -mregparm -mmemparm
-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload
-mrpts=count -mrptb -mdb -mloop-unsigned
-mparallel-insns -mparallel-mpy -mpreserve-float
V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
—mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e1l
-mv850e
-mv850 -mbig-switch

VAX Options
-mg -mgnu -munix
VaWorks Options
-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now
286-64 Options See 1386 and x86-64 Options.
Xstormyl6 Options
-msim
Xtensa Options

-mconstl6 -mno-constl6

-mfused-madd -mno-fused-madd
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.
Code Generation Options
See Section 3.18 [Options for Code Generation Conventions|, page 203.

-fcall-saved-reg -fcall-used-reg
-ffixed-reg -fexceptions

17

18 Using the GNU Compiler Collection (GCC)

-fnon-call-exceptions -funwind-tables

-fasynchronous-unwind-tables

-finhibit-size-directive -finstrument-functions

-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE

-fno-jump-tables

-freg-struct-return -fshort-enums

-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check

-fstack-limit-register=reg -fstack-limit-symbol=sym

-fargument-alias -fargument-noalias

-fargument-noalias-global -fargument-noalias-anything -fleading-underscore -Ji
ftls-model=model

-ftrapv -fwrapv -fbounds-check

-fvisibility

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:
file.c C source code which must be preprocessed.
file.i C source code which should not be preprocessed.
file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

file.mi Objective-C source code which should not be preprocessed.

file.mm

file.M Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

file.mii Objective-C++ source code which should not be preprocessed.

file.h C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header.

file.cc

file.cp

file.cxx

file.cpp

file.CPP

file.c++

file.C C++ source code which must be preprocessed. Note that in ‘. cxx’, the last two

letters must both be literally ‘x’. Likewise, ¢.C’ refers to a literal capital C.

Chapter 3:

file.
file.

file.

file.
file.

file.
file.
file.

file.
file.
file.

file.
file.

file.
file.

file.

file.

file.

file.
file.

for
FOR

fpp
FPP

£90
£95

Fo0
F9b

ads

adb

s

S
SX

other

GCC Command Options 19

Objective-C++ source code which must be preprocessed.

Objective-C++ source code which should not be preprocessed.

C++ header file to be turned into a precompiled header.

Fixed form Fortran source code which should not be preprocessed.

Fixed form Fortran source code which must be preprocessed (with the tradi-
tional preprocessor).

Free form Fortran source code which should not be preprocessed.

Free form Fortran source code which must be preprocessed (with the traditional
preprocessor).

Ada source code file which contains a library unit declaration (a declaration of
a package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

Assembler code.

Assembler code which must be preprocessed.

An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language

Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

¢ c-header c-cpp-output

ct++ c++-header c++-cpp-output

objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp

ada

£95 f95-cpp-input

java

treelang

20 Using the GNU Compiler Collection (GCC)

-x none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the
compiler returns a non-success return code. If you specify ‘-pass-exit-codes’,
the gcc program will instead return with numerically highest error produced by
any phase that returned an error indication. The C, C++, and Fortran frontends
return 4, if an internal compiler error is encountered.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-¢’, ‘=8’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gce to do
nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix
f.e’, i fLe), ete., with Lo’
Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the
suffix ‘.¢’, ‘.17, etc., with ‘.g’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If ‘=0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source. suffix.gch’, and all preprocessed C source
on standard output.

-v Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

—### Like ‘-v’ except the commands are not executed and all command arguments
are quoted. This is useful for shell scripts to capture the driver-generated
command lines.

-pipe Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

Chapter 3: GCC Command Options 21

-combine If you are compiling multiple source files, this option tells the driver to pass
all the source files to the compiler at once (for those languages for which the
compiler can handle this). This will allow intermodule analysis (IMA) to be
performed by the compiler. Currently the only language for which this is sup-
ported is C. If you pass source files for multiple languages to the driver, using
this option, the driver will invoke the compiler(s) that support IMA once each,
passing each compiler all the source files appropriate for it. For those languages
that do not support IMA this option will be ignored, and the compiler will be
invoked once for each source file in that language. If you use this option in con-
junction with ‘-save-temps’, the compiler will generate multiple pre-processed
files (one for each source file), but only one (combined) ‘.o’ or ‘. s’ file.

--help Print (on the standard output) a description of the command line options un-
derstood by gcc. If the ‘~v’ option is also specified then ‘~-help’ will also be
passed on to the various processes invoked by gcc, so that they can display the
command line options they accept. If the ‘~Wextra’ option is also specified then
command line options which have no documentation associated with them will
also be displayed.

--target-help
Print (on the standard output) a description of target specific command line
options for each tool.

--version
Display the version number and copyrights of the invoked GCC.

%% %% This is file “.tex’, %% generated with the docstrip utility. %% %%
The original source files were: %% %% fileerr.dtx (with options: ‘return’) %%
%% This is a generated file. %% %% Copyright 1993 1994 1995 1996 1997 1998
1999 2000 2001 2002 2003 %% The LaTeX3 Project and any individual authors
listed elsewhere %% in this file. %% %% This file was generated from file(s)
of the Standard LaTeX ‘Tools Bundle’. %%
%% %% It may be distributed and/or modified under
the %% conditions of the LaTeX Project Public License, either version 1.3 %%
of this license or (at your option) any later version. %% The latest version of
this license is in %% http://www.latex-project.org/lppl.txt %% and version 1.3
or later is part of all distributions of LaTeX %% version 2003/12/01 or later.
%% %% This file may only be distributed together with a copy of the LaTeX
%% ‘Tools Bundle’. You may however distribute the LaTeX ‘Tools Bundle’
%% without such generated files. %% %% The list of all files belonging to the
LaTeX ‘Tools Bundle’ is %% given in the file ‘manifest.txt’. %% \message-
File ignored \endinput %% %% End of file ‘.tex’. /home/jhakala/cs2007¢3-
sbb/arm/src/gec-4.2/gec/.. /libiberty /at-file.texi

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes *.C’, ‘.cc’, ‘.cpp’, *.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’ or ‘.H’; and preprocessed C++ files use the

suffix ‘.ii’. GCC recognizes files with these names and compiles them as C++ programs

22 Using the GNU Compiler Collection (GCC)

even if you call the compiler the same way as for compiling C programs (usually with the
name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and treats ‘.c’, ‘.h’ and ‘.1’ files as C++ source files instead of C source files unless *
is used, and automatically specifies linking against the C++ library. This program is also
useful when precompiling a C header file with a ‘.h’ extension for use in C++ compilations.
On many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 22, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 26, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, support all ISO C90 programs. In C++ mode, remove GNU exten-
sions that conflict with ISO C++.

This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢///’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-~ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘~ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected gratu-
itously. For that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.8
[Warning Options|, page 38.

The macro __STRICT_ANSI_

_ is predefined when the ‘-ansi’ option is used.

Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other
things.

Functions which would normally be built in but do not have semantics defined
by ISO C (such as alloca and ffs) are not built-in functions with ‘-ansi’ is
used. See Section 5.47 [Other built-in functions provided by GCC], page 310,
for details of the functions affected.

Chapter 3: GCC Command Options 23

-std= Determine the language standard. This option is currently only supported when
compiling C or C++. A value for this option must be provided; possible values
are

‘c89’
‘1509899:1990°
ISO C90 (same as ‘-ansi’).

‘1809899:199409’
ISO C90 as modified in amendment 1.

‘c99’

‘c9x’

‘1509899:1999’

‘1809899:199x’
ISO C99. Note that this standard is not yet fully supported;
see http://gcc.gnu.org/gcc-4.2/c99status . .html for more in-
formation. The names ‘c9x’ and ‘1509899:199x’ are deprecated.

‘gnu89’ Default, ISO C90 plus GNU extensions (including some C99 fea-
tures).

‘gnu99’

‘gnu9x’ ISO C99 plus GNU extensions. When ISO C99 is fully implemented
in GCC, this will become the default. The name ‘gnu9x’ is depre-
cated.

‘c++98’ The 1998 ISO C++ standard plus amendments.

‘gnu++98’ The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

Even when this option is not specified, you can still use some of the features of
newer standards in so far as they do not conflict with previous C standards. For
example, you may use __restrict__ even when ‘-std=c99’ is not specified.

The ‘-std’ options specifying some version of ISO C have the same effects as
‘—ansi’, except that features that were not in ISO C90 but are in the specified
version (for example, ¢//’ comments and the inline keyword in ISO C99) are
not disabled.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
these standard versions.

-fgnu89-inline
The option ‘~fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 5.34 [An Inline Func-
tion is As Fast As a Macro|, page 273. Using this option is roughly equivalent
to adding the gnu_inline function attribute to all inline functions (see Sec-
tion 5.25 [Function Attributes|, page 242).

This option is accepted by GCC versions 4.1.3 and up. In GCC versions prior to
4.3, C99 inline semantics are not supported, and thus this option is effectively
assumed to be present regardless of whether or not it is specified; the only effect

http://gcc.gnu.org/gcc-4.2/c99status.html

24

Using the GNU Compiler Collection (GCC)

of specifying it explicitly is to disable warnings about using inline functions
in C99 mode. Likewise, the option ‘~fno-gnu89-inline’ is not supported in
versions of GCC before 4.3. It will be supported only in C99 or gnu99 mode,
not in C89 or gnu89 mode.

The preprocesor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
section “Common Predefined Macros” in The C Preprocessor.

—aux-info filename

-fno-asm

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. ‘-ansi’ implies ‘-fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 5.47 [Other built-in functions provided by GCC], page 310, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions that
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘~-Wformat’
for bad calls to printf, when printf is built in, and strlen is known not to
modify global memory.

Chapter 3: GCC Command Options 25

-fhosted

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
this is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘-fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘-fno-builtin’ or ‘-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

Assert that compilation takes place in a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘~fno-freestanding’.

-ffreestanding

—-fopenmp

Assert that compilation takes place in a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to ‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v2.5
http://www.openmp.org/.

-fms-extensions

-trigraphs

Accept some non-standard constructs used in Microsoft header files.

Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 5.51 [Unnamed struct/union fields within
structs/unions], page 464, for details.

Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

-no-integrated-cpp

Performs a compilation in two passes: preprocessing and compiling. This option
allows a user supplied "ccl", "cclplus", or "cclobj" via the ‘-B’ option. The
user supplied compilation step can then add in an additional preprocessing
step after normal preprocessing but before compiling. The default is to use the
integrated cpp (internal cpp)

The semantics of this option will change if "ccl", "cclplus", and "cclobj" are
merged.

-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘~E’ switch. The preprocessor

http://www.openmp.org/

26 Using the GNU Compiler Collection (GCC)

continues to support a pre-standard mode. See the GNU CPP manual for
details.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-flax-vector-conversions
Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘-fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

—-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs;
but you can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g++ -g —frepo -0 -c firstClass.C

In this example, only ‘-frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

Chapter 3: GCC Command Options 27

-fabi-version=n
Use version n of the C++ ABI. Version 2 is the version of the C++ ABI that
first appeared in G++ 3.4. Version 1 is the version of the C++ ABI that first
appeared in G++ 3.2. Version 0 will always be the version that conforms most
closely to the C++ ABI specification. Therefore, the ABI obtained using version
0 will change as ABI bugs are fixed.

The default is version 2.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new will only return 0 if it is declared
‘throw()’, in which case the compiler will always check the return value even
without this option. In all other cases, when operator new has a non-empty
exception specification, memory exhaustion is signalled by throwing std: :bad_
alloc. See also ‘new (nothrow)’.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main () has completed, you may have an object that is being
destroyed twice because two definitions were merged.

This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

-ffriend-injection

Inject friend functions into the enclosing namespace, so that they are visible
outside the scope of the class in which they are declared. Friend functions were
documented to work this way in the old Annotated C++ Reference Manual, and
versions of G++ before 4.1 always worked that way. However, in ISO C++ a
friend function which is not declared in an enclosing scope can only be found
using argument dependent lookup. This option causes friends to be injected as
they were in earlier releases.

This option is for compatibility, and may be removed in a future release of G++.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run-
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining ‘NDEBUG’. This does not give

28 Using the GNU Compiler Collection (GCC)

user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler will still optimize based on the specifications, so throwing
an unexpected exception will result in undefined behavior.

-ffor-scope

-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘~-fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 6.5 [Template
Instantiation], page 473, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int
and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

Chapter 3: GCC Command Options 29

-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘~fpermissive’ will allow some nonconforming code to com-
pile.

-frepo Enable automatic template instantiation at link time. This option also im-
plies ‘-fno-implicit-templates’. See Section 6.5 [Template Instantiation],
page 473, for more information.

-fno-rtti

Disable generation of information about every class with virtual functions
for use by the C++ runtime type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but it will generate it as needed. The ‘dynamic_cast’ operator
can still be used for casts that do not require runtime type information, i.e.
casts to void * or to unambiguous base classes.

-fstats Kmit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development teain.

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but will only work if
your C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr
Don’t use the __cxa_get_exception_ptr runtime routine. This will cause

std: :uncaught_exception to be incorrect, but is necessary if the runtime rou-
tine is not available.

—-fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare pointers to
inline methods where the addresses of the two functions were taken in different
shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link

30 Using the GNU Compiler Collection (GCC)

times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

The behaviour of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility will have no effect.

Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 6.5 [Template
Instantiation], page 473.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By
default, G++ will use weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it will result in inferior
code and has no benefits. This option may be removed in a future release of
G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Sec-
tion 3.10 [Options That Control Optimization], page 69. Note that these func-
tions will have linkage like inline functions; they just won’t be inlined by default.

-Wabi (C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABIL. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated will be compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

The known incompatibilities at this point include:
e Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:

struct A { virtual void f(); int f1 : 1; };
struct B : public A { int £2 : 1; };

Chapter 3: GCC Command Options 31

In this case, G++ will place B: :£2 into the same byte asA: :£1; other com-
pilers will not. You can avoid this problem by explicitly padding A so that
its size is a multiple of the byte size on your platform; that will cause G++
and other compilers to layout B identically.

e Incorrect handling of tail-padding for virtual bases. G++ does not use tail

padding when laying out virtual bases. For example:

struct A { virtual void £(); char cl; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};
In this case, G++ will not place B into the tail-padding for A; other compilers
will. You can avoid this problem by explicitly padding A so that its size is
a multiple of its alignment (ignoring virtual base classes); that will cause
G++ and other compilers to layout C identically.

e Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:
union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ will make the union
too small by the number of bits in an int.

e Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {
A a;
virtual void £ ();

};

struct C : public B, public A {};

G++ will place the A base class of C at a nonzero offset; it should be placed
at offset zero. G++ mistakenly believes that the A data member of B is
already at offset zero.

e Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.

template <typename Q>
void f(typename Q::X) {}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

-Wctor-dtor-privacy (C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions.

-Wnon-virtual-dtor (C++ only)
Warn when a class appears to be polymorphic, thereby requiring a virtual
destructor, yet it declares a non-virtual one. This warning is also enabled if
-Weffc++ is specified.

32 Using the GNU Compiler Collection (GCC)

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

AOQ: j (0, i (1) {12
};
The compiler will rearrange the member initializers for ‘i’ and ‘j’ to match
the declaration order of the members, emitting a warning to that effect. This

warning is enabled by ‘-Wall’.
The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ book:

e Item 11: Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.

e [tem 12: Prefer initialization to assignment in constructors.
e Ttem 14: Make destructors virtual in base classes.
e Item 15: Have operator= return a reference to *this.

e Item 23: Don’t try to return a reference when you must return an object.

Also warn about violations of the following style guidelines from Scott Meyers’
More Effective C++ book:

e Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.

e Item 7: Never overload &&, ||, or ,.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Section 6.10 [Deprecated
Features], page 477.

-Wstrict-null-sentinel (C++ only)
Warn also about the use of an uncasted NULL as sentinel. When compiling only
with GCC this is a valid sentinel, as NULL is defined to __null. Although it is
a null pointer constant not a null pointer, it is guaranteed to of the same size
as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ only)
Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization

Chapter 3: GCC Command Options 33

of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘~Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘~Wno-non-template-friend’ which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (‘dynamic_cast’, ‘static_cast’,
‘reinterpret_cast’, and ‘const_cast’) are less vulnerable to unintended
effects and much easier to search for.

-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {

virtual void f();

};

struct B: public A {
void f(int);
I

the A class version of f is hidden in B, and code like:
Bx b;
b->f(0);

will fail to compile.

-Wno-pmf-conversions (C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ would try to preserve unsignedness, but the
standard mandates the current behavior.
struct A {

operator int ();
A& operator = (int);

};
main ()
{
A a,b;
a = b;
}

In this example, G++ will synthesize a default ‘A& operator = (const A%);’,
while cfront will use the user-defined ‘operator =’.

34 Using the GNU Compiler Collection (GCC)

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-C
and Objective-C++ programs, but you can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g —fgnu-runtime -0 -c some_class.m
In this example, ‘-fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘~Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programes:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). The ‘~fconstant-cfstrings’ option, if also present,
will override the ‘~-fconstant-string-class’ setting and cause @"..." literals
to be laid out as constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches (e.g., [receiver
message:arg]) in this translation unit ensure that the receiver is not nil.
This allows for more efficient entry points in the runtime to be used. Currently,
this option is only available in conjunction with the NeXT runtime on Mac
0OS X 10.3 and later.

-fobjc—-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ object
with a non-trivial default constructor. If so, synthesize a special - (id) .cxx_
construct instance method that will run non-trivial default constructors on
any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
so, synthesize a special - (void) .cxx_destruct method that will run all such
default destructors, in reverse order.

The - (id) .cxx_construct and/or - (void) .cxx_destruct methods
thusly generated will only operate on instance variables declared in the

Chapter 3: GCC Command Options 35

current Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods will be
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods will be invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

-fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. This option is unavailable in conjunction
with the NeXT runtime on Mac OS X 10.2 and earlier.

otry {
Qthrow expr;

}
Q@catch (AnObjCClass *exc) {

Q@throw expr;

Qthrow;

}
@catch (AnotherClass *exc) {
}
@catch (id allOthers) {
}
@finally {
Q@throw expr;
}

The @throw statement may appear anywhere in an Objective-C or Objective-
C++ program; when used inside of a @catch block, the @throw may appear
without an argument (as shown above), in which case the object caught by the
Qcatch will be rethrown.

Note that only (pointers to) Objective-C objects may be thrown and caught
using this scheme. When an object is thrown, it will be caught by the nearest
Qcatch clause capable of handling objects of that type, analogously to how
catch blocks work in C++ and Java. A @catch(id ...) clause (as shown
above) may also be provided to catch any and all Objective-C exceptions not
caught by previous @catch clauses (if any).

36

-fobjc-gc

—-freplace-

Using the GNU Compiler Collection (GCC)

The @finally clause, if present, will be executed upon exit from the imme-
diately preceding @try ... @catch section. This will happen regardless of
whether any exceptions are thrown, caught or rethrown inside the Q@try ...
Qcatch section, analogously to the behavior of the finally clause in Java.

There are several caveats to using the new exception mechanism:

e Although currently designed to be binary compatible with NS_HANDLER-
style idioms provided by the NSException class, the new exceptions can
only be used on Mac OS X 10.3 (Panther) and later systems, due to addi-
tional functionality needed in the (NeXT) Objective-C runtime.

e As mentioned above, the new exceptions do not support handling types
other than Objective-C objects. Furthermore, when used from Objective-
C++, the Objective-C exception model does not interoperate with C++
exceptions at this time. This means you cannot @throw an exception from
Objective-C and catch it in C++, or vice versa (i.e., throw ... @catch).

The ‘-fobjc-exceptions’ switch also enables the use of synchronization blocks
for thread-safe execution:
@synchronized (0bjCClass *guard) {

}

Upon entering the @synchronized block, a thread of execution shall first check
whether a lock has been placed on the corresponding guard object by another
thread. If it has, the current thread shall wait until the other thread relinquishes
its lock. Once guard becomes available, the current thread will place its own
lock on it, execute the code contained in the @synchronized block, and finally
relinquish the lock (thereby making guard available to other threads).

Unlike Java, Objective-C does not allow for entire methods to be marked
@synchronized. Note that throwing exceptions out of @synchronized blocks
is allowed, and will cause the guarding object to be unlocked properly.

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.

objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘-fzero-1link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in

Chapter 3: GCC Command Options 37

Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution.

-gen—-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-protocol
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘~Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector

Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘-fsyntax-only’ option is being
used.

-Wstrict-selector-match
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler will omit such warnings if any differences found are
confined to types which share the same size and alignment.

-Wundeclared-selector

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
Q@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

38 Using the GNU Compiler Collection (GCC)

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). The options described below can be used to control the diag-
nostic messages formatting algorithm, e.g. how many characters per line, how often source
location information should be reported. Right now, only the C++ front end can honor these
options. However it is expected, in the near future, that the remaining front ends would be
able to digest them correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported
by GCC. If n is zero, then no line-wrapping will be done; each error message
will appear on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit once source location information; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-show-option
This option instructs the diagnostic machinery to add text to each diagnos-
tic emitted, which indicates which command line option directly controls that
diagnostic, when such an option is known to the diagnostic machinery.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erro-
neous but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

The following options control the amount and kinds of warnings produced by GCC; for
further, language-specific options also refer to Section 3.5 [C++ Dialect Options|, page 26
and Section 3.6 [Objective-C and Objective-C++ Dialect Options], page 33.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

Chapter 3: GCC Command Options 39

-pedantic

-pedantic-

-w

Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files
should use these escape routes; application programs should avoid them. See
Section 5.39 [Alternate Keywords], page 302.

Some users try to use ‘-pedantic’ to check programs for strict ISO C con-

formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu89’ or ‘gnu99’, there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘-pedantic’ are given where they are required by the base standard. (It would
not make sense for such warnings to be given only for features not in the spec-
ified GNU C dialect, since by definition the GNU dialects of C include all fea-
tures the compiler supports with the given option, and there would be nothing
to warn about.)

errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts

-Wcomment

Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//° comment. This warning is
enabled by ‘-Wall’.

40

Using the GNU Compiler Collection (GCC)

-Wfatal-errors

-Wformat

This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 5.25 [Function Attributes],
page 242), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘-ffreestanding’ or ‘-fno-builtin’.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-pedantic’ is used with ‘~-Wformat’, warnings will be given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 22.

Since ‘-Wformat’ also checks for null format arguments for several functions,
‘~Wformat’ also implies ‘~Wnonnull’.

‘~Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wformat-y2k’, ‘-Wno-format-extra-args’,
‘-Wno-format-zero-length’, ‘~-Wformat-nonliteral’, ‘-Wformat-security’,
and ‘-Wformat=2’ are available, but are not included in ‘-Wall’.

-Wformat-y2k

If ‘-Wformat’ is specified, also warn about strftime formats which may yield
only a two-digit year.

-Wno-format-extra-args

If ‘-Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Where the unused arguments lie between used arguments that are specified
with ‘$” operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option will
suppress the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

-Wno-format-zero-length

If ‘“~Wformat’ is specified, do not warn about zero-length formats. The C stan-
dard specifies that zero-length formats are allowed.

Chapter 3: GCC Command Options 41

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
a va_list.

-Wformat-security

If ‘~Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%n’. (This is
currently a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘-Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently
equivalent to ‘~Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.

‘~Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables which are initialized with themselves. Note
this option can only be used with the ‘~-Wuninitialized’ option, which in turn
only works with ‘=01’ and above.

For example, GCC will warn about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:

int £()

{
int i = i;
return i;

}

-Wimplicit-int
Warn when a declaration does not specify a type. This warning is enabled by
‘~Wall’.

-Wimplicit-function-declaration

-Werror-implicit-function-declaration
Give a warning (or error) whenever a function is used before being declared.
The form ‘-Wno-error-implicit-function-declaration’ is not supported.
This warning is enabled by ‘-Wall’ (as a warning, not an error).

-Wimplicit
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.

42

-Wmain

Using the GNU Compiler Collection (GCC)

Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types. This warning is enabled by ‘-Wall’.

-Wmissing-braces

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed.

int a[2][2]
int b[2][2]

{0,1, 2, 3}
{{o0,1%} {2,3}1}

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)

Warn if a user-supplied include directory does not exist.

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about. Only the warning
for an assignment used as a truth value is supported when compiling C++; the
other warnings are only supported when compiling C.

Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y
71 : 0) <= z’, which is a different interpretation from that of ordinary math-
ematical notation.

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:

{
if (a)
if (b)
foo ();
else
bar Q;
}
In C, every else branch belongs to the innermost possible if statement, which
in this example is if (b). This is often not what the programmer expected, as
illustrated in the above example by indentation the programmer chose. When
there is the potential for this confusion, GCC will issue a warning when this flag
is specified. To eliminate the warning, add explicit braces around the innermost
if statement so there is no way the else could belong to the enclosing if. The
resulting code would look like this:

{
if (a)
{
if (b)
foo ();
else
bar ();
}
}

This warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 43

-Wsequence-point
Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards defines the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial
ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, ? : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, al[n] = b[n++] and
ali++] = i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’ for C and C++.

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void.

For C, also warn if the return type of a function has a type qualifier such
as const. Such a type qualifier has no effect, since the value returned by
a function is not an lvalue. ISO C prohibits qualified void return types on
function definitions, so such return types always receive a warning even without
this option.

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

http://gcc.gnu.org/readings.html

44 Using the GNU Compiler Collection (GCC)

This warning is enabled by ‘-Wall’.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used. This warning is enabled
by ‘-Wall’.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by ‘-Wall’.

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘-Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes|, page 261).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes|, page 261).

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes|, page 261).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used. This
warning is enabled by ‘-Wall’.

To suppress this warning cast the expression to ‘void’.

-Wunused All the above ‘~Wunused’ options combined.

In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-~Wunused’), or sepa-
rately specify ‘-Wunused-parameter’.

Chapter 3: GCC Command Options 45

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call.

These warnings are possible only in optimizing compilation, because they re-
quire data flow information that is computed only when optimizing. If you do
not specify ‘=0’, you will not get these warnings. Instead, GCC will issue a
warning about ‘-Wuninitialized’ requiring ‘-0’.

If you want to warn about code which uses the uninitialized value of the variable
in its own initializer, use the ‘-Winit-self’ option.

These warnings occur for individual uninitialized or clobbered elements of struc-
ture, union or array variables as well as for variables which are uninitialized or
clobbered as a whole. They do not occur for variables or elements declared
volatile. Because these warnings depend on optimization, the exact variables
or elements for which there are warnings will depend on the precise optimization
options and version of GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

These warnings are made optional because GCC is not smart enough to see all
the reasons why the code might be correct despite appearing to have an error.
Here is one example of how this can happen:
{
int x;
switch (y)
{
case 1: x
break;
case 2: X
break;
case 3: x
}
foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t

know this. Here is another common case:
{

int save_y;
if (change_y) save_y =y, y = new_y;

]]
> =

1]
ol

if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place which would cause a problem.

46

Using the GNU Compiler Collection (GCC)

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 5.25 [Function Attributes],
page 242.

This warning is enabled by ‘-Wall’.

~Wunknown-pragmas

Warn when a #pragma directive is encountered which is not understood by
GCC. If this command line option is used, warnings will even be issued for
unknown pragmas in system header files. This is not the case if the warnings
were only enabled by the ‘-Wall’ command line option.

-Wno-pragmas

Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘~Wunknown-pragmas’.

-Wstrict-aliasing

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code which might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to catch
the more common pitfalls. It is included in ‘-Wall’.

-Wstrict-aliasing=2

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code which might break the strict aliasing rules that the compiler is using for
optimization. This warning catches more cases than ‘-Wstrict-aliasing’, but
it will also give a warning for some ambiguous cases that are safe.

-Wstrict-overflow
-Wstrict-overflow=n

This option is only active when ‘-fstrict-overflow’ is active. It warns about
cases where the compiler optimizes based on the assumption that signed over-
flow does not occur. Note that it does not warn about all cases where the code
might overflow: it only warns about cases where the compiler implements some
optimization. Thus this warning depends on the optimization level.

An optimization which assumes that signed overflow does not occur is perfectly
safe if the values of the variables involved are such that overflow never does, in
fact, occur. Therefore this warning can easily give a false positive: a warning
about code which is not actually a problem. To help focus on important issues,
several warning levels are defined. No warnings are issued for the use of unde-
fined signed overflow when estimating how many iterations a loop will require,
in particular when determining whether a loop will be executed at all.

‘~Wstrict-overflow=1’
Warn about cases which are both questionable and easy to avoid.
For example: x + 1 > x; with ‘~fstrict-overflow’, the compiler
will simplify this to 1. This level of ‘~Wstrict-overflow’ is enabled
by ‘-Wall’; higher levels are not, and must be explicitly requested.

‘~Wstrict-overflow=2’
Also warn about other cases where a comparison is simplified to
a constant. For example: abs (x) >= 0. This can only be simpli-

Chapter 3: GCC Command Options 47

-Wall

fied when ‘~-fstrict-overflow’ is in effect, because abs (INT_MIN)
overflows to INT_MIN, which is less than zero. ‘-Wstrict-overflow’
(with no level) is the same as ‘-Wstrict-overflow=2’.

‘~Wstrict-overflow=3’
Also warn about other cases where a comparison is simplified. For
example: x + 1 > 1 will be simplified to x > 0.

‘~Wstrict-overflow=4’
Also warn about other simplifications not covered by the above
cases. For example: (x * 10) / 5 will be simplified to x * 2.

‘~Wstrict-overflow=5’
Also warn about cases where the compiler reduces the magnitude of
a constant involved in a comparison. For example: x + 2 > y will
be simplified to x + 1 >=y. This is reported only at the highest
warning level because this simplification applies to many compar-
isons, so this warning level will give a very large number of false
positives.

All of the above ‘-W options combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid
(or modify to prevent the warning), even in conjunction with macros. This
also enables some language-specific warnings described in Section 3.5 [C++ Di-
alect Options], page 26 and Section 3.6 [Objective-C and Objective-C++ Dialect
Options|, page 33.

The following ‘-W. ..’ options are not implied by ‘-Wall’. Some of them warn about
constructions that users generally do not consider questionable, but which occasionally you
might wish to check for; others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the warning.

-Wextra

(This option used to be called ‘-W. The older name is still supported, but the
newer name is more descriptive.) Print extra warning messages for these events:

e A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

foo (a)
{
if (a > 0)
return a;
}

e An expression-statement or the left-hand side of a comma expression con-
tains no side effects. To suppress the warning, cast the unused expression
to void. For example, an expression such as ‘x[i,j]’ will cause a warning,
but ‘x[(void)i,j]’ will not.

e An unsigned value is compared against zero with ‘<’ or ‘>=".

e Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

e If ‘-Wall’ or ‘~Wunused’ is also specified, warn about unused arguments.

48 Using the GNU Compiler Collection (GCC)

e A comparison between signed and unsigned values could produce an in-
correct result when the signed value is converted to unsigned. (But don’t
warn if ‘~-Wno-sign-compare’ is also specified.)

e An aggregate has an initializer which does not initialize all
members. This warning can be independently controlled by
‘~-Wmissing-field-initializers’.

e An initialized field without side effects is overridden when using designated
initializers (see Section 5.21 [Designated Initializers|, page 239). This warn-
ing can be independently controlled by ‘-Woverride-init’.

e A function parameter is declared without a type specifier in K&R-style
functions:
void foo(bar) { }

e An empty body occurs in an ‘if’ or ‘else’ statement.
e A pointer is compared against integer zero with ‘<’, ‘<=, >’ or ‘>=".
e A variable might be changed by ‘longjmp’ or ‘vfork’.

e (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

e (C++only) A non-static reference or non-static ‘const’ member appears in
a class without constructors.

e (C++ only) Ambiguous virtual bases.
(
(

¢

C++ only) Subscripting an array which has been declared ‘register’.

C++ only) Taking the address of a variable which has been declared

register’.

e (C++ only) A base class is not initialized in a derived class’ copy construc-
tor.

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘~Wall’ in conjunction with this option will not warn about unknown pragmas
in system headers—for that, ‘~-Wunknown-pragmas’ must also be used.

-Wno-poison-system-directories
Do not warn for ‘-I’ or ‘-L’ options using system directories such as
‘/usr/include’ when cross compiling. This option is intended for use in
chroot environments when such directories contain the correct headers and
libraries for the target system rather than the host.

Chapter 3: GCC Command Options 49

-Wfloat-equal

Warn if floating point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer)
to counsider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you would check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs which should be avoided.

Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but does
not in ISO C.

In traditional C, some preprocessor directives did not exist. Traditional
preprocessors would only consider a line to be a directive if the ‘#’ appeared
in column 1 on the line. Therefore ‘~Wtraditional’ warns about directives
that traditional C understands but would ignore because the ‘# does not
appear as the first character on the line. It also suggests you hide directives
like ‘#pragma’ not understood by traditional C by indenting them. Some
traditional implementations would not recognize ‘#elif’, so it suggests
avoiding it altogether.

A function-like macro that appears without arguments.

The unary plus operator.

The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

A function declared external in one block and then used after the end of
the block.

A switch statement has an operand of type long.

A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

o0

Using the GNU Compiler Collection (GCC)

e Usage of ISO string concatenation is detected.
e Initialization of automatic aggregates.

e Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

e Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

e Conversions by prototypes between fixed/floating point values and vice
versa. The absence of these prototypes when compiling with traditional C
would cause serious problems. This is a subset of the possible conversion
warnings, for the full set use ‘-Wconversion’.

e Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features will appear in your code when using libiberty’s traditional C
compatibility macros, PARAMS and VPARAMS. This warning is also bypassed
for nested functions because that feature is already a GCC extension and
thus not relevant to traditional C compatibility.

-Wdeclaration-after-statement (C only)

-Wundef

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 5.24 [Mixed Declarations], page 241.

Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-labels

Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wishadow Warn whenever a local variable shadows another local variable, parameter or

global variable or whenever a built-in function is shadowed.

-Wlarger-than-len

Warn whenever an object of larger than len bytes is defined.

-Wunsafe-loop-optimizations

Warn if the loop cannot be optimized because the compiler could
not assume anything on the bounds of the loop indices. With
‘~funsafe-loop-optimizations’ warn if the compiler made such
assumptions.

-Wpointer-arith

Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

-Wbad-function-cast (C only)

Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

Chapter 3: GCC Command Options o1

-Wc++-compat
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning;
when compiling C++, warn about the deprecated conversion from string literals
to char *. This warning, by default, is enabled for C++ programs. These
warnings will help you find at compile time code that can try to write into a
string constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it will just be a nuisance; this is why
we did not make ‘-Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-Wextra’; to get the other warnings of ‘-Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Waddress

Warn about suspicious uses of memory addresses. These include using the
address of a function in a conditional expression, such as void func(void) ;
if (func), and comparisons against the memory address of a string literal,
such as 1f (x == "abc"). Such uses typically indicate a programmer error: the
address of a function always evaluates to true, so their use in a conditional
usually indicate that the programmer forgot the parentheses in a function call;
and comparisons against string literals result in unspecified behavior and are
not portable in C, so they usually indicate that the programmer intended to
use strcmp. This warning is enabled by ‘-Wall’.

52 Using the GNU Compiler Collection (GCC)

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This will not stop
errors for incorrect use of supported attributes.

-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration which specifies the argument types.)

-Wold-style-definition (C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations (C only)
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files.

-Wmissing-field-initializers

Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code would cause such a warning, because x.h is implicitly zero:

struct s { int f, g, h; };

struct s x = { 3, 4 };
This option does not warn about designated initializers, so the following mod-
ification would not trigger a warning:

struct s { int £, g, h; };

struct s x = { .f =3, .g =4 };
This warning is included in ‘-Wextra’. To get other ‘~Wextra’ warnings without
this one, use ‘-Wextra -Wno-missing-field-initializers’.

-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken
to manually verify functions actually do not ever return before adding the
noreturn attribute, otherwise subtle code generation bugs could be introduced.
You will not get a warning for main in hosted C environments.

-Wmissing-format-attribute
Warn about function pointers which might be candidates for format attributes.
Note these are only possible candidates, not absolute ones. GCC will guess that
function pointers with format attributes that are used in assignment, initial-
ization, parameter passing or return statements should have a corresponding

Chapter 3: GCC Command Options 53

format attribute in the resulting type. Le. the left-hand side of the assignment
or initialization, the type of the parameter variable, or the return type of the
containing function respectively should also have a format attribute to avoid
the warning.

GCC will also warn about function definitions which might be candidates for
format attributes. Again, these are only possible candidates. GCC will guess
that format attributes might be appropriate for any function that calls a func-
tion like vprintf or vscanf, but this might not always be the case, and some
functions for which format attributes are appropriate may not be detected.

-Wno-multichar
Do not warn if a multicharacter constant (‘’FO0F’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=<none|id|nfc|nfkc>
In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers which have not been normalized; this option controls that warning.

There are four levels of warning that GCC supports. The default is
‘~Wnormalized=nfc’, which warns about any identifier which is not in the ISO

10646 “C” normalized form, NFC. NFC is the recommended form for most
uses.

Unfortunately, there are some characters which ISO C and ISO C++ allow in
identifiers that when turned into NFC aren’t allowable as identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘~Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

You can switch the warning off for all characters by writing
‘~Wnormalized=none’. You would only want to do this if you were
using some other normalization scheme (like “D”), because otherwise you can
easily create bugs that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical in
some fonts or display methodologies, especially once formatting has been ap-
plied. For instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N7,
will display just like a regular n which has been placed in a superscript. ISO
10646 defines the NFKC normalization scheme to convert all these into a stan-
dard form as well, and GCC will warn if your code is not in NFKC if you
use ‘-Wnormalized=nfkc’. This warning is comparable to warning about every
identifier that contains the letter O because it might be confused with the digit
0, and so is not the default, but may be useful as a local coding convention if

54 Using the GNU Compiler Collection (GCC)

the programming environment is unable to be fixed to display these characters
distinctly.

-Wno-deprecated-declarations
Do not warn about uses of functions (see Section 5.25 [Function Attributes],
page 242), variables (see Section 5.32 [Variable Attributes], page 261), and types
(see Section 5.33 [Type Attributes], page 268) marked as deprecated by using
the deprecated attribute.

-Wno-overflow
Do not warn about compile-time overflow in constant expressions.

-Woverride-init
Warn if an initialized field without side effects is overridden when using desig-
nated initializers (see Section 5.21 [Designated Initializers|, page 239).

This warning is included in ‘-Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘-Wextra -Wno-override-init’.

-Wipacked Warn if a structure is given the packed attribute, but the packed attribute has
no effect on the layout or size of the structure. Such structures may be mis-
aligned for little benefit. For instance, in this code, the variable f.x in struct
bar will be misaligned even though struct bar does not itself have the packed
attribute:

struct foo {

int x;

char a, b, ¢, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};

-Wpadded Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C only)
Warn if an extern declaration is encountered within a function.

-Wunreachable-code
Warn if the compiler detects that code will never be executed.

This option is intended to warn when the compiler detects that at least a whole
line of source code will never be executed, because some condition is never
satisfied or because it is after a procedure that never returns.

It is possible for this option to produce a warning even though there are circum-
stances under which part of the affected line can be executed, so care should
be taken when removing apparently-unreachable code.

Chapter 3: GCC Command Options 95

For instance, when a function is inlined, a warning may mean that the line is
unreachable in only one inlined copy of the function.

This option is not made part of ‘-Wall’ because in a debugging version of a
program there is often substantial code which checks correct functioning of the
program and is, hopefully, unreachable because the program does work. An-
other common use of unreachable code is to provide behavior which is selectable
at compile-time.

-Winline Warn if a function can not be inlined and it was declared as inline. Even with
this option, the compiler will not warn about failures to inline functions declared
in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘~Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ only)

Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types. (Such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor.) This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Wno-int-to-pointer-cast (C only)
Suppress warnings from casts to pointer type of an integer of a different size.

-Wno-pointer-to-int-cast (C only)
Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch
Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 212) is found in the search path but can’t be used.

-Wlong-long
Warn if ‘long long’ type is used. This is default. To inhibit the warning
messages, use ‘-Wno-long-long’. Flags ‘-Wlong-long’ and ‘-~Wno-long-long’
are taken into account only when ‘-pedantic’ flag is used.

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit
the warning messages, use ‘-Wno-variadic-macros’.

o6

Using the GNU Compiler Collection (GCC)

-Wvolatile-register-var

Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables.

-Wdisabled-optimization

Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers were unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC will refuse to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign

-Werror

-Werror=

Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by ‘-Wall’
and by ‘-pedantic’, which can be disabled with ‘~Wno-pointer-sign’.

Make all warnings into errors.

Make the specified warning into an errors. The specifier for a warning is
appended, for example ‘-Werror=switch’ turns the warnings controlled by
‘~Wswitch’ into errors. This switch takes a negative form, to be used to
negate ‘~Werror’ for specific warnings, for example ‘-Wno-error=switch’ makes
‘~Wswitch’ warnings not be errors, even when ‘-Werror’ is in effect. You can
use the ‘-fdiagnostics-show-option’ option to have each controllable warn-
ing amended with the option which controls it, to determine what to use with
this option.

Note that specifying ‘-Werror="foo automatically implies ‘-Wfoo. However,
‘~Wno-error="foo does not imply anything.

-Wstack-protector

This option is only active when ‘~fstack-protector’ is active. It warns about
functions that will not be protected against stack smashing.

-Woverlength-strings

Warn about string constants which are longer than the “minimum maximum?”
length specified in the C standard. Modern compilers generally allow string
constants which are much longer than the standard’s minimum limit, but very
portable programs should avoid using longer strings.

The limit applies after string constant concatenation, and does not count the
trailing NUL. In C89, the limit was 509 characters; in C99, it was raised to
4095. C++98 does not specify a normative minimum maximum, so we do not
diagnose overlength strings in C++.

This option is implied by ‘-pedantic’, and can be disabled with
‘-Wno-overlength-strings’.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

Chapter 3: GCC Command Options o7

-ggdb

-gstabs

Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF 2). GDB can work with this debugging informa-
tion.

On most systems that use stabs format, ‘-g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but will probably make other debuggers crash or refuse to
read the program. If you want to control for certain whether to generate the
extra information, use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, or ‘~gvms’
(see below).

GCC allows you to use ‘-g’ with ‘-0’. The shortcuts taken by optimized code
may occasionally produce surprising results: some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results
or their values were already at hand; some statements may execute in different
places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output which is not understood by DBX or SDB. On System V
Release 4 systems this option requires the GNU assembler.

-feliminate-unused-debug-symbols

Produce debugging information in stabs format (if that is supported), for only
symbols that are actually used.

-femit-class-debug-always

-gstabs+

-gcoff

Instead of emitting debugging information for a C++ class in only one object
file, emit it in all object files using the class. This option should be used
only with debuggers that are unable to handle the way GCC normally emits
debugging information for classes because using this option will increase the
size of debugging information by as much as a factor of two.

Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

58 Using the GNU Compiler Collection (GCC)

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is sup-
ported). This is the format used by DBX on IRIX 6. With this option, GCC
uses features of DWARF version 3 when they are useful; version 3 is upward
compatible with version 2, but may still cause problems for older debuggers.

-gvms Produce debugging information in VMS debug format (if that is supported).
This is the format used by DEBUG on VMS systems.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gvmslevel
Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

‘~gdwarf-2’ does not accept a concatenated debug level, because GCC used
to support an option ‘-gdwarf’ that meant to generate debug information in
version 1 of the DWARF format (which is very different from version 2), and
it would have been too confusing. That debug format is long obsolete, but the
option cannot be changed now. Instead use an additional ‘-glevel’ option to
change the debug level for DWARF2.

-feliminate-dwarf2-dups
Compress DWARF2 debugging information by eliminating duplicated infor-
mation about each symbol. This option only makes sense when generating
DWARF2 debugging information with ‘-gdwarf-2’.

-fdebug-prefix-map=old=new
When compiling files in directory ‘old’, record debugging information describ-
ing them as in ‘new’ instead.

-p Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Chapter 3: GCC Command Options 99

—Pg

-Q

Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report

Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report

Makes the compiler print some statistics about permanent memory allocation
when it finishes.

-fprofile-arcs

——coverage

Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. When the compiled program exits it saves
this data to a file called ‘auxname.gcda’ for each source file. The data may be
used for profile-directed optimizations (‘-~fbranch-probabilities’), or for test
coverage analysis (‘-ftest-coverage’). Each object file’'s auxname is generated
from the name of the output file, if explicitly specified and it is not the final
executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’
for output file specified as ‘~o dir/fo0.0’). See Section 9.5 [Cross-profiling],
page 495.

This option is used to compile and link code instrumented for coverage analysis.
The option is a synonym for ‘~fprofile-arcs’ ‘~ftest-coverage’ (when com-
piling) and ‘-1gcov’ (when linking). See the documentation for those options
for more details.

e Compile the source files with ‘-fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘~-ftest-coverage’ option. You do not need to profile every source file in
a program.

e Link your object files with ‘~1gcov’ or ‘~fprofile-arcs’ (the latter implies
the former).

e Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also fork calls
are detected and correctly handled (double counting will not happen).

e For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘~fbranch-probabilities’ (see Section 3.10 [Options that Control
Optimization], page 69).

60

Using the GNU Compiler Collection (GCC)

e For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘-fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

-ftest-coverage

—-dletters

Produce a notes file that the gcov code-coverage utility (see Chapter 9 [gcov—a
Test Coverage Program]|, page 489) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘-fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data will match the source files more closely, if
you do not optimize.

—-fdump-rtl-pass

Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the RTL-based passes of the compiler. The file names
for most of the dumps are made by appending a pass number and a word to
the dumpname. dumpname is generated from the name of the output file, if
explicitly specified and it is not an executable, otherwise it is the basename of
the source file.

Most debug dumps can be enabled either passing a letter to the ‘~d’ option, or
with a long ‘-fdump-rtl1’ switch; here are the possible letters for use in letters
and pass, and their meanings:

-dA Annotate the assembler output with miscellaneous debugging in-
formation.

-dB

—-fdump-rtl-bbro
Dump after block reordering, to ‘file.148r.bbro’.

-dc

—fdump-rtl-combine
Dump after instruction combination, to the file
‘file.129r.combine’.

-dC

-fdump-rtl-cel

-fdump-rtl-ce2
‘-dC’ and ‘-fdump-rtl-cel’ enable dumping after the first if con-
version, to the file ‘file.117r.cel’. ‘-dC’ and ‘~fdump-rtl-ce2
enable dumping after the second if conversion, to the file
‘file.130r.ce2’.

Chapter 3: GCC Command Options 61

-dd

-fdump-rtl-btl

-fdump-rtl-dbr
‘-dd’ and ‘-fdump-rtl-btl’ enable dumping after branch target
load optimization, to ‘file.31.btl’. ‘-dd’ and ‘-fdump-rtl-dbr’
enable dumping after delayed branch scheduling, to ‘file.36.dbr’ .

-dD Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

-dE
-fdump-rtl-ce3
Dump after the third if conversion, to ‘file.146r.ce3’.

-df

-fdump-rtl-cfg

—fdump-rtl-life
‘~df’ and ‘~fdump-rtl-cfg’ enable dumping after control and data
flow analysis, to ‘file.116r.cfg’. ‘-df’ and ‘-fdump-rtl-cfg’
enable dumping dump after life analysis, to ‘file.128r.lifel’ and
‘file.13br.life2’.

_dg
-fdump-rtl-greg
Dump after global register allocation, to ‘file.139r.greg’.

-dG

-fdump-rtl-gcse

—fdump-rtl-bypass
‘-dG" and ‘-fdump-rtl-gcse’ enable dumping after GCSE,
to ‘file.114r.gcse’. ‘-dG’ and ‘-fdump-rtl-bypass’ enable
dumping after jump bypassing and control flow optimizations, to
‘file.115r.bypass’.

-dh
-fdump-rtl-eh
Dump after finalization of EH handling code, to ‘file.02.eh’.

-di
-fdump-rtl-sibling
Dump after sibling call optimizations, to ‘file.106r.sibling’.

_dJ
—fdump-rtl-jump
Dump after the first jump optimization, to ‘file.112r. jump’.

-dk

-fdump-rtl-stack
Dump after conversion from registers to stack, to
‘file.152r.stack’.

62

Using the GNU Compiler Collection (GCC)

-dl
—fdump-rtl-lreg
Dump after local register allocation, to ‘file.138r.lreg .

-dL

—fdump-rtl-loop2
‘-dL’ and ‘-fdump-rtl-loop2’ enable dumping after the loop op-
timization pass, to ‘file.119r.loop2’, ‘file.120r.loop2_init’,
‘file.121r.loop2_invariant’, and ‘file.125r.loop2_done’.

-dm
-fdump-rtl-sms
Dump after modulo scheduling, to ‘file.136r.sms’.

-dM

-fdump-rtl-mach
Dump after performing the machine dependent reorganization pass,
to ‘file.155r .mach’.

-dn
-fdump-rtl-rnreg
Dump after register renumbering, to ‘file.147r.rnreg’.

-dN
—-fdump-rtl-regmove
Dump after the register move pass, to ‘file.132r.regmove’.

-do
—fdump-rtl-postreload
Dump after post-reload optimizations, to ‘file.24.postreload’.

-dr
-fdump-rtl-expand
Dump after RTL generation, to ‘file.104r.expand’.

-dR
-fdump-rtl-sched2
Dump after the second scheduling pass, to ‘file.150r.sched?2’.

-ds

-fdump-rtl-cse
Dump after CSE (including the jump optimization that sometimes
follows CSE), to ‘file.113r.cse’.

-ds
-fdump-rtl-sched
Dump after the first scheduling pass, to ‘file.21.sched’.

-dt

-fdump-rtl-cse2
Dump after the second CSE pass (including the jump optimization
that sometimes follows CSE), to ‘file.127r.cse2’.

Chapter 3: GCC Command Options 63

-dT

-fdump-

-dv

-fdump-
-fdump-

-dw

-fdump-

-dz

-fdump-

-dz

-fdump-

-da

-fdump-

-dP

-dv

-dx

_dy
-fdump-noaddr

rtl-tracer
Dump after running tracer, to ‘file.118r.tracer’.

rtl-vpt

rtl-vartrack
‘-dV’ and ‘-fdump-rtl-vpt’ enable dumping after the
value profile transformations, to ‘file.10.vpt’. ‘~dV’ and
‘~fdump-rtl-vartrack’ enable dumping after variable tracking,
to ‘file.154r.vartrack’.

rtl-flow2
Dump after the second flow pass, to ‘file.142r.flow?2’.

rtl-peephole2
Dump after the peephole pass, to ‘file.145r.peephole2’.

rtl-web
Dump after live range splitting, to ‘file.126r.web’.

rtl-all
Produce all the dumps listed above.

Produce a core dump whenever an error occurs.

Print statistics on memory usage, at the end of the run, to standard
error.

Annotate the assembler output with a comment indicating which
pattern and alternative was used. The length of each instruction is
also printed.

Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.

For each of the other indicated dump files (either with ‘-d’ or
‘~fdump-rtl-pass’), dump a representation of the control flow
graph suitable for viewing with VCG to ‘file.pass.vcg’.

Just generate RTL for a function instead of compiling it. Usually
used with ‘r’ (‘-fdump-rtl-expand’).

Dump debugging information during parsing, to standard error.

When doing debugging dumps (see ‘-d’ option above), suppress address out-
put. This makes it more feasible to use diff on debugging dumps for compiler
invocations with different compiler binaries and/or different text / bss / data
/ heap / stack / dso start locations.

64 Using the GNU Compiler Collection (GCC)

—fdump-unnumbered
When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers, line number note and address output. This makes it more feasible to
use diff on debugging dumps for compiler invocations with different options, in
particular with and without ‘-g’.

-fdump-translation-unit (C++ only)

-fdump-translation-unit-options (C++ only)
Dump a representation of the tree structure for the entire translation unit to a
file. The file name is made by appending ‘.tu’ to the source file name. If the
‘—options’ form is used, options controls the details of the dump as described
for the ‘~fdump-tree’ options.

-fdump-class-hierarchy (C++ only)

-fdump-class-hierarchy-options (C++ only)
Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name.
If the ‘-options’ form is used, options controls the details of the dump as
described for the ‘-fdump-tree’ options.

-fdump-ipa-switch
Control the dumping at various stages of inter-procedural analysis language
tree to a file. The file name is generated by appending a switch specific suffix
to the source file name. The following dumps are possible:

‘all’ Enables all inter-procedural analysis dumps; currently the only pro-
duced dump is the ‘cgraph’ dump.

‘cgraph’ Dumps information about call-graph optimization, unused function
removal, and inlining decisions.

-fdump-tree-switch

-fdump-tree-switch-options
Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch specific suffix
to the source file name. If the ‘~options’ form is used, options is a list of
‘-’ geparated options that control the details of the dump. Not all options are
applicable to all dumps, those which are not meaningful will be ignored. The
following options are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

‘slim’ Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path. When dumping
pretty-printed trees, this option inhibits dumping the bodies of con-
trol structures.

raw Print a raw representation of the tree. By default, trees are pretty-
printed into a C-like representation.

Chapter 3:

GCC Command Options

‘details’

‘stats’

‘blocks’
‘vops’
‘lineno’
‘uid’

‘all’

65

Enable more detailed dumps (not honored by every dump option).

Enable dumping various statistics about the pass (not honored by
every dump option).

Enable showing basic block boundaries (disabled in raw dumps).
Enable showing virtual operands for every statement.

Enable showing line numbers for statements.

Enable showing the unique ID (DECL_UID) for each variable.

Turn on all options, except ‘raw’, ‘slim’ and ‘lineno’.

The following tree dumps are possible:

‘original’

‘optimized’

‘4nlined’

‘gimple’

9

‘cfg

veg

(Ch7

ssa
‘salias’
‘alias’

‘)

ccp

‘storeccp’

pre

Dump before any tree based optimization, to ‘file.original’.

Dump after all tree based optimization, to ‘file.optimized’.
Dump after function inlining, to ‘file.inlined’.

Dump each function before and after the gimplification pass to a
file. The file name is made by appending ‘.gimple’ to the source
file name.

Dump the control flow graph of each function to a file. The file
name is made by appending ‘.cfg’ to the source file name.

Dump the control flow graph of each function to a file in VCG
format. The file name is made by appending *.vcg’ to the source
file name. Note that if the file contains more than one function, the
generated file cannot be used directly by VCG. You will need to
cut and paste each function’s graph into its own separate file first.

Dump each function after copying loop headers. The file name is
made by appending ‘.ch’ to the source file name.

Dump SSA related information to a file. The file name is made by
appending ‘.ssa’ to the source file name.

Dump structure aliasing variable information to a file. This file
name is made by appending ‘.salias’ to the source file name.

Dump aliasing information for each function. The file name is made
by appending ‘.alias’ to the source file name.

Dump each function after CCP. The file name is made by append-
ing ‘.ccp’ to the source file name.

Dump each function after STORE-CCP. The file name is made by
appending ‘.storeccp’ to the source file name.

Dump trees after partial redundancy elimination. The file name is
made by appending ‘.pre’ to the source file name.

66

‘fre’

‘copyprop’

Using the GNU Compiler Collection (GCC)
Dump trees after full redundancy elimination. The file name is
made by appending ‘.fre’ to the source file name.

Dump trees after copy propagation. The file name is made by
appending ‘.copyprop’ to the source file name.

‘store_copyprop’

‘dce

‘mudflap’

sra

‘sink’

‘dom’

‘dse’

‘phiopt’

‘forwprop’

Dump trees after store copy-propagation. The file name is made
by appending ‘.store_copyprop’ to the source file name.

Dump each function after dead code elimination. The file name is
made by appending ‘.dce’ to the source file name.

Dump each function after adding mudflap instrumentation. The
file name is made by appending ‘.mudflap’ to the source file name.

Dump each function after performing scalar replacement of aggre-
gates. The file name is made by appending ‘.sra’ to the source file
name.

Dump each function after performing code sinking. The file name
is made by appending ‘.sink’ to the source file name.

Dump each function after applying dominator tree optimizations.
The file name is made by appending ‘.dom’ to the source file name.

Dump each function after applying dead store elimination. The file
name is made by appending ‘.dse’ to the source file name.

Dump each function after optimizing PHI nodes into straightline
code. The file name is made by appending ‘.phiopt’ to the source
file name.

Dump each function after forward propagating single use variables.
The file name is made by appending ‘. forwprop’ to the source file
name.

‘copyrename’

nrv

‘vect’

vIp

‘all’

Dump each function after applying the copy rename optimization.
The file name is made by appending ‘.copyrename’ to the source
file name.

Dump each function after applying the named return value opti-
mization on generic trees. The file name is made by appending
‘.nrv’ to the source file name.

Dump each function after applying vectorization of loops. The file
name is made by appending ‘.vect’ to the source file name.

Dump each function after Value Range Propagation (VRP). The
file name is made by appending ‘.vrp’ to the source file name.

Enable all the available tree dumps with the flags provided in this
option.

Chapter 3: GCC Command Options 67

-ftree-vectorizer-verbose=n

This option controls the amount of debugging output the vectorizer prints.
This information is written to standard error, unless ‘-fdump-tree-all’ or
‘~fdump-tree-vect’ is specified, in which case it is output to the usual dump
listing file, ‘.vect’. For n=0 no diagnostic information is reported. If n=1 the
vectorizer reports each loop that got vectorized, and the total number of loops
that got vectorized. If n=2 the vectorizer also reports non-vectorized loops that
passed the first analysis phase (vect_analyze_loop_form) - i.e. countable, inner-
most, single-bb, single-entry/exit loops. This is the same verbosity level that
‘~fdump-tree-vect-stats’ uses. Higher verbosity levels mean either more
information dumped for each reported loop, or same amount of information
reported for more loops: If n=3, alignment related information is added to the
reports. If n=4, data-references related information (e.g. memory dependences,
memory access-patterns) is added to the reports. If n=5, the vectorizer reports
also non-vectorized inner-most loops that did not pass the first analysis phase
(i.e. may not be countable, or may have complicated control-flow). If n=6, the
vectorizer reports also non-vectorized nested loops. For n=7, all the information
the vectorizer generates during its analysis and transformation is reported. This
is the same verbosity level that ‘~fdump-tree-vect-details’ uses.

-frandom-seed=string
This option provides a seed that GCC uses when it would otherwise use random
numbers. It is used to generate certain symbol names that have to be different
in every compiled file. Tt is also used to place unique stamps in coverage data
files and the object files that produce them. You can use the ‘-frandom-seed’
option to produce reproducibly identical object files.

The string should be different for every file you compile.

-fsched-verbose=n
On targets that use instruction scheduling, this option controls the amount of
debugging output the scheduler prints. This information is written to standard
error, unless ‘-dS’ or ‘-dR’ is specified, in which case it is output to the usual
dump listing file, ‘.sched’ or ‘.sched2’ respectively. However for n greater
than nine, the output is always printed to standard error.

For n greater than zero, ‘-fsched-verbose’ outputs the same information as
‘-dRS’. For n greater than one, it also output basic block probabilities, de-
tailed ready list information and unit/insn info. For n greater than two, it
includes RTL at abort point, control-flow and regions info. And for n over four,
‘~fsched-verbose’ also includes dependence info.

-save-temps
Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘-c -save-temps’ would produce files ‘foo.1i’ and ‘foo.s’; as well
as ‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the
compiler now normally uses an integrated preprocessor.

7

When used in combination with the ‘-x’ command line option, ‘~save-temps’

is sensible enough to avoid over writing an input source file with the same

68

—-time

Using the GNU Compiler Collection (GCC)

extension as an intermediate file. The corresponding intermediate file may be
obtained by renaming the source file before using ‘~save-temps’.

Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done). The output looks like this:

ccl 0.12 0.01

as 0.00 0.01
The first number on each line is the “user time”, that is time spent executing
the program itself. The second number is “system time”, time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.

-fvar-tracking

Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).

It is enabled by default when compiling with optimization (‘-0s’, ‘-0°, ‘-02’,
...), debugging information (‘-g’) and the debug info format supports it.

-print-file-name=1library

Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory

Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-1ib

Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@ instead of the ‘=’, without spaces between multiple
switches. This is supposed to ease shell-processing.

-print-prog-name=program

Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name

Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘1ibgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name®

-print-search-dirs

Print the name of the configured installation directory and a list of program
and library directories gcc will search-—and don’t do anything else.

This is useful when gcc prints the error message ‘installation problem,
cannot exec cppO: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to

Chapter 3: GCC Command Options 69

find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ‘/’. See Section 3.19
[Environment Variables], page 210.

-print-sysroot-headers-suffix
Print the suffix added to the target sysroot when searching for headers, or
give an error if the compiler is not configured with such a suffix—and don’t do
anything else.

—dumpmachine
Print the compiler’s target machine (for example, ‘1686-pc-1linux-gnu’)—and
don’t do anything else.

—dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

-dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files|, page 114.

-feliminate-unused-debug-types

Normally, when producing DWARF2 output, GCC will emit debugging infor-
mation for all types declared in a compilation unit, regardless of whether or not
they are actually used in that compilation unit. Sometimes this is useful, such
as if, in the debugger, you want to cast a value to a type that is not actually
used in your program (but is declared). More often, however, this results in
a significant amount of wasted space. With this option, GCC will avoid pro-
ducing debug symbol output for types that are nowhere used in the source file
being compiled.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

The compiler performs optimization based on the knowledge it has of the program. Op-
timization levels ‘-0’ and above, in particular, enable wunit-at-a-time mode, which allows
the compiler to consider information gained from later functions in the file when compiling
a function. Compiling multiple files at once to a single output file in unit-at-a-time mode
allows the compiler to use information gained from all of the files when compiling each of
them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed.

70

-01

-02

Using the GNU Compiler Collection (GCC)

Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

With ‘-0, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

‘=0’ turns on the following optimization flags:

-fdefer-pop
-fdelayed-branch
-fguess-branch-probability
-fcprop-registers
-fif-conversion
-fif-conversion2
-ftree-ccp

-ftree-dce
-ftree-dominator-opts
-ftree-dse

-ftree-ter

-ftree-l1rs

-ftree-sra
-ftree-copyrename
-ftree-fre

-ftree-ch
-funit-at-a-time
-fmerge-constants

‘-0’ also turns on ‘-fomit-frame-pointer’ on machines where doing so does
not interfere with debugging.

Optimize even more. GCC performs nearly all supported optimizations that
do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specify ‘-02’. As compared to ‘-0’, this
option increases both compilation time and the performance of the generated
code.

‘-02’ turns on all optimization flags specified by ‘-0’. It also turns on the
following optimization flags:

-fthread-jumps

-fcrossjumping
-foptimize-sibling-calls
-fcse-follow-jumps -fcse-skip-blocks
-fgcse -fgese-1m
-fexpensive-optimizations
-frerun-cse-after-loop
-fcaller-saves

-fpeephole2

-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec
-fregmove

-fstrict-aliasing -fstrict-overflow
-fdelete-null-pointer-checks
-freorder-blocks -freorder-functions
-falign-functions -falign-jumps
-falign-loops -falign-labels
-ftree-vrp

-ftree-pre

Chapter 3: GCC Command Options 71

Please note the warning under ‘~fgcse’ about invoking ‘-~02’ on programs that
use computed gotos.

‘=02’ doesn’t turn on ‘~ftree-vrp’ for the Ada compiler. This option must be
explicitly specified on the command line to be enabled for the Ada compiler.

-03 Optimize yet more. ‘-03’ turns on all optimizations specified by *‘-02’
and also turns on the ‘-finline-functions’, ‘-~funswitch-loops’ and
‘~-fgcse-after-reload’ options.

-00 Do not optimize. This is the default.

-Os Optimize for size. ‘-0s’ enables all ‘-02’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

‘~0s’ disables the following optimization flags:
-falign-functions -falign-jumps -falign-loops
-falign-labels -freorder-blocks -freorder-blocks-and-partition
-fprefetch-loop-arrays -ftree-vect-loop-version
If you use multiple ‘-0’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. In the table
below, only one of the forms is listed—the one you typically will use. You can figure out
the other form by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-0’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-0’, member
functions defined inside class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

Disabled at levels ‘-0°, ‘-02’, ‘-=03’, ‘-0s’.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load. This option is
now a nop and will be removed in 4.3.

-fforce-addr
Force memory address constants to be copied into registers before doing arith-
metic on them.

72 Using the GNU Compiler Collection (GCC)

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
section “Register Usage” in GNU Compiler Collection (GCC) Internals.

Enabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to
keep the compiler from expanding any functions inline. Note that if you are
not optimizing, no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically de-
cides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

Enabled at level ‘-03’.

-finline-functions—-called-once
Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.

Enabled if ‘-funit-at-a-time’ is enabled.

-fearly-inlining
Inline functions marked by always_inline and functions whose body
seems smaller than the function call overhead early before doing
‘~fprofile-generate’ instrumentation and real inlining pass. Doing so makes
profiling significantly cheaper and usually inlining faster on programs having
large chains of nested wrapper functions.

Enabled by default.

-finline-limit=n
By default, GCC limits the size of functions that can be inlined. This flag allows
the control of this limit for functions that are explicitly marked as inline (i.e.,
marked with the inline keyword or defined within the class definition in c++).
n is the size of functions that can be inlined in number of pseudo instructions
(not counting parameter handling). The default value of n is 600. Increasing

Chapter 3: GCC Command Options 73

this value can result in more inlined code at the cost of compilation time and
memory consumption. Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower programs). This option
is particularly useful for programs that use inlining heavily such as those based
on recursive templates with C++.

Inlining is actually controlled by a number of parameters, which may be spec-
ified individually by using ‘--param name=value’. The ‘-finline-limit=n’
option sets some of these parameters as follows:
max-inline-insns-single
is set to n/2.
max-inline-insns-auto
is set to n/2.
min-inline-insns
is set to 130 or n/4, whichever is smaller.
max-inline-insns-rtl
is set to n.

See below for a documentation of the individual parameters controlling inlining.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way does it represent a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fkeep-inline-functions
In C, emit static functions that are declared inline into the object file, even
if the function has been inlined into all of its callers. This switch does not affect
functions using the extern inline extension in GNU C. In C++, emit any and
all inline functions into the object file.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned
on, use the ‘~fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating point con-
stants) across compilation units.
This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.

Enabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.
-fmerge-all-constants
Attempt to merge identical constants and identical variables.
This option implies ‘-fmerge-constants’. In addition to ‘~fmerge-constants’

this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating point types. Languages like C or C++ require

74 Using the GNU Compiler Collection (GCC)

each non-automatic variable to have distinct location, so using this option will
result in non-conforming behavior.

-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass.
This pass looks at innermost loops and reorders their instructions by overlap-
ping different iterations.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC, TA-
64 and S/390.

The default is ‘-fbranch-count-reg’.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

The default is ‘-ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on
variables going to the data section. E.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.

The default is ‘-fzero-initialized-in-bss’.

-fbounds-check
For front-ends that support it, generate additional code to check that indices
used to access arrays are within the declared range. This is currently only
supported by the Java and Fortran front-ends, where this option defaults to
true and false respectively.

-fmudflap -fmudflapth -fmudflapir

For front-ends that support it (C and C++), instrument all risky pointer/array
dereferencing operations, some standard library string/heap functions, and
some other associated constructs with range/validity tests. Modules so in-
strumented should be immune to buffer overflows, invalid heap use, and some
other classes of C/C++ programming errors. The instrumentation relies on a
separate runtime library (‘libmudflap’), which will be linked into a program
if ‘-fmudflap’ is given at link time. Run-time behavior of the instrumented
program is controlled by the MUDFLAP_QPTIONS environment variable. See env
MUDFLAP_QPTIONS=-help a.out for its options.

Use ‘-fmudflapth’ instead of ‘~fmudflap’ to compile and to link if your pro-
gram is multi-threaded. Use ‘-fmudflapir’, in addition to ‘-fmudflap’ or

Chapter 3:

GCC Command Options 75

‘~fmudflapth’, if instrumentation should ignore pointer reads. This produces
less instrumentation (and therefore faster execution) and still provides some
protection against outright memory corrupting writes, but allows erroneously
read data to propagate within a program.

-fthread-jumps

Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point immedi-
ately following it, depending on whether the condition is known to be true or
false.

Enabled at levels ‘=02, ‘~-=03’, ‘-0s’.

-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when
CSE encounters an if statement with an else clause, CSE will follow the jump
when the condition tested is false.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fcse-skip-blocks

This is similar to ‘~fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-frerun-cse-after-loop

-fgcse

-fgcse—1m

-fgcse—-sm

Re-run common subexpression elimination after loop optimizations has been
performed.

Enabled at levels ‘=02, ‘~-=03’, ‘-0s’.

Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension,
you may get better runtime performance if you disable the global common
subexpression elimination pass by adding ‘-fno-gcse’ to the command line.

Enabled at levels ‘=02, ‘~-=03’, ‘-0s’.

When ‘-fgcse-1m’ is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

Enabled by default when gcse is enabled.

When ‘-fgcse-sm’ is enabled, a store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops.

76 Using the GNU Compiler Collection (GCC)

When used in conjunction with ‘~fgcse-1m’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

Not enabled at any optimization level.

-fgcse-las
When ‘-fgcse-las’ is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).

Not enabled at any optimization level.

-fgcse-after-reload
When ‘-fgcse-after-reload’ is enabled, a redundant load elimination pass
is performed after reload. The purpose of this pass is to cleanup redundant
spilling.

-funsafe-loop-optimizations
If given, the loop optimizer will assume that loop indices do not overflow, and
that the loops with nontrivial exit condition are not infinite. This enables a
wider range of loop optimizations even if the loop optimizer itself cannot prove
that these assumptions are valid. Using ‘-Wunsafe-loop-optimizations’, the
compiler will warn you if it finds this kind of loop.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent
code and save code size. The resulting code may or may not perform better
than without cross-jumping.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by if-conversion2.

Enabled at levels ‘-0’, *-02’, ‘-03’, ‘-0s’.

-fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels ‘-0’, ‘-02’, ‘=03, ‘-0s’.

-fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks for null
pointers. The compiler assumes that dereferencing a null pointer would have
halted the program. If a pointer is checked after it has already been derefer-
enced, it cannot be null.

In some environments, this assumption is not true, and programs can safely
dereference null pointers. Use ‘-fno-delete-null-pointer-checks’ to disable
this optimization for programs which depend on that behavior.

Enabled at levels ‘=02, ‘-=03’, ‘-0s’.

Chapter 3: GCC Command Options 7

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-foptimize-register-move

—-fregmove
Attempt to reassign register numbers in move instructions and as operands of
other simple instructions in order to maximize the amount of register tying.
This is especially helpful on machines with two-operand instructions.

Note ‘-fregmove’ and ‘-foptimize-register-move’ are the same optimiza-
tion.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

Enabled at levels ‘-0’, ‘-02°, ‘-03’, ‘-0s’.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fschedule-insns2
Similar to ‘~fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by
default when scheduling before register allocation, i.e. with ‘-fschedule-insns’
or at ‘=02’ or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e. with
‘~fschedule-insns’ or at ‘-02’ or higher.

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘=02’ or higher.

78 Using the GNU Compiler Collection (GCC)

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘=02’ or higher.

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue of
stalled insns into the ready list, during the second scheduling pass.

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) will be examined for a dependency
on a stalled insn that is candidate for premature removal from the queue of
stalled insns. Has an effect only during the second scheduling pass, and only if
‘~fsched-stalled-insns’ is used and its value is not zero.

-fsched2-use-superblocks
When scheduling after register allocation, do use superblock scheduling algo-
rithm. Superblock scheduling allows motion across basic block boundaries re-
sulting on faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with
‘~fschedule-insns2’ or at ‘-02’ or higher.

-fsched2-use-traces
Use ‘~fsched2-use-superblocks’ algorithm when scheduling after register al-
location and additionally perform code duplication in order to increase the size
of superblocks using tracer pass. See ‘~ftracer’ for details on trace formation.

This mode should produce faster but significantly longer programs. Also with-
out ‘-fbranch-probabilities’ the traces constructed may not match the re-
ality and hurt the performance. This only makes sense when scheduling after
register allocation, i.e. with ‘~-fschedule-insns2’ or at ‘02’ or higher.

-fsee Eliminates redundant extension instructions and move the non redundant ones
to optimal placement using LCM.

-freschedule-modulo-scheduled-loops
The modulo scheduling comes before the traditional scheduling, if a loop was
modulo scheduled we may want to prevent the later scheduling passes from
changing its schedule, we use this option to control that.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

Enabled at levels ‘=02, ‘-=03’, ‘-0s’.

Chapter 3: GCC Command Options 79

-ftree-pre
Perform Partial Redundancy Elimination (PRE) on trees. This flag is enabled
by default at ‘=02’ and ‘-03’.

-ftree-fre
Perform Full Redundancy Elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on all
paths leading to the redundant computation. This analysis faster than PRE,
though it exposes fewer redundancies. This flag is enabled by default at ‘-0’
and higher.

—-ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at ‘-0’ and higher.

-ftree-store-copy-prop
Perform copy propagation of memory loads and stores. This pass eliminates
unnecessary copy operations in memory references (structures, global variables,
arrays, etc). This flag is enabled by default at ‘~-02” and higher.

-ftree-salias
Perform structural alias analysis on trees. This flag is enabled by default at
‘-0’ and higher.

-fipa-pta
Perform interprocedural pointer analysis.

-ftree-sink
Perform forward store motion on trees. This flag is enabled by default at ‘-0’
and higher.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at ‘-0’ and
higher.

-ftree-store-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
operates on both local scalar variables and memory stores and loads (global
variables, structures, arrays, etc). This flag is enabled by default at ‘-02’ and
higher.

-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default
at ‘=0 and higher.

-ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redun-
dancy elimination, range propagation and expression simplification) based on a
dominator tree traversal. This also performs jump threading (to reduce jumps
to jumps). This flag is enabled by default at ‘-0’ and higher.

80 Using the GNU Compiler Collection (GCC)

-ftree-ch
Perform loop header copying on trees. This is beneficial since it increases ef-
fectiveness of code motion optimizations. It also saves one jump. This flag is
enabled by default at ‘=0’ and higher. It is not enabled for ‘-0s’, since it usually
increases code size.

-ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default at ‘-0’ and
higher.

-ftree-loop-linear
Perform linear loop transformations on tree. This flag can improve cache per-
formance and allow further loop optimizations to take place.

-ftree-loop-im
Perform loop invariant motion on trees. This pass moves only invariants that
would be hard to handle at RTL level (function calls, operations that expand
to nontrivial sequences of insns). With ‘-funswitch-loops’ it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion.

-ftree-loop-ivcanon
Create a canonical counter for number of iterations in the loop for that deter-
mining number of iterations requires complicated analysis. Later optimizations
then may determine the number easily. Useful especially in connection with
unrolling.

-fivopts Perform induction variable optimizations (strength reduction, induction vari-
able merging and induction variable elimination) on trees.

-ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure refer-
ences with scalars to prevent committing structures to memory too early. This
flag is enabled by default at ‘-0’ and higher.

-ftree-copyrename
Perform copy renaming on trees. This pass attempts to rename compiler tem-
poraries to other variables at copy locations, usually resulting in variable names
which more closely resemble the original variables. This flag is enabled by de-
fault at ‘-0’ and higher.

-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Sin-
gle use/single def temporaries are replaced at their use location with their defin-
ing expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This
is enabled by default at ‘-0’ and higher.

-ftree-1rs
Perform live range splitting during the SSA->normal phase. Distinct live ranges
of a variable are split into unique variables, allowing for better optimization
later. This is enabled by default at ‘-0’ and higher.

Chapter 3: GCC Command Options 81

-ftree-vectorize
Perform loop vectorization on trees.

-ftree-vect-loop-version
Perform loop versioning when doing loop vectorization on trees. When a loop
appears to be vectorizable except that data alignment or data dependence can-
not be determined at compile time then vectorized and non-vectorized versions
of the loop are generated along with runtime checks for alignment or depen-
dence to control which version is executed. This option is enabled by default
except at level ‘=08’ where it is disabled.

-ftree-vrp
Perform Value Range Propagation on trees. This is similar to the constant prop-
agation pass, but instead of values, ranges of values are propagated. This allows
the optimizers to remove unnecessary range checks like array bound checks and
null pointer checks. This is enabled by default at ‘=02’ and higher. Null pointer
check elimination is only done if ‘-fdelete-null-pointer-checks’ is enabled.

-ftracer Perform tail duplication to enlarge superblock size. This transformation sim-
plifies the control flow of the function allowing other optimizations to do better
job.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘~frerun-cse-after-loop’.
This option makes code larger, and may or may not make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘~funroll-loops’,

-fsplit-ivs-in-unroller
Enables expressing of values of induction variables in later iterations of the
unrolled loop using the value in the first iteration. This breaks long dependency
chains, thus improving efficiency of the scheduling passes.

Combination of ‘-fweb’ and CSE is often sufficient to obtain the same effect.
However in cases the loop body is more complicated than a single basic block,
this is not reliable. It also does not work at all on some of the architectures
due to restrictions in the CSE pass.

This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler will create multiple copies of some local variables
when unrolling a loop which can result in superior code.

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

This option may generate better or worse code; results are highly dependent on
the structure of loops within the source code.

82 Using the GNU Compiler Collection (GCC)

Disabled at level ‘-0s’.

-fno-peephole

-fno-peephole?2
Disable any machine-specific peephole optimizations. The difference between
‘~fno-peephole’ and ‘-fno-peephole?2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.
‘~-fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-027,
03", ‘-0s’.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.
GCC will use heuristics to guess branch probabilities if they are not
provided by profiling feedback (‘-fprofile-arcs’). These heuristics
are based on the control flow graph. If some branch probabilities are
specified by ‘__builtin_expect’, then the heuristics will be used to guess
branch probabilities for the rest of the control flow graph, taking the
‘__builtin_expect’ info into account. The interactions between the heuristics
and ‘__builtin_expect’ can be complex, and in some cases, it may be useful
to disable the heuristics so that the effects of ‘__builtin_expect’ are easier
to understand.

The default is ‘~fguess-branch-probability’ at levels ‘07, ‘-02’, *-03’, ‘~0s’.

-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

Enabled at levels ‘-02’, *-03’.

-freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order to
reduce number of taken branches, partitions hot and cold basic blocks into
separate sections of the assembly and .o files, to improve paging and cache
locality performance.

This optimization is automatically turned off in the presence of exception han-
dling, for linkonce sections, for functions with a user-defined section attribute
and on any architecture that does not support named sections.

-freorder-functions
Reorder functions in the object file in order to improve code locality. This is im-
plemented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is
done by the linker so object file format must support named sections and linker
must place them in a reasonable way.

Also profile feedback must be available in to make this option effective. See
‘~fprofile-arcs’ for details.
Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to the
language being compiled. For C (and C++), this activates optimizations based

Chapter 3: GCC Command Options 83

on the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.

Pay special attention to code like this:

union a_union {
int i;

double d;

};

int £() {
a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. FEven with
‘~fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above will work as expected.
However, this code might not:

int £() {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.1i;
return *ip;
}
Every language that wishes to perform language-specific alias analysis should
define a function that computes, given an tree node, an alias set for the node.
Nodes in different alias sets are not allowed to alias. For an example, see the C

front-end function c_get_alias_set.
Enabled at levels ‘-02’, *-03’, ‘-0s’.

-fstrict-overflow

Allow the compiler to assume strict signed overflow rules, depending on the lan-
guage being compiled. For C (and C++) this means that overflow when doing
arithmetic with signed numbers is undefined, which means that the compiler
may assume that it will not happen. This permits various optimizations. For
example, the compiler will assume that an expression like i + 10 > i will always
be true for signed i. This assumption is only valid if signed overflow is unde-
fined, as the expression is false if 1 + 10 overflows when using twos complement
arithmetic. When this option is in effect any attempt to determine whether
an operation on signed numbers will overflow must be written carefully to not
actually involve overflow.

See also the ‘-fwrapv’ option. Using ‘~fwrapv’ means that signed overflow is
fully defined: it wraps. When ‘-fwrapv’ is used, there is no difference between
‘~-fstrict-overflow’ and ‘-fno-strict-overflow’. With ‘~fwrapv’ certain
types of overflow are permitted. For example, if the compiler gets an overflow
when doing arithmetic on constants, the overflowed value can still be used with
‘~fwrapv’, but not otherwise.

The ‘-fstrict-overflow’ option is enabled at levels ‘-02’, ‘-03’, ‘-0s’.

84 Using the GNU Compiler Collection (GCC)

-falign-arrays
Set the minimum alignment for array variables to be the largest power of two
less than or equal to their total storage size, or the biggest alignment used on
the machine, whichever is smaller. This option may be helpful when compiling
legacy code that uses type punning on arrays that does not strictly conform to
the C standard.

-falign-functions

-falign-functions=n
Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the
next 32-byte boundary, but ‘-falign-functions=24" would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.

‘~fno-align-functions’ and ‘~falign-functions=1’ are equivalent and mean
that functions will not be aligned.

Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘-02’, *-03’.

-falign-labels

-falign-labels=n
Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘-~falign-functions’. This option can easily make code slower, because
it must insert dummy operations for when the branch target is reached in the
usual flow of the code.

‘-fno-align-labels’ and ‘-falign-labels=1" are equivalent and mean that
labels will not be aligned.

If ‘-falign-loops’ or ‘~falign-jumps’ are applicable and are greater than this
value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’, meaning no alignment.

Enabled at levels ‘-02’, *-03’.

-falign-loops

-falign-loops=n
Align loops to a power-of-two boundary, skipping up to n bytes like
‘~falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.

‘-fno-align-loops’ and ‘-falign-loops=1’" are equivalent and mean that
loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘-02’, ‘~-03’.

Chapter 3: GCC Command Options 85

-falign-jumps
-falign-jumps=n

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘~falign-functions’. In this case, no dummy operations need be executed.
‘~fno-align-jumps’ and ‘-falign-jumps=1’" are equivalent and mean that
loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘=02, ‘~-03’.

-funit-at-a-time

Parse the whole compilation unit before starting to produce code. This allows
some extra optimizations to take place but consumes more memory (in general).
There are some compatibility issues with unit-at-a-time mode:

e enabling unit-at-a-time mode may change the order in which functions,
variables, and top-level asm statements are emitted, and will likely break
code relying on some particular ordering. The majority of such top-level
asm statements, though, can be replaced by section attributes. The
‘fno-toplevel-reorder’ option may be used to keep the ordering used
in the input file, at the cost of some optimizations.

e unit-at-a-time mode removes unreferenced static variables and functions.
This may result in undefined references when an asm statement refers di-
rectly to variables or functions that are otherwise unused. In that case
either the variable/function shall be listed as an operand of the asm state-
ment operand or, in the case of top-level asm statements the attribute used
shall be used on the declaration.

e Static functions now can use non-standard passing conventions that may
break asm statements calling functions directly. Again, attribute used will
prevent this behavior.

As a temporary workaround, ‘-~fno-unit-at-a-time’ can be used, but this
scheme may not be supported by future releases of GCC.

Enabled at levels ‘-0’, *-02’, ‘-03’, ‘-0s’.

-fno-toplevel-reorder

-fweb

Do not reorder top-level functions, variables, and asm statements. Qutput them
in the same order that they appear in the input file. When this option is used,
unreferenced static variables will not be removed. This option is intended to
support existing code which relies on a particular ordering. For new code, it is
better to use attributes.

Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables will no longer stay in a
“home register”.

Enabled by default with ‘-funroll-loops’.

86 Using the GNU Compiler Collection (GCC)

-fwhole-program

Assume that the current compilation unit represents whole program being com-
piled. All public functions and variables with the exception of main and those
merged by attribute externally_visible become static functions and in a af-
fect gets more aggressively optimized by interprocedural optimizers. While this
option is equivalent to proper use of static keyword for programs consisting
of single file, in combination with option ‘--combine’ this flag can be used to
compile most of smaller scale C programs since the functions and variables be-
come local for the whole combined compilation unit, not for the single source
file itself.

-fno-cprop-registers
After register allocation and post-register allocation instruction splitting, we
perform a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.

Disabled at levels ‘-0’, ‘*-02’, ‘-03’, ‘-0s’.

-fprofile-generate
Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use ‘-fprofile-generate’ both when compiling and when linking your
program.

The following options are enabled: -fprofile-arcs, -fprofile-values, -
fvpt.

-fprofile-use
Enable profile feedback directed optimizations, and optimizations generally
profitable only with profile feedback available.

The following options are enabled: -fbranch-probabilities, -fvpt,
-funroll-loops, -fpeel-loops, -ftracer

The following options control compiler behavior regarding floating point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘~ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

-ffast-math
Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’,
‘~fno-trapping-math’, ‘~ffinite-math-only’, ‘~fno-rounding-math’,
‘-fno-signaling-nans’ and ‘fcx-limited-range’.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

Chapter 3: GCC Command Options 87

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

-fno-math-errno

Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘-fmath-errno’.

On Darwin systems, the math library never sets errno. There is therefore
no reason for the compiler to consider the possibility that it might, and
‘~fno-math-errno’ is the default.

-funsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~-fno-unsafe-math-optimizations’.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications.

The default is ‘~fno-finite-math-only’.

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inex-
act result and invalid operation. This option implies ‘-fno-signaling-nans’.
Setting this option may allow faster code if one relies on “non-stop” IEEE
arithmetic, for example.
This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~ftrapping-math’.
—-frounding-math

Disable transformations and optimizations that assume default floating point
rounding behavior. This is round-to-zero for all floating point to integer con-

88

Using the GNU Compiler Collection (GCC)

versions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynami-
cally, or that may be executed with a non-default rounding mode. This option
disables constant folding of floating point expressions at compile-time (which
may be affected by rounding mode) and arithmetic transformations that are
unsafe in the presence of sign-dependent rounding modes.

The default is ‘~fno-rounding-math’.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command line option will be used to specify the default state for FENV_ACCESS.

-frtl-abstract-sequences

It is a size optimization method. This option is to find identical sequences of
code, which can be turned into pseudo-procedures and then replace all occur-
rences with calls to the newly created subroutine. It is kind of an opposite of
‘~finline-functions’. This optimization runs at RTL level.

-fsignaling-nans

Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ‘-ftrapping-math’.

This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘-fno-signaling-nans’.

This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

-fsingle-precision-constant

Treat floating point constant as single precision constant instead of implicitly
converting it to double precision constant.

-fcx-limited-range
-fno-cx-limited-range

When enabled, this option states that a range reduction step is not needed
when performing complex division. The default is ‘~fno-cx-limited-range’,
but is enabled by ‘-ffast-math’.

This option controls the default setting of the ISO C99 CX_LIMITED_RANGE
pragma. Nevertheless, the option applies to all languages.

The following options control optimizations that may improve performance, but are not

enabled by any ‘-0’ options. This section includes experimental options that may produce
broken code.

-fbranch-probabilities

After running a program compiled with ‘~fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gccl, page 56), you can compile it a sec-
ond time using ‘-fbranch-probabilities’, to improve optimizations based

Chapter 3: GCC Command Options 89

on the number of times each branch was taken. When the program com-
piled with ‘~fprofile-arcs’ exits it saves arc execution counts to a file called
‘sourcename.gcda’ for each source file The information in this data file is very
dependent on the structure of the generated code, so you must use the same
source code and the same optimization options for both compilations.

With ‘-fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is mostly to take, the ‘REG_BR_PROB’ values are used to
exactly determine which path is taken more often.

-fprofile-values

-fvpt

If combined with ‘~-fprofile-arcs’, it adds code so that some data about
values of expressions in the program is gathered.

With ‘~fbranch-probabilities’, it reads back the data gathered from profil-
ing values of expressions and adds ‘REG_VALUE_PROFILE’ notes to instructions
for their later usage in optimizations.

Enabled with ‘-fprofile-generate’ and ‘~fprofile-use’.

If combined with ‘-fprofile-arcs’, it instructs the compiler to add a code to
gather information about values of expressions.

With ‘~fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operation using the knowledge about the value of the
denominator.

-frename-registers

-ftracer

Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization will most benefit processors
with lots of registers. Depending on the debug information format adopted by
the target, however, it can make debugging impossible, since variables will no
longer stay in a “home register”.

Enabled by default with ‘~funroll-loops’.
Perform tail duplication to enlarge superblock size. This transformation sim-

plifies the control flow of the function allowing other optimizations to do better
job.

Enabled with ‘~fprofile-use’.

-funroll-loops

Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘~frerun-cse-after-loop’,
‘~fweb’ and ‘~frename-registers’. It also turns on complete loop peeling (i.e.
complete removal of loops with small constant number of iterations). This
option makes code larger, and may or may not make it run faster.

Enabled with ‘~fprofile-use’.

90 Using the GNU Compiler Collection (GCC)

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘-~funroll-loops’.

-fpeel-loops
Peels the loops for that there is enough information that they do not roll much
(from profile feedback). It also turns on complete loop peeling (i.e. complete
removal of loops with small constant number of iterations).

Enabled with ‘~fprofile-use’.

-fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled at
level ‘-01’

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

-ffunction-sections

-fdata-sections
Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format and SPARC processors running Solaris 2 have linkers with
such optimizations. AIX may have these optimizations in the future.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and
executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging
if you specify both this option and ‘-g’.

—-fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue
threading. The use of target registers can typically be exposed only during
reload, thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.

-fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue
threading.

-fbtr-bb-exclusive
When performing branch target register load optimization, don’t reuse branch
target registers in within any basic block.

-fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing attacks.
This is done by adding a guard variable to functions with vulnerable objects.

Chapter 3: GCC Command Options 91

This includes functions that call alloca, and functions with buffers larger than
8 bytes. The guards are initialized when a function is entered and then checked
when the function exits. If a guard check fails, an error message is printed and
the program exits.

-fstack-protector-all
Like ‘-fstack-protector’ except that all functions are protected.

-fsection-anchors
Try to reduce the number of symbolic address calculations by using shared
“anchor” symbols to address nearby objects. This transformation can help to
reduce the number of GOT entries and GOT accesses on some targets.

For example, the implementation of the following function foo:

static int a, b, c;

int foo (void) { return a + b + ¢c; }
would usually calculate the addresses of all three variables, but if you compile it
with ‘-fsection-anchors’, it will access the variables from a common anchor
point instead. The effect is similar to the following pseudocode (which isn’t
valid C):

int foo (void)

¢ register int *xr = &x;

return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];

}
Not all targets support this option.

-fremove-local-statics
Converts function-local static variables to automatic variables when it is safe
to do so. This transformation can reduce the number of instructions executed
due to automatic variables being cheaper to read/write than static variables.

--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC will not inline functions that contain more
that a certain number of instructions. You can control some of these constants
on the command-line using the ‘--param’ option.

The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.

In each case, the value is an integer. The allowable choices for name are given
in the following table:

salias-max-implicit-fields
The maximum number of fields in a variable without direct struc-
ture accesses for which structure aliasing will consider trying to
track each field. The default is b

salias-max-array-elements
The maximum number of elements an array can have and its ele-
ments still be tracked individually by structure aliasing. The de-
fault is 4

Using the GNU Compiler Collection (GCC)

sra-max-structure-size
The maximum structure size, in bytes, at which the scalar replace-
ment of aggregates (SRA) optimization will perform block copies.
The default value, 0, implies that GCC will select the most appro-
priate size itself.

sra-field-structure-ratio
The threshold ratio (as a percentage) between instantiated fields
and the complete structure size. We say that if the ratio of the
number of bytes in instantiated fields to the number of bytes in the
complete structure exceeds this parameter, then block copies are
not used. The default is 75.

max-crossjump-edges
The maximum number of incoming edges to consider for crossjump-
ing. The algorithm used by ‘-fcrossjumping’ is O(N?) in the
number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable size.

min-crossjump-insns
The minimum number of instructions which must be matched at
the end of two blocks before crossjumping will be performed on
them. This value is ignored in the case where all instructions in
the block being crossjumped from are matched. The default value
is b.

max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.

max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that
jumps to a computed goto. To avoid O(N?) behavior in a number
of passes, GCC factors computed gotos early in the compilation
process, and unfactors them as late as possible. Only computed
jumps at the end of a basic blocks with no more than max-goto-
duplication-insns are unfactored. The default value is 8.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions is searched, the time savings from filling the delay
slot will be minimal so stop searching. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable run time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register

Chapter 3: GCC Command Options 93

information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time. This param-
eter should be removed when the delay slot code is rewritten to
maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization will not be done.

max-gcse-passes
The maximum number of passes of GCSE to run. The default is 1.

max-pending-list-length
The maximum number of pending dependencies scheduling will al-
low before flushing the current state and starting over. Large func-
tions with few branches or calls can create excessively large lists
which needlessly consume memory and resources.

max-inline-insns-single
Several parameters control the tree inliner used in gce. This num-
ber sets the maximum number of instructions (counted in GCC’s
internal representation) in a single function that the tree inliner
will consider for inlining. This only affects functions declared in-
line and methods implemented in a class declaration (C++). The
default value is 450.

max-inline-insns-auto
When you use ‘~finline-functions’ (included in ‘-03’), a lot of
functions that would otherwise not be considered for inlining by
the compiler will be investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied. The default value is 90.

large-function-insns

The limit specifying really large functions. For functions
larger than this limit after inlining inlining is constrained by
‘--param large-function-growth’. This parameter is useful

primarily to avoid extreme compilation time caused by non-linear
algorithms used by the backend. This parameter is ignored when
‘~funit-at-a-time’ is not used. The default value is 2700.

large-function-growth
Specifies maximal growth of large function caused by inlining in per-
cents. This parameter is ignored when ‘~funit-at-a-time’ is not
used. The default value is 100 which limits large function growth
to 2.0 times the original size.

large-unit-insns
The limit specifying large translation unit. Growth caused by

inlining of units larger than this limit is limited by ‘--param

Using the GNU Compiler Collection (GCC)

inline-unit-growth’. For small units this might be too tight
(consider unit consisting of function A that is inline and B that
just calls A three time. If B is small relative to A, the growth
of unit is 300\% and yet such inlining is very sane. For very
large wunits consisting of small inlininable functions however
the overall unit growth limit is needed to avoid exponential
explosion of code size. Thus for smaller units, the size is increased
to ‘--param large-unit-insns’ before applying ‘--param
inline-unit-growth’. The default is 10000
inline-unit-growth

Specifies maximal overall growth of the compilation unit caused by
inlining. This parameter is ignored when ‘-funit-at-a-time’ is
not used. The default value is 50 which limits unit growth to 1.5
times the original size.

max-inline-insns-recursive

max-inline-insns-recursive-auto
Specifies maximum number of instructions out-of-line copy of self
recursive inline function can grow into by performing recursive in-
lining.
For functions declared inline ‘--param max-inline-insns-recursive’l]
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘~-param max-inline-insns-recursive-auto’}]
is used. The default value is 450.

max-inline-recursive-depth

max-inline-recursive-depth-auto
Specifies maximum recursion depth used by the recursive inlining.
For functions declared inline ‘--param max-inline-recursive-depth’]]
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘--param max-inline-recursive-depth-auto’l]
is used. The default value is 450.

min-inline-recursive—-probability
Recursive inlining is profitable only for function having deep re-
cursion in average and can hurt for function having little recursion
depth by increasing the prologue size or complexity of function
body to other optimizers.
When profile feedback is available (see ‘~fprofile-generate’) the
actual recursion depth can be guessed from probability that func-
tion will recurse via given call expression. This parameter lim-
its inlining only to call expression whose probability exceeds given
threshold (in percents). The default value is 10.

inline-call-cost
Specify cost of call instruction relative to simple arithmetics oper-
ations (having cost of 1). Increasing this cost disqualifies inlining

Chapter 3: GCC Command Options 95

of non-leaf functions and at the same time increases size of leaf
function that is believed to reduce function size by being inlined.
In effect it increases amount of inlining for code having large ab-
straction penalty (many functions that just pass the arguments to
other functions) and decrease inlining for code with low abstraction
penalty. The default value is 16.

max-unrolled-insns
The maximum number of instructions that a loop should have if
that loop is unrolled, and if the loop is unrolled, it determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop should have if that loop is unrolled, and
if the loop is unrolled, it determines how many times the loop code
is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop should have if
that loop is peeled, and if the loop is peeled, it determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

iv-consider-all-candidates-bound
Bound on number of candidates for induction variables below that
all candidates are considered for each use in induction variable op-
timizations. Ounly the most relevant candidates are considered if
there are more candidates, to avoid quadratic time complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain
more induction variable uses.

96

Using the GNU Compiler Collection (GCC)

iv-always-prune-cand-set-bound
If number of candidates in the set is smaller than this value, we
always try to remove unnecessary ivs from the set during its opti-
mization when a new iv is added to the set.

scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

vect-max-version-checks
The maximum number of runtime checks that can be performed
when doing loop versioning in the vectorizer. See option ftree-vect-
loop-version for more information.

max-iterations-to-track
The maximum number of iterations of a loop the brute force algo-
rithm for analysis of # of iterations of the loop tries to evaluate.

hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in
program given basic block needs to have to be considered hot.

hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block
in function given basic block needs to have to be considered hot

max-predicted-iterations
The maximum number of loop iterations we predict statically. This
is useful in cases where function contain single loop with known
bound and other loop with unknown. We predict the known num-
ber of iterations correctly, while the unknown number of iterations
average to roughly 10. This means that the loop without bounds
would appear artificially cold relative to the other one.

tracer-dynamic-coverage

tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.
The ‘tracer-dynamic-coverage-feedback’ is used only when pro-
file feedback is available. The real profiles (as opposed to statically
estimated ones) are much less balanced allowing the threshold to
be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is rather hokey argument, as most of the duplicates will
be eliminated later in cross jumping, so it may be set to much
higher values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

Chapter 3: GCC Command Options 97

tracer-min-branch-ratio

tracer-min-branch-ratio-feedback
Stop forward growth if the best edge do have probability lower than
this threshold.

Similarly to ‘tracer-dynamic-coverage’ two values are present,
one for compilation for profile feedback and one for compilation
without. The value for compilation with profile feedback needs to
be more conservative (higher) in order to make tracer effective.

max-cse-path-length
Maximum number of basic blocks on path that cse considers. The
default is 10.

max-cse-insns
The maximum instructions CSE process before flushing. The de-
fault is 1000.

global-var-threshold
Counts the number of function calls (n) and the number of call-
clobbered variables (v). If nxv is larger than this limit, a single
artificial variable will be created to represent all the call-clobbered
variables at function call sites. This artificial variable will then be
made to alias every call-clobbered variable. (done as int * size_t
on the host machine; beware overflow).

max-aliased-vops
Maximum number of virtual operands allowed to represent aliases
before triggering the alias grouping heuristic. Alias grouping re-
duces compile times and memory consumption needed for aliasing
at the expense of precision loss in alias information.

ggc-min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the no-
tion of "RAM" is the smallest of actual RAM and RLIMIT_DATA or
RLIMIT_AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter
and ‘ggc-min-heapsize’ to zero causes a full collection to occur
at every opportunity. This is extremely slow, but can be useful for
debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins
bothering to collect garbage. The first collection occurs after the
heap expands by ‘ggc-min-expand’% beyond ‘ggc-min-heapsize’.

98

Using the GNU Compiler Collection (GCC)

Again, tuning this may improve compilation speed, and has no
effect on code generation.

The default is the smaller of RAM/8, RLIMIT_RSS, or a limit
which tries to ensure that RLIMIT_DATA or RLIMIT_AS are not
exceeded, but with a lower bound of 4096 (four megabytes) and
an upper bound of 131072 (128 megabytes). If GCC is not able
to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ‘ggc-min-expand’ to zero
causes a full collection to occur at every opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-
timization, making the compile time increase with probably slightly
better performance. The default value is 100.

max-cselib-memory-locations
The maximum number of memory locations cselib should take into
account. Increasing values mean more aggressive optimization,
making the compile time increase with probably slightly better per-
formance. The default value is 500.

max-flow-memory-locations
Similar as ‘max-cselib-memory-locations’ but for dataflow live-
ness. The default value is 100.

reorder-blocks-duplicate

reorder-blocks-duplicate-feedback
Used by basic block reordering pass to decide whether to use un-
conditional branch or duplicate the code on its destination. Code
is duplicated when its estimated size is smaller than this value mul-
tiplied by the estimated size of unconditional jump in the hot spots
of the program.

The ‘reorder-block-duplicate-feedback’ is used only when pro-
file feedback is available and may be set to higher values than
‘reorder-block-duplicate’ since information about the hot spots
is more accurate.

max-sched-ready-insns
The maximum number of instructions ready to be issued the sched-
uler should consider at any given time during the first scheduling
pass. Increasing values mean more thorough searches, making the
compilation time increase with probably little benefit. The default
value is 100.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.

Chapter 3: GCC Command Options 99

max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.

min-spec-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling. The default value is 40.

max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
0 - disable region extension, N - do at most N iterations. The default
value is 0.

max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for spec-
ulative motion. The default value is 3.

sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so
that speculative insn will be scheduled. The default value is 40.

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register. The default is 10000.

integer-share-1limit
Small integer constants can use a shared data structure, reducing
the compiler’s memory usage and increasing its speed. This sets the
maximum value of a shared integer constant’s. The default value

is 256.

min-virtual-mappings
Specifies the minimum number of virtual mappings in the incre-
mental SSA updater that should be registered to trigger the virtual
mappings heuristic defined by virtual-mappings-ratio. The default
value is 100.

virtual-mappings-ratio
If the number of virtual mappings is virtual-mappings-ratio bigger
than the number of virtual symbols to be updated, then the incre-
mental SSA updater switches to a full update for those symbols.
The default ratio is 3.

ssp-buffer-size
The minimum size of buffers (i.e. arrays) that will receive stack
smashing protection when ‘-fstack-protection’ is used.

max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to
be duplicated when threading jumps.

100 Using the GNU Compiler Collection (GCC)

max-fields-for-field-sensitive
Maximum number of fields in a structure we will treat in a field
sensitive manner during pointer analysis.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options
make sense only together with ‘~E’ because they cause the preprocessor output to be un-
suitable for actual compilation.

You can use ‘~Wp,option’ to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor,
and ‘-Wp’ forcibly bypasses this phase. The preprocessor’s direct interface is
undocumented and subject to change, so whenever possible you should avoid
using ‘-Wp’ and let the driver handle the options instead.

-Xpreprocessor option
Pass option as an option to the preprocessor. You can use this to supply system-
specific preprocessor options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘~Xpreprocessor’ twice, once for the option and once for the argument.

-D name Predefine name as a macro, with definition 1.

-D name=definition
The contents of definition are tokenized and processed as if they appeared dur-
ing translation phase three in a ‘#define’ directive. In particular, the definition
will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, ‘-D’name (args...)=definition’’ works.

‘=D’ and ‘-U’ options are processed in the order they are given on the command
line. All ‘-~imacros file’ and ‘-include file’ options are processed after all
‘~D’ and ‘-U’ options.

-U name Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

-undef Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Chapter 3: GCC Command Options 101

-1 dir

-0 file

-Wall

-Wcomment

-Wcomments

Add the directory dir to the list of directories to be searched for header files.
Directories named by ‘-I’ are searched before the standard system include di-
rectories. If the directory dir is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and the
special treatment of system headers are not defeated . If dir begins with =, then
the = will be replaced by the sysroot prefix; see ‘~-sysroot’ and ‘-isysroot’.

Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option
argument, so you must use ‘-0’ to specify the output file.

Turns on all optional warnings which are desirable for normal code. At present
this is ‘-Wcomment’, ‘-Wtrigraphs’, ‘-Wmultichar’ and a warning about integer
promotion causing a change of sign in #if expressions. Note that many of the
preprocessor’s warnings are on by default and have no options to control them.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. (Both forms have
the same effect.)

-Wtrigraphs

Most trigraphs in comments cannot affect the meaning of the program. How-
ever, a trigraph that would form an escaped newline (‘??7/” at the end of a line)
can, by changing where the comment begins or ends. Therefore, only trigraphs
that would form escaped newlines produce warnings inside a comment.

This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option
is still enabled unless trigraphs are enabled. To get trigraph conversion
without warnings, but get the other ‘-Wall’ warnings, use ‘~trigraphs -Wall
-Wno-trigraphs’.

-Wtraditional

—-Wimport
-Wundef

Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and problematic constructs which should be avoided.

Warn the first time ‘#import’ is used.

Warn whenever an identifier which is not a macro is encountered in an ‘#if’
directive, outside of ‘defined’. Such identifiers are replaced with zero.

-Wunused-macros

Warn about macros defined in the main file that are unused. A macro is used if
it is expanded or tested for existence at least once. The preprocessor will also
warn if the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks,
then CPP will report it as unused. To avoid the warning in such a case, you
might improve the scope of the macro’s definition by, for example, moving it

102

Using the GNU Compiler Collection (GCC)

into the first skipped block. Alternatively, you could provide a dummy use with
something like:

#if defined the_macro_causing_the_warning
#endif

-Wendif-labels

-Werror

Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually
happens in code of the form
#if FOO

#éise FOO0

#endif FOO
The second and third FOO should be in comments, but often are not in older
programs. This warning is on by default.

Make all warnings into hard errors. Source code which triggers warnings will
be rejected.

-Wsystem-headers

-w

-pedantic

-pedantic-

Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible for
the system library, you may want to see them.

Suppress all warnings, including those which GNU CPP issues by default.

Issue all the mandatory diagnostics listed in the C standard. Some of them are
left out by default, since they trigger frequently on harmless code.

errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
‘-pedantic’ but treats as warnings.

Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and
the names of all the included files, including those coming from ‘-include’ or
‘~imacros’ command line options.

Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of
the basename of the source file with any suffix replaced with object file suffix.
If there are many included files then the rule is split into several lines using
‘\"-newline. The rule has no commands.

This option does not suppress the preprocessor’s debug output, such as ‘~dM’.
To avoid mixing such debug output with the dependency rules you should ex-
plicitly specify the dependency output file with ‘-MF’, or use an environment
variable like DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables],
page 210). Debug output will still be sent to the regular output stream as
normal.

Passing ‘-M’ to the driver implies ‘-E’, and suppresses warnings with an implicit

—w.

Chapter 3:

-MF file

-MT target

-MQ target

GCC Command Options 103

Like ‘-M’ but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from such
a header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’
dependency output. This is a slight change in semantics from GCC versions
3.0 and earlier.

When used with ‘=M’ or ‘-MM’, specifies a file to write the dependencies to. If
no ‘-MF’ switch is given the preprocessor sends the rules to the same place it
would have sent preprocessed output.

When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default
dependency output file.

In conjunction with an option such as ‘-M’ requesting dependency generation,
‘-MG’ assumes missing header files are generated files and adds them to the
dependency list without raising an error. The dependency filename is taken
directly from the #include directive without prepending any path. ‘-MG’ also
suppresses preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.

This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without updating the
‘Makefile’ to match.

This is typical output:
test.o: test.c test.h

test.h:

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, including any path, deletes any file
suffix such as ‘.c’, and appends the platform’s usual object suffix. The result
is the target.

An ‘-MT’ option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to ‘-MT’, or
use multiple ‘-MT’ options.
For example, ‘-MT ’$(objpfx)foo.0’’ might give

$(objpfx)foo.0: foo.c

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ *$(objpfx)foo.0’’ gives
$$ (objpfx)foo.o: foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

‘-MD’ is equivalent to ‘-M -MF file’, except that ‘-E’ is not implied. The driver
determines file based on whether an ‘-0’ option is given. If it is, the driver uses

104

-MMD

-fpch-deps

Using the GNU Compiler Collection (GCC)

its argument but with a suffix of ‘.d’, otherwise it take the basename of the
input file and applies a ‘.d’ suffix.

If ‘=MD’ is used in conjunction with ‘-E’, any ‘-0’ switch is understood to specify
the dependency output file (see [-MF], page 103), but if used without ‘-E’, each
‘-0’ is understood to specify a target object file.

Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output
file as a side-effect of the compilation process.

Like ‘=MD’ except mention only user header files, not system header files.

When using precompiled headers (see Section 3.20 [Precompiled Headers],
page 212), this flag will cause the dependency-output flags to also list the
files from the precompiled header’s dependencies. If not specified only the
precompiled header would be listed and not the files that were used to create
it because those files are not consulted when a precompiled header is used.

-fpch-preprocess

=X C

-X Cc++

This option allows use of a precompiled header (see Section 3.20 [Precompiled
Headers], page 212) together with ‘-E’. It inserts a special #pragma, #pragma
GCC pch_preprocess "<filename>" in the output to mark the place where the
precompiled header was found, and its filename. When ‘-fpreprocessed’ is in
use, GCC recognizes this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is only
really suitable as input to GCC. It is switched on by ‘~-save-temps’.

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename may
be absolute or it may be relative to GCC’s current directory.

-x objective-c
-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has noth-
ing to do with standards conformance or extensions; it merely selects which
base syntax to expect. If you give none of these options, cpp will deduce the
language from the extension of the source file: ‘.c’, ‘.cc’, *.m’, or ‘.8". Some
other common extensions for C++ and assembly are also recognized. If cpp does
not recognize the extension, it will treat the file as C; this is the most generic

mode.

Note: Previous versions of cpp accepted a ‘~lang’ option which selected both
the language and the standards conformance level. This option has been re-
moved, because it conflicts with the ‘=1’ option.

-std=standard

-ansi

Specify the standard to which the code should conform. Currently CPP knows
about C and C++ standards; others may be added in the future.

standard may be one of:

Chapter 3: GCC Command Options 105

-nostdinc

1509899:1990
c89 The ISO C standard from 1990. ‘c89’ is the customary shorthand
for this version of the standard.

The ‘~ansi’ option is equivalent to ‘~std=c89’.

1s09899:199409
The 1990 C standard, as amended in 1994.

1509899:1999

c99

1s09899:199x

c9x The revised ISO C standard, published in December 1999. Before
publication, this was known as C9X.

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99

gnu9x The 1999 C standard plus GNU extensions.

c++98 The 1998 ISO C++ standard plus amendments.

gnu++98 The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

Split the include path. Any directories specified with ‘I’ options before *-I-’
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with ‘=1’
options after the ‘-I-’, those directories are searched for all ‘#include’ direc-
tives.

In addition, ‘-I-’ inhibits the use of the directory of the current file direc-
tory as the first search directory for #include "file". This option has been
deprecated.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I’ options (and the directory of the current file,
if appropriate) are searched.

-nostdinc++

Do not search for header files in the C++-specific standard directories, but do
still search the other standard directories. (This option is used when building
the C++ library.)

—-include file

Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple ‘-include’ options are given, the files are included in the order they
appear on the command line.

106 Using the GNU Compiler Collection (GCC)

-imacros file
Exactly like ‘-include’, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

All files specified by ‘-imacros’ are processed before all files specified by
‘~include’.

-idirafter dir
Search dir for header files, but do it after all directories specified with ‘-I’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘~-sysroot’ and ‘-isysroot’.

-iprefix prefix
Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final /.

-iwithprefix dir

-iwithprefixbefore dir
Append dir to the prefix specified previously with ‘-iprefix’, and add the
resulting directory to the include search path. ‘-iwithprefixbefore’ puts it
in the same place ‘I’ would; ‘~iwithprefix’ puts it where ‘-idirafter’ would.

—-isysroot dir
This option is like the ‘~-sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.
-imultilib dir
Use dir as a subdirectory of the directory containing target-specific C++ headers.
-isystem dir
Search dir for header files, after all directories specified by ‘-I' but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘--sysroot’
and ‘-isysroot’.

-iquote dir
Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-1’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘~isysroot’.

-fdollars-in-identifiers
Accept ‘$’ in identifiers.

-fextended-identifiers
Accept universal character names in identifiers. This option is experimental; in

a future version of GCC, it will be enabled by default for C99 and C++.

—-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-

Chapter 3: GCC Command Options 107

line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘-C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.

‘~fpreprocessed’ is implicit if the input file has one of the extensions ‘.1i’,

“.ii’ or ‘.mi’. These are the extensions that GCC uses for preprocessed files
created by ‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-fexec-charset=charset
Set the execution character set, used for string and character constants. The
default is UTF-8. charset can be any encoding supported by the system’s iconv
library routine.

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character con-
stants. The default is UTF-32 or UTF-16, whichever corresponds to the width
of wchar_t. As with ‘~fexec-charset’, charset can be any encoding supported
by the system’s iconv library routine; however, you will have problems with
encodings that do not fit exactly in wchar_t.

-finput-charset=charset
Set the input character set, used for translation from the character set of the
input file to the source character set used by GCC. If the locale does not specify,
or GCC cannot get this information from the locale, the default is UTF-8. This
can be overridden by either the locale or this command line option. Currently
the command line option takes precedence if there’s a conflict. charset can be
any encoding supported by the system’s iconv library routine.

—-fworking-directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it’s present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

108

Using the GNU Compiler Collection (GCC)

—-A predicate=answer

Make an assertion with the predicate predicate and answer answer. This form is
preferred to the older form ‘-A predicate (answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer

—-dCHARS

-CC

Cancel an assertion with the predicate predicate and answer answer.

CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the compiler
proper, or reserved for future versions of GCC, and so are silently ignored. If
you specify characters whose behavior conflicts, the result is undefined.

M Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.
‘D’ Like ‘M except in two respects: it does not include the predefined

macros, and it outputs both the ‘#define’ directives and the result
of preprocessing. Both kinds of output go to the standard output

file.

‘N Like ‘D’, but emit only the macro names, not their expansions.

‘T Output ‘#include’ directives in addition to the result of prepro-
cessing.

Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#.

Do not discard comments, including during macro expansion. This is like ‘~C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line.

The ‘-CC’ option is generally used to support lint comments.

Chapter 3: GCC Command Options 109

-traditional-cpp
Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO
C preprocessors.

-trigraphs
Process trigraph sequences. These are three-character sequences, all starting
with ‘777, that are defined by ISO C to stand for single characters. For example,
‘??/’ stands for ‘\’, so ???/n’’ is a character constant for a newline. By default,
GCC ignores trigraphs, but in standard-conforming modes it converts them. See
the ‘-std’ and ‘-ansi’ options.

The nine trigraphs and their replacements are

Trigraph: ?7(?7) 7T 77> 77= 77/ 777 77! 77-
Replacement: [] { } # \ - | ~
-remap Enable special code to work around file systems which only permit very short

file names, such as MS-DOS.

--help

--target-help
Print text describing all the command line options instead of preprocessing
anything.

-v Verbose mode. Print out GNU CPP’s version number at the beginning of
execution, and report the final form of the include path.

-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ‘#include’ stack it is. Precom-
piled header files are also printed, even if they are found to be invalid; an invalid
precompiled header file is printed with ‘.. .x’ and a valid one with *...!" .

-version

--version
Print out GNU CPP’s version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.

3.12 Passing Options to the Assembler
You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option
Pass option as an option to the assembler. You can use this to supply system-
specific assembler options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘-Xassembler’ twice, once for the option and once for the argument.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

110 Using the GNU Compiler Collection (GCC)

object-file-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 3.2 [Overall Options], page 18.

-llibrary

-1 library
Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)

It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.0 -1z bar.o’ searches library ‘z’ after file ‘foo.o’ but before
‘par.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify with ‘-L’.

Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-1’ option and specifying a file
name is that ‘-1’ surrounds library with ‘1ib’ and ‘.a’ and searches several
directories.

-lobjc You need this special case of the ‘=1’ option in order to link an Objective-C or
Objective-C++ program.

-nostartfiles
Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs
Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup files are used normally,
unless ‘-nostartfiles’ is used. The compiler may generate calls to memcmp,
memset, memcpy and memmove. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other mechanism
when this option is specified.

Chapter 3: GCC Command Options 111

-nostdlib

-pie

-rdynamic

=S

-static

-shared

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker. The
compiler may generate calls to memcmp, memset, memcpy and memmove. These
entries are usually resolved by entries in libc. These entry points should be
supplied through some other mechanism when this option is specified.

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines that GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of ‘1libgcc.a’.) In most cases, you need ‘libgcc.a’
even when you want to avoid other standard libraries. In other words, when you
specify ‘-nostdlib’ or ‘-nodefaultlibs’ you should usually specify ‘-1gcc’ as
well. This ensures that you have no unresolved references to internal GCC
library subroutines. (For example, ‘__main’, used to ensure C++ constructors
will be called; see section “collect2” in GNU Compiler Collection (GCC) In-
ternals.)

Produce a position independent executable on targets which support it. For
predictable results, you must also specify the same set of options that were
used to generate code (‘-fpie’, ‘~fPIE’, or model suboptions) when you specify
this option.

Pass the flag ‘~export-dynamic’ to the ELF linker, on targets that support
it. This instructs the linker to add all symbols, not only used ones, to the
dynamic symbol table. This option is needed for some uses of dlopen or to
allow obtaining backtraces from within a program.

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options that were used to generate code
(‘-fpic’, ‘-fPIC’, or model suboptions) when you specify this option.!

-shared-libgcc
-static-libgcc

On systems that provide ‘1ibgcc’ as a shared library, these options force the
use of either the shared or static version respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.

1 On some systems, ‘gcc —-shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.

112

-symbolic

Using the GNU Compiler Collection (GCC)

There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘libgcc’.

Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’
whenever you build a shared library or a main executable, because C++ and
Java programs typically use exceptions, so this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may find
that they will not always be linked with the shared ‘1ibgcc’. If GCC finds, at
its configuration time, that you have a non-GNU linker or a GNU linker that
does not support option ‘-—eh-frame-hdr’, it will link the shared version of
‘libgcc’ into shared libraries by default. Otherwise, it will take advantage of
the linker and optimize away the linking with the shared version of ‘libgcc’,
linking with the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation costs at
library load time.

However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ or GCJ driver, as appropriate for the
languages used in the program, or using the option ‘-shared-libgcc’, such
that it is linked with the shared ‘libgcc’.

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-X1linker
-z -Xlinker defs’). Only a few systems support this option.

-Xlinker option

-Wl,option

-u symbol

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to
pass ‘-assert definitions’, you must write ‘~-Xlinker -assert -Xlinker
definitions’. It does not work to write ‘~-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what

the linker expects.

Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

Chapter 3: GCC Command Options 113

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the

compiler:

-Idir

Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘-isystem’ for that). If you
use more than one ‘-1’ option, the directories are scanned in left-to-right order;
the standard system directories come after.

If a standard system include directory, or a directory specified with ‘-isystem’,
is also specified with ‘=I’, the ‘-I’ option will be ignored. The directory will
still be searched but as a system directory at its normal position in the system
include chain. This is to ensure that GCC’s procedure to fix buggy system
headers and the ordering for the include_next directive are not inadvertently
changed. If you really need to change the search order for system directories,
use the ‘-nostdinc’ and/or ‘~isystem’ options.

-iquotedir

-Ldir

-Bprefix

Add the directory dir to the head of the list of directories to be searched for
header files only for the case of ‘#include "file"’; they are not searched for
‘#include <file>’, otherwise just like ‘-I’.

Add directory dir to the list of directories to be searched for ‘-1’

This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘ccl’,
‘as’ and ‘1d’. Tt tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options], page 121).

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if
any. If that name is not found, or if ‘-B’ was not specified, the driver tries two
standard prefixes, which are ‘/usr/1ib/gcc/’ and ‘/usr/local/lib/gcc/’. If
neither of those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your PATH environment
variable.

The compiler will check to see if the path provided by the ‘-B’ refers to a
directory, and if necessary it will add a directory separator character at the end
of the path.

‘-B’ prefixes that effectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to includes files in the preprocessor, because the
compiler translates these options into ‘-isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.

The run-time support file ‘1ibgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are

114

Using the GNU Compiler Collection (GCC)

tried, and that is all. The file is left out of the link if it is not found by those
means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables],
page 210.

As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N
is a number in the range 0 to 9, then it will be replaced by ‘[dir/]include’.
This is to help with boot-strapping the compiler.

-specs=file

Process file after the compiler reads in the standard ‘specs’ file, in order
to override the defaults that the ‘gcc’ driver program uses when determin-
ing what switches to pass to ‘ccl’, ‘cclplus’, ‘as’, ‘1d’, etc. More than one
‘-specs=file’ can be specified on the command line, and they are processed
in order, from left to right.

--sysroot=dir

-I-

Use dir as the logical root directory for headers and libraries. For example, if
the compiler would normally search for headers in ‘/usr/include’ and libraries
in ‘/usr/1ib’, it will instead search ‘dir/usr/include’ and ‘dir/usr/1lib’.

If you use both this option and the ‘-isysroot’ option, then the ‘--sysroot’

option will apply to libraries, but the ‘-isysroot’ option will apply to header
files.

The GNU linker (beginning with version 2.16) has the necessary support for
this option. If your linker does not support this option, the header file aspect
of ‘~-sysroot’ will still work, but the library aspect will not.

3 4

This option has been deprecated. Please use ‘-iquote’ instead for ‘-I’ direc-
tories before the ‘-I-’ and remove the ‘-I-’. Any directories you specify with
‘-1’ options before the ‘-~I-’ option are searched only for the case of ‘#include
"file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘-=I’ options after the ‘~I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-1’ direc-
tories are used this way.)

In addition, the ‘-I-> option inhibits the use of the current directory (where
the current input file came from) as the first search directory for ‘#include
"file"’. There is no way to override this effect of ‘-I-". With ‘-I.’ you
can specify searching the directory which was current when the compiler was
invoked. That is not exactly the same as what the preprocessor does by default,
but it is often satisfactory.

‘~I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-" and ‘-nostdinc’ are independent.

3.15 Specifying subprocesses and the switches to pass to

them

gec is a driver program. It performs its job by invoking a sequence of other programs to do
the work of compiling, assembling and linking. GCC interprets its command-line parameters

Chapter 3: GCC Command Options 115

and uses these to deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled by spec sirings. In
most cases there is one spec string for each program that GCC can invoke, but a few
programs have multiple spec strings to control their behavior. The spec strings built into
GCC can be overridden by using the ‘-specs=" command-line switch to specify a spec file.

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the
first non-whitespace character on the line and it can be one of the following:

hcommand Issues a command to the spec file processor. The commands that can appear
here are:

%include <file>
Search for file and insert its text at the current point in the specs
file.

%hinclude_noerr <file>
Just like ‘%include’, but do not generate an error message if the
include file cannot be found.

hrename old_name new_name
Rename the spec string old_name to new_name.

*[spec_name] :

This tells the compiler to create, override or delete the named spec string. All
lines after this directive up to the next directive or blank line are considered
to be the text for the spec string. If this results in an empty string then the
spec will be deleted. (Or, if the spec did not exist, then nothing will happened.)
Otherwise, if the spec does not currently exist a new spec will be created. If the
spec does exist then its contents will be overridden by the text of this directive,
unless the first character of that text is the ‘4’ character, in which case the text
will be appended to the spec.

[suffix]:

Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the
next directive or blank line are considered to make up the spec string for the
indicated suffix. When the compiler encounters an input file with the named
suffix, it will processes the spec string in order to work out how to compile that
file. For example:

JZZ:

z-compile -input %i
This says that any input file whose name ends in ‘.ZZ’ should be passed to the
program ‘z-compile’, which should be invoked with the command-line switch
‘~input’ and with the result of performing the ‘%i’ substitution. (See below.)

As an alternative to providing a spec string, the text that follows a suffix di-
rective can be one of the following:

@language
This says that the suffix is an alias for a known language. This is
similar to using the ‘-x’ command-line switch to GCC to specify a
language explicitly. For example:

116 Using the GNU Compiler Collection (GCC)

\ZZ:
Qc++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:

name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive will
add an entry to the end of the list of suffixes, but since the list is searched from
the end backwards, it is effectively possible to override earlier entries using this
technique.

GCC has the following spec strings built into it. Spec files can override these strings or
create their own. Note that individual targets can also add their own spec strings to this
list.

asm Options to pass to the assembler

asm_final Options to pass to the assembler post-processor

cpp Options to pass to the C preprocessor

ccl Options to pass to the C compiler

cclplus Options to pass to the C++ compiler

endfile Object files to include at the end of the link

link Options to pass to the linker

1lib Libraries to include on the command line to the linker
libgcc Decides which GCC support library to pass to the linker
linker Sets the name of the linker

predefines Defines to be passed to the C preprocessor
signed_char Defines to pass to CPP to say whether char is signed
by default
startfile Object files to include at the start of the link
Here is a small example of a spec file:

Jrename 1lib old_lib

*1ib:
--start-group -lgcc -lc -levall --end-group %(old_lib)
This example renames the spec called ‘1ib’ to ‘o1d_1ib’ and then overrides the previous
definition of ‘1ib’ with a new one. The new definition adds in some extra command-line
options before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding pro-
gram. In addition, the spec strings can contain ‘% -prefixed sequences to substitute variable
text or to conditionally insert text into the command line. Using these constructs it is
possible to generate quite complex command lines.

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not
generated automatically around the results of expanding these sequences. Therefore you
can concatenate them together or combine them with constant text in a single argument.

W Substitute one ‘%’ into the program name or argument.
i Substitute the name of the input file being processed.
b Substitute the basename of the input file being processed. This is the substring

up to (and not including) the last period and not including the directory.
%B This is the same as ‘)%b’, but include the file suffix (text after the last period).

Chapter 3: GCC Command Options 117

hd

hgsuffix

Yusuffix

Wsuffix

hjsuffix

% suffix
Ymsuffix

%.SUFFIX

Yw

%o

%0

Marks the argument containing or following the ‘%d’ as a temporary file name,
so that that file will be deleted if GCC exits successfully. Unlike ‘%g’, this
contributes no text to the argument.

Substitute a file name that has suffix suffix and is chosen once per compilation,
and mark the argument in the same way as ‘%id’. To reduce exposure to denial-
of-service attacks, the file name is now chosen in a way that is hard to predict
even when previously chosen file names are known. For example, ‘%g.s ...
hg.o ... %g.s’ might turn into ‘ccUVUUAU.s ccXYAXZ12.0 ccUVUUAU.s’. suffix
matches the regexp ‘[.A-Za-z]*’ or the special string ‘%0’, which is treated
exactly as if ‘%0’ had been preprocessed. Previously, ‘%g’ was simply substituted
with a file name chosen once per compilation, without regard to any appended
suffix (which was therefore treated just like ordinary text), making such attacks
more likely to succeed.

Like ‘%g’, but generates a new temporary file name even if ‘fusuffix’ was
already seen.

Substitutes the last file name generated with ‘4busuffix’, generating a new one
if there is no such last file name. In the absence of any ‘%usuffix’, this is
just like ‘%gsuffix’, except they don’t share the same suffix space, so ‘%g.s
... WU.s ... %g.s ... %U.s’ would involve the generation of two distinct file
names, one for each ‘Yg.s’ and another for each ‘4U.s’. Previously, ‘4U" was
simply substituted with a file name chosen for the previous ‘%u’, without regard
to any appended suffix.

Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and
if save-temps is off; otherwise, substitute the name of a temporary file, just like
‘%u’. This temporary file is not meant for communication between processes,
but rather as a junk disposal mechanism.

Like ‘%g’, except if ‘-pipe’ is in effect. In that case ‘%|’ substitutes a single
dash and ‘%m’ substitutes nothing at all. These are the two most common
ways to instruct a program that it should read from standard input or write
to standard output. If you need something more elaborate you can use an
“%{pipe:X}’ construct: see for example ‘f/lang-specs.h’.

Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is
subsequently output with *%*’. SUFFIX is terminated by the next space or %.

Marks the argument containing or following the ‘“%w’ as the designated output
file of this compilation. This puts the argument into the sequence of arguments
that ‘%o’ will substitute later.

Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%0’ as well or the results are
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose
names have no recognized suffix are not compiled at all, but they are included
among the output files, so they will be linked.

Substitutes the suffix for object files. Note that this is handled specially when
it immediately follows ‘%g, %u, or %U’, because of the need for those to form

118 Using the GNU Compiler Collection (GCC)
complete file names. The handling is such that ‘%0’ is treated exactly as if it
had already been substituted, except that ‘%g, %u, and %U’ do not currently
support additional suffix characters following ‘%0’ as they would following, for
example, ‘.0,

hp Substitutes the standard macro predefinitions for the current target machine.
Use this when running cpp.

%P Like ‘%p’, but puts ‘__’ before and after the name of each predefined macro,
except for macros that start with ‘__" or with ‘_L’, where L is an uppercase
letter. This is for ISO C.

A Substitute any of ‘-iprefix’ (made from GCC_EXEC_PREFIX), ‘-isysroot’
(made from TARGET_SYSTEM_ROOT), ‘-isystem’ (made from COMPILER_PATH
and ‘-B’ options) and ‘-imultilib’ as necessary.

%s Current argument is the name of a library or startup file of some sort. Search
for that file in a standard list of directories and substitute the full name found.

%hestr Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

%(name) Substitute the contents of spec string name at this point.

%[name] Like ‘% (...)" but put ‘__" around ‘-D’ arguments.

%x{option}

Accumulate an option for ‘}%X’.

%X Output the accumulated linker options specified by ‘-=W1’ or a ‘%x’ spec string.

WY Output the accumulated assembler options specified by ‘-Wa’.

hZ Output the accumulated preprocessor options specified by ‘-Wp’.

%ha Process the asm spec. This is used to compute the switches to be passed to the
assembler.

%A Process the asm_final spec. This is a spec string for passing switches to an
assermbler post-processor, if such a program is needed.

YAl Process the 1ink spec. This is the spec for computing the command line passed
to the linker. Typically it will make use of the ‘4L %G %S %D and %E’ sequences.

%D Dump out a ‘-L’ option for each directory that GCC believes might contain
startup files. If the target supports multilibs then the current multilib directory
will be prepended to each of these paths.

%L Process the 1ib spec. This is a spec string for deciding which libraries should
be included on the command line to the linker.

%G Process the libgcc spec. This is a spec string for deciding which GCC support
library should be included on the command line to the linker.

%S Process the startfile spec. This is a spec for deciding which object files

should be the first ones passed to the linker. Typically this might be a file
named ‘crt0.0’.

Chapter 3: GCC Command Options 119

hE

%C

hl

h2

yAS

%<8

Process the endfile spec. This is a spec string that specifies the last object
files that will be passed to the linker.

Process the cpp spec. This is used to construct the arguments to be passed to
the C preprocessor.

Process the ccl spec. This is used to construct the options to be passed to the
actual C compiler (‘ccl’).

Process the cclplus spec. This is used to construct the options to be passed
to the actual C++ compiler (‘cciplus’).

Substitute the variable part of a matched option. See below. Note that each
comma in the substituted string is replaced by a single space.

Remove all occurrences of =S from the command line. Note—this command is
position dependent. ‘%’ commands in the spec string before this one will see -8,
‘% commands in the spec string after this one will not.

%:function (args)

Call the named function function, passing it args. args is first processed as a
nested spec string, then split into an argument vector in the usual fashion. The
function returns a string which is processed as if it had appeared literally as
part of the current spec.

The following built-in spec functions are provided:

if-exists
The if-exists spec function takes one argument, an absolute
pathname to a file. If the file exists, if-exists returns the path-
name. Here is a small example of its usage:
*startfile:
crt0,0%s %:if-exists(crtil0%s) crtbegin%0%s
if-exists-else
The if-exists-else spec function is similar to the if-exists spec
function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, if-exists-else
returns the pathname. If it does not exist, it returns the second
argument. This way, if-exists-else can be used to select one
file or another, based on the existence of the first. Here is a small
example of its usage:
*startfile:
crt0%0%s %:if-exists(crti%0%s) \
%:if-exists-else(crtbeginTy0%s crtbegini0s)
replace-outfile
The replace-outfile spec function takes two arguments. It looks
for the first argument in the outfiles array and replaces it with the
second argument. Here is a small example of its usage:
%{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}

print-asm-header
The print-asm-header function takes no arguments and simply
prints a banner like:

120

h{s}

m{s}

Hh{S*}

%{S*&T*}

%{S:X}
%{18:X}
%{S*:X}

%{.S:X}
%{!.8:X}
%{SIP:X}

Using the GNU Compiler Collection (GCC)

Assember options

Use "-Wa,0OPTION" to pass "OPTION" to the assembler.

It is used to separate compiler options from assembler options in
the ‘--target-help’ output.

Substitutes the -S switch, if that switch was given to GCC. If that switch was
not specified, this substitutes nothing. Note that the leading dash is omitted
when specifying this option, and it is automatically inserted if the substitution
is performed. Thus the spec string ‘4{foo}’ would match the command-line
option ‘-foo’ and would output the command line option ‘~foo’.

Like %{S} but mark last argument supplied within as a file to be deleted on
failure.

Substitutes all the switches specified to GCC whose names start with -S, but
which also take an argument. This is used for switches like ‘-o’, ‘-D’, ‘-I’,
etc. GCC considers ‘-o foo’ as being one switch whose names starts with ‘o’.
%{0*} would substitute this text, including the space. Thus two arguments
would be generated.

Like %{S*}, but preserve order of S and T options (the order of S and T in
the spec is not significant). There can be any number of ampersand-separated
variables; for each the wild card is optional. Useful for CPP as ‘% {D*&Ux&Ax*}’.

Substitutes X, if the ‘=S’ switch was given to GCC.
Substitutes X, if the ‘=S’ switch was not given to GCC.

Substitutes X if one or more switches whose names start with -8 are specified to
GCC. Normally X is substituted only once, no matter how many such switches
appeared. However, if %* appears somewhere in X, then X will be substituted
once for each matching switch, with the %* replaced by the part of that switch
that matched the *.

Substitutes X, if processing a file with suffix S.
Substitutes X, if not processing a file with suffix S.

Substitutes X if either -S or -P was given to GCC. This may be combined with
‘17 ¢’ and * sequences as well, although they have a stronger binding than
the ‘1’. If %* appears in X, all of the alternatives must be starred, and only the

first matching alternative is substituted.

For example, a spec string like this:
%{.c:-foo} %{!.c:-bar} %{.cld:-baz} %{!.cld:-boggle}

will output the following command-line options from the following input
command-line options:

fred.c -foo -baz
jim.d -bar -boggle
-d fred.c -foo -baz -boggle

-d jim.d -bar -baz -boggle

Chapter 3: GCC Command Options 121

%{S:X; T:Y; :D}
If S was given to GCC, substitutes X; else if T was given to GCC, substitutes
Y; else substitutes D. There can be as many clauses as you need. This may be
combined with ., !, |, and * as needed.

The conditional text X in a %{S:X} or similar construct may contain other nested ‘%’
constructs or spaces, or even newlines. They are processed as usual, as described above.
Trailing white space in X is ignored. White space may also appear anywhere on the left side
of the colon in these constructs, except between . or * and the corresponding word.

The ‘-0°, ‘-f’, ‘-m’, and ‘-W’ switches are handled specifically in these constructs. If
another value of ‘-0’ or the negated form of a ‘-f’, ‘-m’, or ‘W switch is found later in
the command line, the earlier switch value is ignored, except with {S*} where 8 is just one
letter, which passes all matching options.

The character ‘|’ at the beginning of the predicate text is used to indicate that a command
should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches
take arguments. But this cannot be done in a consistent fashion. GCC cannot even decide
which input files have been specified without knowing which switches take arguments, and
it must know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘=1’ are to be treated as compiler
output files, and passed to the linker in their proper position among the other output files.

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called ‘gcc’, or ‘<machine>-gcc’ when
cross-compiling, or ‘<machine>-gcc-<version>’ to run a version other than the one that
was installed last. Sometimes this is inconvenient, so GCC provides options that will switch
to another cross-compiler or version.

-b machine
The argument machine specifies the target machine for compilation.

The value to use for machine is the same as was specified as the machine type
when configuring GCC as a cross-compiler. For example, if a cross-compiler was
configured with ‘configure arm-elf’, meaning to compile for an arm processor
with elf binaries, then you would specify ‘-b arm-elf’ to run that cross com-
piler. Because there are other options beginning with ‘-b’, the configuration
must contain a hyphen.

-V version
The argument version specifies which version of GCC to run. This is useful
when multiple versions are installed. For example, version might be ‘4.0,
meaning to run GCC version 4.0.

The ‘-V’ and ‘-b’ options work by running the ‘<machine>-gcc-<version>’ executable,
so there’s no real reason to use them if you can just run that directly.

122 Using the GNU Compiler Collection (GCC)

3.17 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’” which chooses among different installed com-
pilers for completely different target machines, such as VAX vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting
with ‘-m’, to choose among various hardware models or configurations—for example, 68010
vs 68020, floating coprocessor or none. A single installed version of the compiler can compile
for any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

3.17.1 ARC Options

These options are defined for ARC implementations:
-EL Compile code for little endian mode. This is the default.
-EB Compile code for big endian mode.

-mmangle-cpu
Prepend the name of the c¢pu to all public symbol names. In multiple-processor
systems, there are many ARC variants with different instruction and register
set characteristics. This flag prevents code compiled for one cpu to be linked
with code compiled for another. No facility exists for handling variants that
are “almost identical”. This is an all or nothing option.

-mcpu=cpu
Compile code for ARC variant cpu. Which variants are supported depend on
the configuration. All variants support ‘-mcpu=base’, this is the default.

-mtext=text-section

-mdata=data-section

-mrodata=readonly-data-section
Put functions, data, and readonly data in text-section, data-section, and
readonly-data-section respectively by default. This can be overridden with the
section attribute. See Section 5.32 [Variable Attributes|, page 261.

3.17.2 ARM Options
These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

-mabi=name
Generate code for the specified ABL. Permissible values are: ‘apcs-gnu’,
‘atpcs’, ‘aapcs’, ‘aapcs-linux’ and ‘iwmmxt’.

-mapcs—frame
Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execu-
tion of the code. Specifying ‘-fomit-frame-pointer’ with this option will
cause the stack frames not to be generated for leaf functions. The default is
‘-mno-apcs-frame’.

-mapcs This is a synonym for ‘-mapcs-frame’.

Chapter 3: GCC Command Options 123

-mthumb-interwork
Generate code which supports calling between the ARM and Thumb instruction
sets. Without this option the two instruction sets cannot be reliably used inside
one program. The default is ‘-mno-thumb-interwork’, since slightly larger code
is generated when ‘-mthumb-interwork’ is specified.

-mno-sched-prolog
Prevent the reordering of instructions in the function prolog, or the merging of
those instruction with the instructions in the function’s body. This means that
all functions will start with a recognizable set of instructions (or in fact one of
a choice from a small set of different function prologues), and this information
can be used to locate the start if functions inside an executable piece of code.
The default is ‘-msched-prolog’.

-mhard-float
Generate output containing floating point instructions. This is the default.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all ARM targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mfloat-abi=name
Specifies which ABI to use for floating point values. Permissible values are:
‘soft’, ‘softfp’ and ‘hard’.

‘soft’ and ‘hard’ are equivalent to ‘-msoft-float’ and ‘-mhard-float’ re-
spectively. ‘softfp’ allows the generation of floating point instructions, but
still uses the soft-float calling conventions.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default
for all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor.

-mwords-little-endian
This option only applies when generating code for big-endian processors. Gen-
erate code for a little-endian word order but a big-endian byte order. That is,
a byte order of the form ‘32107654’. Note: this option should only be used if
you require compatibility with code for big-endian ARM processors generated
by versions of the compiler prior to 2.8.

124 Using the GNU Compiler Collection (GCC)

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to
determine what kind of instructions it can emit when generating assembly
code. Permissible names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘armé’, ‘arm60’,
‘arm600’, ‘arm610’, ‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’,
‘arm7dmi’, ‘arm70’, ‘arm700’, ‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’,
‘arm7500’, ‘arm7500fe’, ‘arm7tdmi’, ‘arm7tdmi-s’, ‘arm8’, ‘strongarm’,
‘strongarml110’, ‘strongarml1100’, ‘arm8’, ‘arm810’, ‘arm9’, ‘arm9e’,
‘arm920’, ‘arm920t’, ‘arm922t’, ‘arm946e-s’, ‘arm966e-s’, ‘arm968e-g’,
‘arm926ej-s’, ‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’, ‘arm1020t’, ‘arm1026ej-s’,
‘arm10e’, ‘arm1020e’, ‘arm1022e’, ‘arm1136j-s’, ‘arm1136jf-s’, ‘mpcore’,
‘mpcorenovfp’, ‘armll76jz-s’, ‘arml176jzf-s’, ‘mpcore’, ‘mpcorenovfp’
‘arm1156t2-s’, ‘cortex-a8’, ‘cortex-rd’, ‘cortex-m3’, ‘xscale’, ‘iwmmxt’,
‘ep9312’, ‘marvell-f’.

-mtune=name
This option is very similar to the ‘-mcpu=’ option, except that instead of speci-
fying the actual target processor type, and hence restricting which instructions
can be used, it specifies that GCC should tune the performance of the code as
if the target were of the type specified in this option, but still choosing the in-
structions that it will generate based on the cpu specified by a ‘-mcpu=" option.
For some ARM implementations better performance can be obtained by using
this option.

-march=name
This specifies the name of the target ARM architecture. GCC uses this name
to determine what kind of instructions it can emit when generating assembly
code. This option can be used in conjunction with or instead of the ‘-mcpu=’
option. Permissible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’,
‘armv4t’, ‘armvb’, ‘armvbt’, ‘armvbte’, ‘armvé’, ‘armv6j’, ‘armvét2’, ‘armvéz’,
‘armv6zk’, ‘armv7’, ‘armv7-a’, ‘armv7-r’, ‘armv7-m’, ‘iwmmxt’, ‘ep9312’.

-mfpu=name

-mfpe=number

-mfp=number
This specifies what floating point hardware (or hardware emulation) is available
on the target. Permissible names are: ‘fpa’, ‘fpe2’, ‘fpe3’, ‘maverick’, ‘vfp’.
‘-mfp’ and ‘-mfpe’ are synonyms for ‘-mfpu’=‘fpe’number, for compatibility
with older versions of GCC.

If ‘-msoft-float’ is specified this specifies the format of floating point values.

-mmarvell-div
Generate hardware integer division instructions supported by some Marvell
cores.

-mstructure-size-boundary=n
The size of all structures and unions will be rounded up to a multiple of the
number of bits set by this option. Permissible values are 8, 32 and 64. The
default value varies for different toolchains. For the COFF targeted toolchain

Chapter 3: GCC Command Options 125

the default value is 8. A value of 64 is only allowed if the underlying ABI
supports it.

Specifying the larger number can produce faster, more efficient code, but can
also increase the size of the program. Different values are potentially incompati-
ble. Code compiled with one value cannot necessarily expect to work with code
or libraries compiled with another value, if they exchange information using
structures or unions.

-mabort-on-noreturn
Generate a call to the function abort at the end of a noreturn function. It
will be executed if the function tries to return.

-mlong-calls

-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function will lie outside of the 64 megabyte
addressing range of the offset based version of subroutine call instruction.

Even if this switch is enabled, not all function calls will be turned into long calls.
The heuristic is that static functions, functions which have the ‘short-call’
attribute, functions that are inside the scope of a ‘#pragma no_long_calls’
directive and functions whose definitions have already been compiled within
the current compilation unit, will not be turned into long calls. The exception
to this rule is that weak function definitions, functions with the ‘long-call’
attribute or the ‘section’ attribute, and functions that are within the scope of
a ‘#pragma long_calls’ directive, will always be turned into long calls.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behavior, as will placing the function calls within the scope of
a ‘#pragma long_calls_off’ directive. Note these switches have no effect on
how the compiler generates code to handle function calls via function pointers.

-mnop-fun-dllimport
Disable support for the d1limport attribute.

-msingle-pic-base
Treat the register used for PIC addressing as read-ounly, rather than loading
it in the prologue for each function. The run-time system is responsible for
initializing this register with an appropriate value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless
stack-checking is enabled, when R9 is used.

-mcirrus-fix-invalid-insns
Insert NOPs into the instruction stream to in order to work around problems
with invalid Maverick instruction combinations. This option is only valid if the
‘-mcpu=ep9312’ option has been used to enable generation of instructions for
the Cirrus Maverick floating point co-processor. This option is not enabled by
default, since the problem is only present in older Maverick implementations.

126 Using the GNU Compiler Collection (GCC)

The default can be re-enabled by use of the ‘-mno-cirrus-fix-invalid-insns’
switch.

-mpoke-function-name
Write the name of each function into the text section, directly preceding the
function prologue. The generated code is similar to this:
t0
.ascii "arm_poke_function_name", 0
.align
t1
.word O0xff000000 + (t1 - tO)
arm_poke_function_name

mov ip, sp
stmfd sp!, {fp, ip, 1lr, pc}
sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at
fp + 0. If the trace function then looks at location pc - 12 and the top 8 bits
are set, then we know that there is a function name embedded immediately
preceding this location and has length ((pc[-3]) & 0x££000000).

-mthumb Generate code for the 16-bit Thumb instruction set. The default is to use the
32-bit ARM instruction set.

-mtpcs—frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all non-leaf functions. (A leaf function is one that does not call any
other functions.) The default is ‘-mno-tpcs-frame’.

-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM instruc-
tion set header which switches to Thumb mode before executing the rest of the
function. This allows these functions to be called from non-interworking code.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute cor-
rectly regardless of whether the target code has been compiled for interworking
or not. There is a small overhead in the cost of executing a function pointer if
this option is enabled.

-mtp=name
Specify the access model for the thread local storage pointer. The valid models
are ‘soft’, which generates calls to __aeabi_read_tp, ‘cpl5’, which fetches the
thread pointer from cp15 directly (supported in the arm6k architecture), and
‘auto’, which uses the best available method for the selected processor. The
default setting is ‘auto’.

-mlow-irqg-latency
Avoid instructions with high interrupt latency when generating code. This can
increase code size and reduce performance. The option is off by default.

Chapter 3: GCC Command Options 127

3.17.3 AVR Options
These options are defined for AVR implementations:

—-mmcu=mcu
Specify ATMEL AVR instruction set or MCU type.

Instruction set avrl is for the minimal AVR core, not supported by the C com-
piler, only for assembler programs (MCU types: at90s1200, attiny10, attiny11,
attiny12, attinyl5, attiny28).

Instruction set avr2 (default) is for the classic AVR core with up to 8K pro-
gram memory space (MCU types: at90s2313, at90s2323, attiny22, at90s2333,
at90s2343, at90s4414, at90s4433, at90s4434, at90s8515, at90c8534, at90s8535).

Instruction set avr3 is for the classic AVR core with up to 128K program mem-
ory space (MCU types: atmegal03, atmega603, at43usb320, at76¢711).

Instruction set avr4d is for the enhanced AVR, core with up to 8K program
memory space (MCU types: atmega8, atmega83, atmega85).

Instruction set avrb is for the enhanced AVR core with up to 128K program
memory space (MCU types: atmegal6, atmegal6l, atmegal63, atmega32, at-
megad23, atmegab4, atmegal28, at43usb355, at94k).

-msize Output instruction sizes to the asm file.

-minit-stack=N
Specify the initial stack address, which may be a symbol or numeric value,
‘__stack’ is the default.

-mno-interrupts
Generated code is not compatible with hardware interrupts. Code size will be
smaller.

-mcall-prologues
Functions prologues/epilogues expanded as call to appropriate subroutines.
Code size will be smaller.

-mno-tablejump
Do not generate tablejump insns which sometimes increase code size.

-mtiny-stack
Change only the low 8 bits of the stack pointer.

-mint8 Assume int to be 8 bit integer. This affects the sizes of all types: A char will
be 1 byte, an int will be 1 byte, an long will be 2 bytes and long long will be 4
bytes. Please note that this option does not comply to the C standards, but it
will provide you with smaller code size.

3.17.4 Blackfin Options

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘~-fomit-frame-pointer’ removes
the frame pointer for all functions which might make debugging harder.

128 Using the GNU Compiler Collection (GCC)

-mspecld-anomaly
When enabled, the compiler will ensure that the generated code does not contain
speculative loads after jump instructions. This option is enabled by default.

-mno-specld-anomaly
Don’t generate extra code to prevent speculative loads from occurring.

-mcsync-anomaly
When enabled, the compiler will ensure that the generated code does not con-
tain CSYNC or SSYNC instructions too soon after conditional branches. This
option is enabled by default.

-mno-csync-anomaly
Don’t generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.

-mlow-64k
When enabled, the compiler is free to take advantage of the knowledge that the
entire program fits into the low 64k of memory.

-mno-low-64k
Assume that the program is arbitrarily large. This is the default.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This al-
lows for execute in place and shared libraries in an environment without virtual
memory management. This option implies ‘~fPIC’.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used.
This is the default.

-mshared-library-id=n
Specified the identification number of the ID based shared library being com-
piled. Specifying a value of 0 will generate more compact code, specifying other
values will force the allocation of that number to the current library but is no
more space or time efficient than omitting this option.

-mlong-calls

-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this regis-
ter. This switch is needed if the target function will lie outside of the 24 bit
addressing range of the offset based version of subroutine call instruction.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behavior. Note these switches have no effect on how the
compiler generates code to handle function calls via function pointers.

3.17.5 CRIS Options
These options are defined specifically for the CRIS ports.

Chapter 3: GCC Command Options 129

-march=architecture-type

-mcpu=architecture-type
Generate code for the specified architecture. The choices for architecture-
type are ‘v3’, ‘v8” and ‘v1i0’ for respectively ETRAX 4, ETRAX 100, and
ETRAX 100 LX. Default is ‘v0’ except for cris-axis-linux-gnu, where the de-
fault is ‘v10’.

-mtune=architecture-type
Tune to architecture-type everything applicable about the generated code,
except for the ABI and the set of available instructions. The choices for
architecture-type are the same as for ‘-march=architecture-type’.

-mmax-stack-frame=n
Warn when the stack frame of a function exceeds n bytes.

-melinux-stacksize=n
Ounly available with the ‘cris-axis-aout’ target. Arranges for indications in
the program to the kernel loader that the stack of the program should be set
to n bytes.

-metrax4d

-metrax100
The options ‘-metrax4’ and ‘-metrax100’ are synonyms for
‘-march=v8’ respectively.

‘ ¢

-march=v3’ and

-mmul-bug-workaround

-mno-mul-bug-workaround
Work around a bug in the muls and mulu instructions for CPU models where
it applies. This option is active by default.

-mpdebug Enable CRIS-specific verbose debug-related information in the assembly code.
This option also has the effect to turn off the ‘#NO_APP’ formatted-code indicator
to the assembler at the beginning of the assembly file.

-mcc-init
Do not use condition-code results from previous instruction; always emit com-
pare and test instructions before use of condition codes.

-mno-side-effects
Do not emit instructions with side-effects in addressing modes other than post-
increment.

-mstack-align

-mno-stack-align

-mdata-align

-mno-data-align

-mconst-align

-mno-const-align
These options (no-options) arranges (eliminate arrangements) for the stack-
frame, individual data and constants to be aligned for the maximum single
data access size for the chosen CPU model. The default is to arrange for 32-
bit alignment. ABI details such as structure layout are not affected by these
options.

130 Using the GNU Compiler Collection (GCC)

-m32-bit

-m16-bit

-m8-bit Similar to the stack- data- and const-align options above, these options arrange
for stack-frame, writable data and constants to all be 32-bit, 16-bit or 8-bit
aligned. The default is 32-bit alignment.

-mno-prologue-epilogue

-mprologue-epilogue
With ‘-mno-prologue-epilogue’, the normal function prologue and epilogue
that sets up the stack-frame are omitted and no return instructions or return
sequences are generated in the code. Use this option only together with visual
inspection of the compiled code: no warnings or errors are generated when
call-saved registers must be saved, or storage for local variable needs to be
allocated.

-mno-gotplt

-mgotplt With ‘~fpic’ and ‘~fPIC’, don’t generate (do generate) instruction sequences
that load addresses for functions from the PLT part of the GOT rather than
(traditional on other architectures) calls to the PLT. The default is ‘-mgotplt’.

-maout Legacy no-op option only recognized with the cris-axis-aout target.

-melf Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-
gnu targets.

-melinux Only recognized with the cris-axis-aout target, where it selects a GNU/linux-
like multilib, include files and instruction set for ‘-march=v8’.

-mlinux Legacy no-op option only recognized with the cris-axis-linux-gnu target.

-sim This option, recognized for the cris-axis-aout and cris-axis-elf arranges to link
with input-output functions from a simulator library. Code, initialized data
and zero-initialized data are allocated consecutively.

-sim?2 Like ‘-sim’, but pass linker options to locate initialized data at 0x40000000 and
zero-initialized data at 0x80000000.

3.17.6 CRX Options

These options are defined specifically for the CRX ports.

-mmac Enable the use of multiply-accumulate instructions. Disabled by default.

-mpush-args
Push instructions will be used to pass outgoing arguments when functions are
called. Enabled by default.

3.17.7 Darwin Options

These options are defined for all architectures running the Darwin operating systeimn.

FSF GCC on Darwin does not create “fat” object files; it will create an object file for
the single architecture that it was built to target. Apple’s GCC on Darwin does create
“fat” files if multiple ‘-arch’ options are used; it does so by running the compiler or linker
multiple times and joining the results together with ‘1ipo’.

Chapter 3: GCC Command Options 131

The subtype of the file created (like ‘ppc7400’ or ‘ppc970’ or ‘i686’) is determined
by the flags that specify the ISA that GCC is targetting, like ‘-mcpu’ or ‘-march’. The
‘~force_cpusubtype_ALL’ option can be used to override this.

The Darwin tools vary in their behavior when presented with an ISA mismatch. The
assembler, ‘as’, will only permit instructions to be used that are valid for the subtype of
the file it is generating, so you cannot put 64-bit instructions in an ‘ppc750’ object file.
The linker for shared libraries, ‘/usr/bin/libtool’, will fail and print an error if asked
to create a shared library with a less restrictive subtype than its input files (for instance,
trying to put a ‘ppc970’ object file in a ‘ppc7400’ library). The linker for executables, ‘1d’,

will quietly give the executable the most restrictive subtype of any of its input files.

-Fdir Add the framework directory dir to the head of the list of directories to be
searched for header files. These directories are interleaved with those specified
by ‘-I’ options and are scanned in a left-to-right order.

A framework directory is a directory with frameworks in it. A framework is a
directory with a ‘"Headers"’ and/or ‘"PrivateHeaders"’ directory contained
directly in it that ends in *".framework"’. The name of a framework is the
name of this directory excluding the ‘" .framework"’. Headers associated with
the framework are found in one of those two directories, with ‘"Headers"’
being searched first. A subframework is a framework directory that is in a
framework’s ‘"Frameworks"’ directory. Includes of subframework headers can
only appear in a header of a framework that contains the subframework,
or in a sibling subframework header. Two subframeworks are siblings if
they occur in the same framework. A subframework should not have the
same name as a framework, a warning will be issued if this is violated.
Currently a subframework cannot have subframeworks, in the future, the
mechanism may be extended to support this. The standard frameworks can be
found in ‘"/System/Library/Frameworks"’ and ‘"/Library/Frameworks"’.
An example include looks like #include <Framework/header.h>, where
‘Framework’ denotes the name of the framework and header.h is found in the
‘“"PrivateHeaders"’ or ‘"Headers'"’ directory.

-gused Emit debugging information for symbols that are used. For STABS debugging
format, this enables ‘~feliminate-unused-debug-symbols’. This is by default
ON.

-gfull Emit debugging information for all symbols and types.

-mmacosx-version-min=version
The earliest version of MacOS X that this executable will run on is version.
Typical values of version include 10.1, 10.2, and 10.3.9.

The default for this option is to make choices that seem to be most useful.

-mkernel Enable kernel development mode. The ‘-mkernel’ option sets
‘-static’, ‘~fno-common’, ‘-fno-cxa-atexit’, ‘~-fno-exceptions’,
‘~fno-non-call-exceptions’, ‘~-fapple-kext’, ‘-fno-weak’ and ‘~fno-rtti’
where applicable. This mode also sets ‘-mno-altivec’, ‘-msoft-float’,

‘-fno-builtin’ and ‘-mlong-branch’ for PowerPC targets.

132 Using the GNU Compiler Collection (GCC)

-mone-byte-bool
Override the defaults for ‘bool’ so that ‘sizeof(bool)==1’. By default
‘sizeof (bool)’ is ‘4’ when compiling for Darwin/PowerPC and ‘1’ when
compiling for Darwin/x86, so this option has no effect on x86.

Warning: The ‘-mone-byte-bool’ switch causes GCC to generate code that
is not binary compatible with code generated without that switch. Using this
switch may require recompiling all other modules in a program, including sys-
tem libraries. Use this switch to conform to a non-default data model.

-mfix-and-continue

-ffix-and-continue

-findirect-data
Generate code suitable for fast turn around development. Needed to enable gdb
to dynamically load .o files into already running programs. ‘-findirect-data’
and ‘-ffix-and-continue’ are provided for backwards compatibility.

—all_load
Loads all members of static archive libraries. See man 1d(1) for more informa-
tion.

-arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be
fatal.

-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all
undefined references when the file is loaded or launched.

-bundle Produce a Mach-o bundle format file. See man 1d(1) for more information.

-bundle_loader executable
This option specifies the executable that will be loading the build output file
being linked. See man 1d(1) for more information.

-dynamiclib
When passed this option, GCC will produce a dynamic library instead of an
executable when linking, using the Darwin ‘1libtool’ command.

-force_cpusubtype_ALL
This causes GCC’s output file to have the ALL subtype, instead of one con-
trolled by the ‘-mcpu’ or ‘-march’ option.

Chapter 3: GCC Command Options

-allowable_client client_name
-client_name
-compatibility_version
-current_version
-dead_strip
—dependency-file
-dylib_file
—-dylinker_install_name
—-dynamic
-exported_symbols_list
-filelist
-flat_namespace
-force_flat_namespace
-headerpad_max_install_names
-image_base

-init

-install_name
-keep_private_externs
-multi_module
-multiply_defined
-multiply_defined_unused
-noall_load
-no_dead_strip_inits_and_terms
-nofixprebinding
-nomultidefs

-noprebind
-noseglinkedit
-pagezero_size

-prebind
-prebind_all_twolevel_modules
-private_bundle
-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload

-segladdr

-sectcreate
-sectobjectsymbols
-sectorder

-segaddr
-segs_read_only_addr
-segs_read_write_addr
-seg_addr_table
-seg_addr_table_filename
-seglinkedit

-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module

-static

-sub_library
-sub_umbrella

-twolevel namespace

133

134

Using the GNU Compiler Collection (GCC)

3.17.8 DEC Alpha Options
These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

-mfp-reg

Use (do not use) the hardware floating-point instructions for floating-point op-
erations. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ will be
used to perform floating-point operations. Unless they are replaced by routines
that emulate the floating-point operations, or compiled in such a way as to call
such emulations routines, these routines will issue floating-point operations. If
you are compiling for an Alpha without floating-point operations, you must
ensure that the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required
to have floating-point registers.

-mno-fp-regs

-mieee

Generate code that uses (does not use) the floating-point register set.
‘-mno-fp-regs’ implies ‘-msoft-float’. If the floating-point register set is
not used, floating point operands are passed in integer registers as if they were
integers and floating-point results are passed in $0 instead of $£0. This is a
non-standard calling sequence, so any function with a floating-point argument
or return value called by code compiled with ‘-mno-fp-regs’ must also be
compiled with that option.

A typical use of this option is building a kernel that does not use, and hence
need not save and restore, any floating-point registers.

The Alpha architecture implements floating-point hardware optimized for max-
imum performance. It is mostly compliant with the IEEE floating point stan-
dard. However, for full compliance, software assistance is required. This option
generates code fully IEEE compliant code except that the inexact-flag is not
maintained (see below). If this option is turned on, the preprocessor macro
_IEEE_FP is defined during compilation. The resulting code is less efficient but
is able to correctly support denormalized numbers and exceptional IEEE values
such as not-a-number and plus/minus infinity. Other Alpha compilers call this
option ‘-ieee_with_no_inexact’.

-mieee-with-inexact

This is like ‘-mieee’ except the generated code also maintains the IEEE inexact-
flag. Turning on this option causes the generated code to implement fully-
compliant IEEE math. In addition to _TEEE_FP, _IEEE_FP_EXACT is defined as
a preprocessor macro. On some Alpha implementations the resulting code may
execute significantly slower than the code generated by default. Since there is
very little code that depends on the inexact-flag, you should normally not spec-
ify this option. Other Alpha compilers call this option ‘-~ieee_with_inexact’.

Chapter 3: GCC Command Options 135

-mfp-trap-mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha
compilers call this option ‘~fptm trap-mode’. The trap mode can be set to one
of four values:

‘sui’

This is the default (normal) setting. The only traps that are en-
abled are the ones that cannot be disabled in software (e.g., division
by zero trap).

In addition to the traps enabled by ‘n’, underflow traps are enabled
as well.

Like ‘u’, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).

Like ‘su’, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option ‘-fprm
rounding-mode’. The rounding-mode can be one of:

Normal TEEE rounding mode. Floating point numbers are rounded
towards the nearest machine number or towards the even machine
number in case of a tie.

Round towards minus infinity.

Chopped rounding mode. Floating point numbers are rounded to-
wards zero.

Dynamic rounding mode. A field in the floating point control reg-
ister (fpcr, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies
the fpcr, ‘d’ corresponds to round towards plus infinity.

-mtrap-precision=trap-precision
In the Alpha architecture, floating point traps are imprecise. This means with-
out software assistance it is impossible to recover from a floating trap and
program execution normally needs to be terminated. GCC can generate code
that can assist operating system trap handlers in determining the exact loca-
tion that caused a floating point trap. Depending on the requirements of an
application, different levels of precisions can be selected:

Program precision. This option is the default and means a trap
handler can only identify which program caused a floating point
exception.

Function precision. The trap handler can determine the function
that caused a floating point exception.

Instruction precision. The trap handler can determine the exact
instruction that caused a floating point exception.

136 Using the GNU Compiler Collection (GCC)

Other Alpha compilers provide the equivalent options called ‘-scope_safe’ and
‘~-resumption_safe’.

-mieee-conformant
This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify ‘-mtrap-precision=i’ and either
‘-mfp-trap-mode=su’ or ‘-mfp-trap-mode=sui’. Its only effect is to emit the
line ‘.eflag 48’ in the function prologue of the generated assembly file. Under
DEC Unix, this has the effect that IEEE-conformant math library routines
will be linked in.

-mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to see if it can construct
it from smaller constants in two or three instructions. If it cannot, it will output
the constant as a literal and generate code to load it from the data segment at
runtime.

Use this option to require GCC to construct all integer constants using code,
even if it takes more instructions (the maximum is six).

You would typically use this option to build a shared library dynamic loader.
Itself a shared library, it must relocate itself in memory before it can find the
variables and constants in its own data segment.

-malpha-as
-mgas Select whether to generate code to be assembled by the vendor-supplied assem-
bler (‘-malpha-as’) or by the GNU assembler ‘-mgas’.

-mbwx

-mno-bwx

-mcix

-mno-cix

-mfix

-mno-fix

-mmax

-mno-max Indicate whether GCC should generate code to use the optional BWX, CIX, FIX
and MAX instruction sets. The default is to use the instruction sets supported
by the CPU type specified via ‘-mcpu=’ option or that of the CPU on which
GCC was built if none was specified.

-mfloat-vax

-mfloat-ieee
Generate code that uses (does not use) VAX F and G floating point arithmetic
instead of IEEE single and double precision.

-mexplicit-relocs

-mno-explicit-relocs
Older Alpha assemblers provided no way to generate symbol relocations except
via assembler macros. Use of these macros does not allow optimal instruction
scheduling. GNU binutils as of version 2.12 supports a new syntax that al-
lows the compiler to explicitly mark which relocations should apply to which

Chapter 3: GCC Command Options 137

instructions. This option is mostly useful for debugging, as GCC detects the
capabilities of the assembler when it is built and sets the default accordingly.

-msmall-data

-mlarge-data
When ‘“-mexplicit-relocs’ is in effect, static data is accessed via gp-relative
relocations. When ‘-msmall-data’ is used, objects 8 bytes long or smaller are
placed in a small data area (the .sdata and .sbss sections) and are accessed
via 16-bit relocations off of the $gp register. This limits the size of the small
data area to 64KB, but allows the variables to be directly accessed via a single
instruction.

The default is ‘-mlarge-data’. With this option the data area is limited to just
below 2GB. Programs that require more than 2GB of data must use malloc or
mmap to allocate the data in the heap instead of in the program’s data segment.

When generating code for shared libraries, ‘~fpic’ implies ‘-msmall-data’ and
‘~fPIC’ implies ‘-mlarge-data’.

-msmall-text

-mlarge-text
When ‘-msmall-text’ is used, the compiler assumes that the code of the entire
program (or shared library) fits in 4MB, and is thus reachable with a branch in-
struction. When ‘-msmall-data’ is used, the compiler can assume that all local
symbols share the same $gp value, and thus reduce the number of instructions
required for a function call from 4 to 1.

The default is ‘-mlarge-text’.

-mcpu=cpu_type
Set the instruction set and instruction scheduling parameters for machine type
cpu_type. You can specify either the ‘EV’ style name or the corresponding chip
number. GCC supports scheduling parameters for the EV4, EV5 and EV6
family of processors and will choose the default values for the instruction set
from the processor you specify. If you do not specify a processor type, GCC
will default to the processor on which the compiler was built.

Supported values for cpu_type are
‘evd’

‘ev4b’
‘21064’ Schedules as an EV4 and has no instruction set extensions.

‘evb’
‘21164’ Schedules as an EV5 and has no instruction set extensions.

‘evb6’
‘21164a’ Schedules as an EV5 and supports the BWX extension.

‘pcab6’
‘21164pc’
‘21164PC’ Schedules as an EV5 and supports the BWX and MAX extensions.

138

Using the GNU Compiler Collection (GCC)

‘ev6’

‘21264’ Schedules as an EV6 and supports the BWX, FIX, and MAX ex-
tensions.

‘evB7’

‘21264a’ Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX
extensions.

-mtune=cpu_type

Set only the instruction scheduling parameters for machine type cpu_type. The
instruction set is not changed.

-mmemory-latency=time

Sets the latency the scheduler should assume for typical memory references
as seen by the application. This number is highly dependent on the memory
access patterns used by the application and the size of the external cache on
the machine.

Valid options for time are

‘number’ A decimal number representing clock cycles.

cL17

£L27

LL37

‘main’ The compiler contains estimates of the number of clock cycles for
“typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also

called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.

3.17.9 DEC Alpha/VMS Options
These ‘-m’ options are defined for the DEC Alpha/VMS implementations:

-mvms-return-codes

Return VMS condition codes from main. The default is to return POSIX style
condition (e.g. error) codes.

3.17.10 FRV Options
-mgpr-32

Only use the first 32 general purpose registers.
-mgpr-64

Use all 64 general purpose registers.
-mfpr-32

Use only the first 32 floating point registers.
-mfpr-64

Use all 64 floating point registers
-mhard-float

Use hardware instructions for floating point operations.

Chapter 3: GCC Command Options 139

-msoft-float
Use library routines for floating point operations.

-malloc-cc
Dynamically allocate condition code registers.

-mfixed-cc
Do not try to dynamically allocate condition code registers, only use iccO and
fccO.

-mdword
Change ABI to use double word insns.

-mno-dword
Do not use double word instructions.

-mdouble
Use floating point double instructions.

-mno-double
Do not use floating point double instructions.

-mmedia
Use media instructions.

-mno-media
Do not use media instructions.

-mmuladd
Use multiply and add/subtract instructions.

-mno-muladd
Do not use multiply and add/subtract instructions.

-mfdpic
Select the FDPIC ABI, that uses function descriptors to represent pointers to
functions. Without any PIC/PIE-related options, it implies ‘~fPIE’. With
‘~fpic’ or ‘-fpie’, it assumes GOT entries and small data are within a 12-bit
range from the GOT base address; with ‘-fPIC’ or ‘-fPIE’, GO'T offsets are
computed with 32 bits.

-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known
to bind locally. It has no effect without ‘-mfdpic’. It’s enabled by default if
optimizing for speed and compiling for shared libraries (i.e., ‘~fPIC’ or ‘-fpic’),
or when an optimization option such as ‘-03’ or above is present in the command
line.

-mTLS

Assume a large TLS segment when generating thread-local code.

-mtls

Do not assume a large TLS segment when generating thread-local code.

140 Using the GNU Compiler Collection (GCC)

-mgprel-ro

Enable the use of GPREL relocations in the FDPIC ABI for data that is known to
be in read-only sections. It’s enabled by default, except for ‘~fpic’ or ‘-fpie’:
even though it may help make the global offset table smaller, it trades 1 in-
struction for 4. With ‘-fPIC’ or ‘-fPIE’, it trades 3 instructions for 4, one of
which may be shared by multiple symbols, and it avoids the need for a GOT
entry for the referenced symbol, so it’s more likely to be a win. If it is not,
‘-mno-gprel-ro’ can be used to disable it.

-multilib-library-pic
Link with the (library, not FD) pic libraries. It’s implied by ‘-mlibrary-pic’,
as well as by ‘=fPIC’ and ‘-fpic’ without ‘-mfdpic’. You should never have to
use it explicitly.

-mlinked-fp
Follow the EABI requirement of always creating a frame pointer whenever a
stack frame is allocated. This option is enabled by default and can be disabled
with ‘-mno-linked-fp’.

-mlong-calls
Use indirect addressing to call functions outside the current compilation unit.
This allows the functions to be placed anywhere within the 32-bit address space.

-malign-labels
Try to align labels to an 8-byte boundary by inserting nops into the previous
packet. This option only has an effect when VLIW packing is enabled. It
doesn’t create new packets; it merely adds nops to existing ones.

-mlibrary-pic
Generate position-independent EABI code.

-macc-4
Use only the first four media accumulator registers.
-macc-8
Use all eight media accumulator registers.
-mpack
Pack VLIW instructions.
-mno-pack

Do not pack VLIW instructions.

-mno-eflags
Do not mark ABI switches in e_flags.
-mcond-move
Enable the use of conditional-move instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in

a future version.

-mno-cond-move
Disable the use of conditional-move instructions.

Chapter 3: GCC Command Options 141

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mscc
Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

—~mno-scc

Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mcond-exec
Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-cond-exec
Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mvliw-branch
Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mmulti-cond-exec
Enable optimization of && and || in conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-multi-cond-exec
Disable optimization of && and || in conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mnested-cond-exec
Enable nested conditional execution optimizations (default).
This switch is mainly for debugging the compiler and will likely be removed in

a future version.

-mno-nested-cond-exec
Disable nested conditional execution optimizations.

142 Using the GNU Compiler Collection (GCC)

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-moptimize-membar
This switch removes redundant membar instructions from the compiler generated
code. It is enabled by default.

-mno-optimize-membar
This switch disables the automatic removal of redundant membar instructions
from the generated code.

-mtomcat-stats
Cause gas to print out tomcat statistics.

-mcpu=cpu
Select the processor type for which to generate code. Possible values are ‘frv’,
‘fr550’, ‘tomcat’, ‘fr500°, ‘fr450’, ‘fr405’, ‘fr400’, ‘fr300’ and ‘simple’.

3.17.11 GNU/Linux Options
These ‘-m’ options are defined for GNU/Linux targets:

-mglibc Use the GNU C library instead of uClibc. This is the default except on
‘x—*-1linux-*uclibc*’ targets.

-muclibc Use uClibc instead of the GNU C library. This is the default on
“¢—x-1linux-*uclibc*’ targets.

3.17.12 H8/300 Options
These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’. See section “1d and the H8/300” in Using Id, for a fuller

description.
-mh Generate code for the H8/300H.
-ms Generate code for the HS8S.
-mn Generate code for the H8S and H8/300H in the normal mode. This switch must

be used either with ‘-mh’ or ‘-ms’.
-ms2600 Generate code for the H8S/2600. This switch must be used with ‘-ms’.
-mint32 Make int data 32 bits by default.

-malign-300
On the H8/300H and HS8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and HS8S is to align longs and floats on 4 byte
boundaries. ‘-malign-300’ causes them to be aligned on 2 byte boundaries.
This option has no effect on the H8/300.

Chapter 3: GCC Command Options 143

3.17.13 HPPA Options
These ‘-m’ options are defined for the HPPA family of computers:

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type
are ‘1.0° for PA 1.0, ‘1.1’ for PA 1.1, and ‘2.0’ for PA 2.0 processors. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered ar-
chitectures will run on higher numbered architectures, but not the other way
around.

-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0
Synonyms for ‘-march=1.0", ‘-march=1.1", and ‘-march=2.0’ respectively.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modi-
fying the return pointer for the function call to be the target of the conditional
jump.

-mdisable-fpregs
Prevent floating point registers from being used in any manner. This is nec-
essary for compiling kernels which perform lazy context switching of floating
point registers. If you use this option and attempt to perform floating point
operations, the compiler will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC
to generate faster indirect calls and use unscaled index address modes.

Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows
GCC to emit code which performs faster indirect calls.

This option will not work in the presence of shared libraries or nested functions.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

144 Using the GNU Compiler Collection (GCC)

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the
HP-UX 10 linker. This is equivalent to the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type. The
choices for cpu-type are ‘700’ ‘7100’, ‘7100LC’, ‘72007, ‘7300° and ‘8000°. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
scheduling option for your machine. The default scheduling is ‘8000’.

-mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all HPPA targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded target ‘hppal.1l-*-pro’
does provide software floating point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-msio Generate the predefine, _SI0, for server I0. The default is ‘-mwsio’. This gen-
erates the predefines, __hp9000s700, __hp9000s700__ and _WSIO, for worksta-
tion TIO. These options are available under HP-UX and HI-UX.

PR—

-mgnu-1d Use GNU Id specific options. This passes ‘-shared’ to ld when building a shared
library. It is the default when GCC is configured, explicitly or implicitly, with
the GNU linker. This option does not have any affect on which Id is called, it
only changes what parameters are passed to that 1d. The Id that is called is
determined by the ‘--with-1d’ configure option, GCC’s program search path,
and finally by the user’s PATH. The linker used by GCC can be printed using
‘which ‘gcc -print-prog-name=1d¢’. This option is only available on the 64
bit HP-UX GCC, i.e. configured with ‘hppa*64*—*-hpuxx*’.

-mhp-1d Use HP 1d specific options. This passes ‘-b’ to 1d when building a shared library
and passes ‘+Accept TypeMismatch’ to ld on all links. It is the default when
GCC is configured, explicitly or implicitly, with the HP linker. This option does
not have any affect on which 1d is called, it only changes what parameters are
passed to that Id. The ld that is called is determined by the ‘~-with-1d’ con-
figure option, GCC’s program search path, and finally by the user’s PATH. The

Chapter 3: GCC Command Options 145

linker used by GCC can be printed using ‘which ‘gcc -print-prog-name=1d°¢’.
This option is only available on the 64 bit HP-UX GCC, i.e. configured with
‘hppa*64*—*-hpux*’.

-mlong-calls

Generate code that uses long call sequences. This ensures that a call is always
able to reach linker generated stubs. The default is to generate long calls
only when the distance from the call site to the beginning of the function or
translation unit, as the case may be, exceeds a predefined limit set by the
branch type being used. The limits for normal calls are 7,600,000 and 240,000
bytes, respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are always
limited at 240,000 bytes.

Distances are measured from the beginning of functions when using
the ‘-ffunction-sections’ option, or when using the ‘-mgas’ and
‘-mno-portable-runtime’ options together under HP-UX with the SOM
linker.

It is normally not desirable to use this option as it will degrade performance.
However, it may be useful in large applications, particularly when partial linking
is used to build the application.

The types of long calls used depends on the capabilities of the assembler and
linker, and the type of code being generated. The impact on systems that
support long absolute calls, and long pic symbol-difference or pc-relative calls
should be relatively small. However, an indirect call is used on 32-bit ELF
systems in pic code and it is quite long.

-munix=unix-std

-nolibdld

Generate compiler predefines and select a startfile for the specified UNIX stan-
dard. The choices for unix-std are ‘93’, ‘95’ and ‘98’. ‘93’ is supported on all
HP-UX versions. ‘95’ is available on HP-UX 10.10 and later. ‘98’ is available
on HP-UX 11.11 and later. The default values are ‘93’ for HP-UX 10.00, ‘95’
for HP-UX 10.10 though to 11.00, and ‘98’ for HP-UX 11.11 and later.

‘-munix=93’ provides the same predefines as GCC 3.3 and 3.4. ‘-munix=95’
provides additional predefines for XOPEN_UNIX and _XOPEN_SOURCE_EXTENDED,
and the startfile ‘unix95.0’. ‘-munix=98’ provides additional predefines for
_XOPEN_UNIX, _XOPEN_SOURCE_EXTENDED, _INCLUDE__STDC_A1_SOURCE and _
INCLUDE_XOPEN_SOURCE_500, and the startfile ‘unix98.0’.

It is émportant to note that this option changes the interfaces for various library
routines. It also affects the operational behavior of the C library. Thus, extreme
care is needed in using this option.

Library code that is intended to operate with more than one UNIX standard
must test, set and restore the variable __xpg4_extended_mask as appropriate.
Most GNU software doesn’t provide this capability.

Suppress the generation of link options to search libdld.sl when the ‘-static’
option is specified on HP-UX 10 and later.

146 Using the GNU Compiler Collection (GCC)

-static The HP-UX implementation of setlocale in libc has a dependency on libdld.sl.
There isn’t an archive version of libdld.sl. Thus, when the ‘-static’ option is
specified, special link options are needed to resolve this dependency.

On HP-UX 10 and later, the GCC driver adds the necessary options to link
with libdld.sl when the ‘-static’ option is specified. This causes the resulting
binary to be dynamic. On the 64-bit port, the linkers generate dynamic binaries
by default in any case. The ‘-nolibdld’ option can be used to prevent the GCC
driver from adding these link options.

-threads Add support for multithreading with the dce thread library under HP-UX. This
option sets flags for both the preprocessor and linker.

3.17.14 Intel 386 and AMD x86-64 Options
These ‘-m’ options are defined for the 1386 and x86-64 family of computers:

-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. The choices for cpu-type are:

generic Produce code optimized for the most common IA32/AMD64/EM64T]

processors. If you know the CPU on which your code will run,
then you should use the corresponding ‘-mtune’ option instead of
‘-mtune=generic’. But, if you do not know exactly what CPU
users of your application will have, then you should use this
option.

As new processors are deployed in the marketplace, the behavior
of this option will change. Therefore, if you upgrade to a newer
version of GCC, the code generated option will change to reflect
the processors that were most common when that version of GCC
was released.

3 ¢

There is no ‘-march=generic’ option because ‘-march’ indicates
the instruction set the compiler can use, and there is no generic
instruction set applicable to all processors. In contrast, ‘-mtune’
indicates the processor (or, in this case, collection of processors) for
which the code is optimized.

native This selects the CPU to tune for at compilation time by
determining the processor type of the compiling machine. Using
‘-mtune=native’ will produce code optimized for the local machine
under the constraints of the selected instruction set. Using
‘-march=native’ will enable all instruction subsets supported by
the local machine (hence the result might not run on different

machines).
1386 Original Intel’s i386 CPU.
1486 Intel’s 1486 CPU. (No scheduling is implemented for this chip.)

1586, pentium
Intel Pentium CPU with no MMX support.

Chapter 3: GCC Command Options 147

pentium-mmae
Intel PentiumMMX CPU based on Pentium core with MMX in-
struction set support.

pentiumpro
Intel PentiumPro CPU.

1686 Same as generic, but when used as march option, PentiumPro
instruction set will be used, so the code will run on all 1686 family
chips.

pentium? Intel Pentium?2 CPU based on PentiumPro core with MMX instruc-
tion set support.

pentiums3, pentium3m
Intel Pentium3 CPU based on PentiumPro core with MMX and
SSE instruction set support.

pentium-m
Low power version of Intel Pentium3 CPU with MMX, SSE and
SSE2 instruction set support. Used by Centrino notebooks.

pentium4, pentium4m
Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set
support.

prescott Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2
and SSE3 instruction set support.

nocona Improved version of Intel Pentium4 CPU with 64-bit extensions,
MMX, SSE, SSE2 and SSE3 instruction set support.
k6 AMD K6 CPU with MMX instruction set support.

k6-2, k6-3 Improved versions of AMD K6 CPU with MMX and 3dNOW! in-
struction set support.

athlon, athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and
SSE prefetch instructions support.

athlon-4, athlon-xp, athlon-mp
Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced
3dANOW! and full SSE instruction set support.

k8, opteron, athlon6/, athlon-fr
AMD K8 core based CPUs with x86-64 instruction set support.
(This supersets MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW!
and 64-bit instruction set extensions.)

winchip-c6
IDT Winchip C6 CPU, dealt in same way as 1486 with additional
MMX instruction set support.

winchip2 IDT Winchip2 CPU, dealt in same way as i486 with additional
MMX and 3dNOW! instruction set support.

148 Using the GNU Compiler Collection (GCC)

c3 Via C3 CPU with MMX and 3dNOW! instruction set support. (No
scheduling is implemented for this chip.)
c3-2 Via C3-2 CPU with MMX and SSE instruction set support. (No

scheduling is implemented for this chip.)

While picking a specific cpu-type will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not run on
the 1386 without the ‘-march=cpu-type’ option being used.

-march=cpu-type
Generate instructions for the machine type cpu-type. The choices for cpu-type
are the same as for ‘-mtune’. Moreover, specifying ‘-march=cpu-type’ implies
‘~mtune=cpu-type’.

-mcpu=cpu-type
A deprecated synonym for ‘-mtune’.

-m386

-m486

-mpentium

-mpentiumpro
These options are synonyms for ‘-mtune=i386’, ‘-mtune=i486’,
‘-mtune=pentium’, and ‘-mtune=pentiumpro’ respectively. These synonyms
are deprecated.

-mfpmath=unit
Generate floating point arithmetics for selected unit unit. The choices for unit
are:

‘387’ Use the standard 387 floating point coprocessor present majority of
chips and emulated otherwise. Code compiled with this option will
run almost everywhere. The temporary results are computed in
80bit precision instead of precision specified by the type resulting
in slightly different results compared to most of other chips. See
‘~ffloat-store’ for more detailed description.

This is the default choice for 1386 compiler.

sse Use scalar floating point instructions present in the SSE instruction
set. This instruction set is supported by Pentium3 and newer chips,
in the AMD line by Athlon-4, Athlon-xp and Athlon-mp chips. The
earlier version of SSE instruction set supports only single precision
arithmetics, thus the double and extended precision arithmetics is
still done using 387. Later version, present only in Pentium4 and
the future AMD x86-64 chips supports double precision arithmetics
too.

For the 1386 compiler, you need to use ‘-march=cpu-type’, ‘-msse’
or ‘-msse2’ switches to enable SSE extensions and make this option
effective. For the x86-64 compiler, these extensions are enabled by
default.

Chapter 3: GCC Command Options 149

The resulting code should be considerably faster in the majority
of cases and avoid the numerical instability problems of 387 code,
but may break some existing code that expects temporaries to be
80bit.

This is the default choice for the x86-64 compiler.

‘sse, 387’ Attempt to utilize both instruction sets at once. This effectively
double the amount of available registers and on chips with sepa-
rate execution units for 387 and SSE the execution resources too.
Use this option with care, as it is still experimental, because the
GCC register allocator does not model separate functional units
well resulting in instable performance.

-masm=dialect
Output asm instructions using selected dialect. Supported choices are ‘intel’
or ‘att’ (the default one). Darwin does not support ‘intel’.

-mieee-fp

-mno-ieee-fp
Control whether or not the compiler uses IEEE floating point comparisons.
These handle correctly the case where the result of a comparison is unordered.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

On machines where a function returns floating point results in the 80387 register
stack, some floating point opcodes may be emitted even if ‘-msoft-float’ is
used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and
double in an FPU register, even if there is no FPU. The idea is that the
operating system should emulate an FPU.

The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt instructions for the
387. Specify this option to avoid generating those instructions. This option
is the default on FreeBSD, OpenBSD and NetBSD. This option is overridden
when ‘-march’ indicates that the target cpu will always have an FPU and so the
instruction will not need emulation. As of revision 2.6.1, these instructions are
not generated unless you also use the ‘-funsafe-math-optimizations’ switch.

150

Using the GNU Compiler Collection (GCC)

-malign-double
-mno-align-double

Control whether GCC aligns double, long double, and long long variables on
a two word boundary or a one word boundary. Aligning double variables on a
two word boundary will produce code that runs somewhat faster on a ‘Pentium’
at the expense of more memory.

On x86-64, ‘-malign-double’ is enabled by default.

Warning: if you use the ‘-malign-double’ switch, structures containing the

above types will be aligned differently than the published application binary
interface specifications for the 386 and will not be binary compatible with struc-
tures in code compiled without that switch.

-m96bit-long-double
-m128bit-long-double

These switches control the size of long double type. The i386 application
binary interface specifies the size to be 96 bits, so ‘-m96bit-long-double’ is
the default in 32 bit mode.

Modern architectures (Pentium and newer) would prefer long double to be
aligned to an 8 or 16 byte boundary. In arrays or structures conforming to the
ABI, this would not be possible. So specifying a ‘-m128bit-long-double’ will
align long double to a 16 byte boundary by padding the long double with an
additional 32 bit zero.

In the x86-64 compiler, ‘-m128bit-long-double’ is the default choice as its
ABI specifies that long double is to be aligned on 16 byte boundary.

Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a long double.

Warning: if you override the default value for your target ABI, the structures
and arrays containing long double variables will change their size as well as
function calling convention for function taking long double will be modified.
Hence they will not be binary compatible with arrays or structures in code
compiled without that switch.

-mmlarge-data-threshold=number

When ‘-mcmodel=medium’ is specified, the data greater than threshold are
placed in large data section. This value must be the same across all object
linked into the binary and defaults to 65535.

-msvr3-shlib
-mno-svr3-shlib

-mrtd

Control whether GCC places uninitialized local variables into the bss or data
segments. ‘-msvr3-shlib’ places them into bss. These options are meaningful
only on System V Release 3.

Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the ret num instruction, which pops their
arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.

Chapter 3: GCC Command Options 151

You can specify that an individual function is called with this calling sequence
with the function attribute ‘stdcall’. You can also override the ‘-mrtd’ option
by using the function attribute ‘cdecl’. See Section 5.25 [Function Attributes],
page 242.

Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a specific function by using the function attribute
‘regparm’. See Section 5.25 [Function Attributes], page 242.

Warning: if you use this switch, and num is nonzero, then you must build all
modules with the same value, including any libraries. This includes the system
libraries and startup modules.

-msseregparm
Use SSE register passing conventions for float and double arguments and return
values. You can control this behavior for a specific function by using the func-
tion attribute ‘sseregparm’. See Section 5.25 [Function Attributes], page 242.

Warning: if you use this switch then you must build all modules with the same
value, including any libraries. This includes the system libraries and startup
modules.

-mstackrealign

Realign the stack at entry. On the Intel x86, the ‘-mstackrealign’ option will
generate an alternate prologue and epilogue that realigns the runtime stack.
This supports mixing legacy codes that keep a 4-byte aligned stack with modern
codes that keep a 16-byte stack for SSE compatibility. The alternate prologue
and epilogue are slower and bigger than the regular ones, and the alternate pro-
logue requires an extra scratch register; this lowers the number of registers avail-
able if used in conjunction with the regparm attribute. The ‘-mstackrealign’
option is incompatible with the nested function prologue; this is considered a
hard error. See also the attribute force_align_arg_pointer, applicable to
individual functions.

-mpreferred-stack-boundary=num
Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.
If ‘-mpreferred-stack-boundary’ is not specified, the default is 4 (16 bytes or
128 bits).

On Pentium and PentiumPro, double and long double values should be
aligned to an 8 byte boundary (see ‘-malign-double’) or suffer significant run

152 Using the GNU Compiler Collection (GCC)

time performance penalties. On Pentium ITI, the Streaming SIMD Extension
(SSE) data type __m128 may not work properly if it is not 16 byte aligned.

To ensure proper alignment of this values on the stack, the stack boundary must
be as aligned as that required by any value stored on the stack. Further, every
function must be generated such that it keeps the stack aligned. Thus calling
a function compiled with a higher preferred stack boundary from a function
compiled with a lower preferred stack boundary will most likely misalign the
stack. It is recommended that libraries that use callbacks always use the default
setting.

This extra alignment does consume extra stack space, and generally increases
code size. Code that is sensitive to stack space usage, such as embedded systems
and operating system kernels, may want to reduce the preferred alignment to
‘-mpreferred-stack-boundary=2’.

—mmmx
—mno-mmx

-msse
—mno-sse

-msse2

-mno-sse2

-msse3

-mno-sse3

-m3dnow

-mno-3dnow
These switches enable or disable the use of instructions in the MMX, SSE, SSE2
or 3DNow! extended instruction sets. These extensions are also available as
built-in functions: see Section 5.48.6 [X86 Built-in Functions|, page 411, for
details of the functions enabled and disabled by these switches.

To have SSE/SSE2 instructions generated automatically from floating-point
code (as opposed to 387 instructions), see ‘-mfpmath=sse’.

These options will enable GCC to use these extended instructions in generated
code, even without ‘-mfpmath=sse’. Applications which perform runtime CPU
detection must compile separate files for each supported architecture, using the
appropriate flags. In particular, the file containing the CPU detection code
should be compiled without these options.

-mpush-args

-mno-push-args
Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.

-maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments will
be computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage

Chapter 3: GCC Command Options 153

when preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies ‘-mno-push-args’.

-mthreads
Support thread-safe exception handling on ‘Mingw32’. Code that relies on
thread-safe exception handling must compile and link all code with the
‘-mthreads’ option. When compiling, ‘-mthreads’ defines ‘-D_MT’; when
linking, it links in a special thread helper library ‘-1mingwthrd’ which cleans
up per thread exception handling data.

-mno-align-stringops
Do not align destination of inlined string operations. This switch reduces code
size and improves performance in case the destination is already aligned, but
GCC doesn’t know about it.

-minline-all-stringops
By default GCC inlines string operations only when destination is known to be
aligned at least to 4 byte boundary. This enables more inlining, increase code
size, but may improve performance of code that depends on fast memcpy, strlen
and memset for short lengths.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘-fomit-frame-pointer’ removes
the frame pointer for all functions which might make debugging harder.

-mtls-direct-seg-refs

-mno-tls-direct-seg-refs
Controls whether TLS variables may be accessed with offsets from the TLS
segment register (%gs for 32-bit, %fs for 64-bit), or whether the thread base
pointer must be added. Whether or not this is legal depends on the operating
system, and whether it maps the segment to cover the entire TLS area.

For systems that use GNU libc, the default is on.

These ‘-m’ switches are supported in addition to the above on AMD x86-64 processors in
64-bit environments.

-m32

-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets
int, long and pointer to 32 bits and generates code that runs on any 1386 system.
The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and
generates code for AMD’s x86-64 architecture. For darwin only the -m64 option
turns off the ‘~fno-pic’ and ‘-mdynamic-no-pic’ options.

-mno-red-zone
Do not use a so called red zone for x86-64 code. The red zone is mandated by the
x86-64 ABI, it is a 128-byte area beyond the location of the stack pointer that
will not be modified by signal or interrupt handlers and therefore can be used for
temporary data without adjusting the stack pointer. The flag ‘-mno-red-zone’
disables this red zone.

154 Using the GNU Compiler Collection (GCC)

-mcmodel=small
Generate code for the small code model: the program and its symbols must be
linked in the lower 2 GB of the address space. Pointers are 64 bits. Programs
can be statically or dynamically linked. This is the default code model.

-mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the negative 2 GB
of the address space. This model has to be used for Linux kernel code.

-mcmodel=medium
Generate code for the medium model: The program is linked in the lower 2
GB of the address space but symbols can be located anywhere in the address
space. Programs can be statically or dynamically linked, but building of shared
libraries are not supported with the medium model.

-mcmodel=large
Generate code for the large model: This model makes no assumptions about
addresses and sizes of sections. Currently GCC does not implement this model.

3.17.15 TA-64 Options
These are the ‘-m’ options defined for the Intel TA-64 architecture.

-mbig-endian
Generate code for a big endian target. This is the default for HP-UX.

-mlittle-endian
Generate code for a little endian target. This is the default for AIX5 and
GNU/Linux.

-mgnu-as
-mno-gnu-as
Generate (or don’t) code for the GNU assembler. This is the default.

-mgnu-1d
-mno-gnu-1d
Generate (or don’t) code for the GNU linker. This is the default.

-mno-pic Generate code that does not use a global pointer register. The result is not
position independent code, and violates the TA-64 ABI.

-mvolatile-asm-stop

-mno-volatile-asm-stop
Generate (or don’t) a stop bit immediately before and after volatile asm state-
ments.

-mregister—names

-mno-register-names
Generate (or don’t) ‘in’, ‘loc’, and ‘out’ register names for the stacked registers.
This may make assembler output more readable.

-mno—-sdata
-msdata Disable (or enable) optimizations that use the small data section. This may be
useful for working around optimizer bugs.

Chapter 3: GCC Command Options 155

-mconstant-gp
Generate code that uses a single constant global pointer value. This is useful
when compiling kernel code.

-mauto-pic
Generate code that is self-relocatable. This implies
useful when compiling firmware code.

‘-mconstant-gp’. This is

-minline-float-divide-min-latency
Generate code for inline divides of floating point values using the minimum
latency algorithm.

-minline-float-divide-max-throughput
Generate code for inline divides of floating point values using the maximum
throughput algorithm.

-minline-int-divide-min-latency
Generate code for inline divides of integer values using the minimum latency
algorithm.

-minline-int-divide-max-throughput
Generate code for inline divides of integer values using the maximum through-
put algorithm.

-minline-sqrt-min-latency
Generate code for inline square roots using the minimum latency algorithm.

-minline-sqgrt-max-throughput
Generate code for inline square roots using the maximum throughput algorithm.

-mno-dwarf2-asm

-mdwarf2-asm
Don’t (or do) generate assembler code for the DWARF2 line number debugging
info. This may be useful when not using the GNU assembler.

-mearly-stop-bits

-mno-early-stop-bits
Allow stop bits to be placed earlier than immediately preceding the instruction
that triggered the stop bit. This can improve instruction scheduling, but does
not always do so.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

-mtls-size=tls-size
Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64.

-mtune=cpu-type
Tune the instruction scheduling for a particular CPU, Valid values are itanium,
itaniuml, merced, itanium2, and mckinley.

156 Using the GNU Compiler Collection (GCC)

-mt

-pthread Add support for multithreading using the POSIX threads library. This option
sets flags for both the preprocessor and linker. It does not affect the thread
safety of object code produced by the compiler or that of libraries supplied with
it. These are IIP-UX specific flags.

-milp32

-mlp64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets
int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits. These are HP-UX specific flags.

-mno-sched-br-data-spec

-msched-br-data-spec
(Dis/En)able data speculative scheduling before reload. This will result in
generation of the ld.a instructions and the corresponding check instructions
(Id.c / chk.a). The default is 'disable’.

-msched-ar-data-spec

-mno-sched-ar-data-spec
(En/Dis)able data speculative scheduling after reload. This will result in gen-
eration of the ld.a instructions and the corresponding check instructions (Id.c
/ chk.a). The default is ’enable’.

-mno-sched-control-spec

-msched-control-spec
(Dis/En)able control speculative scheduling. This feature is available only dur-
ing region scheduling (i.e. before reload). This will result in generation of the
ld.s instructions and the corresponding check instructions chk.s . The default
is ’disable’.

-msched-br-in-data-spec

-mno-sched-br-in-data-spec
(En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads before reload. This is effective only with
‘-msched-br-data-spec’ enabled. The default is ’enable’.

-msched-ar-in-data-spec

-mno-sched-ar-in-data-spec
(En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads after reload. This is effective only with
‘-msched-ar-data-spec’ enabled. The default is ’enable’.

-msched-in-control-spec

-mno-sched-in-control-spec
(En/Dis)able speculative scheduling of the instructions that are de-
pendent on the control speculative loads. This is effective only with
‘-msched-control-spec’ enabled. The default is ’enable’.

Chapter 3: GCC Command Options 157

-msched-1dc

-mno-sched-1dc
(En/Dis)able use of simple data speculation checks Id.c . If disabled, only chk.a
instructions will be emitted to check data speculative loads. The default is
‘enable’.

-mno-sched-control-1dc

-msched-control-1dc
(Dis/En)able use of ld.c instructions to check control speculative loads. If
enabled, in case of control speculative load with no speculatively scheduled
dependent instructions this load will be emitted as Id.sa and 1d.c will be used
to check it. The default is ’disable’.

-mno-sched-spec-verbose
-msched-spec-verbose
(Dis/En)able printing of the information about speculative motions.

-mno-sched-prefer-non-data-spec-insns

-msched-prefer-non-data-spec-insns
If enabled, data speculative instructions will be chosen for schedule only if
there are no other choices at the moment. This will make the use of the data
speculation much more conservative. The default is ’disable’.

-mno-sched-prefer-non-control-spec-insns
-msched-prefer-non-control-spec-insns
If enabled, control speculative instructions will be chosen for schedule only if
there are no other choices at the moment. This will make the use of the control
speculation much more conservative. The default is 'disable’.

-mno-sched-count-spec-in-critical-path

-msched-count-spec-in-critical-path
If enabled, speculative dependencies will be considered during computation of
the instructions priorities. This will make the use of the speculation a bit more
conservative. The default is 'disable’.

3.17.16 M32C Options

-mcpu=name
Select the CPU for which code is generated. name may be one of ‘r8c’ for
the R8C/Tiny series, ‘m16¢’ for the M16C (up to /60) series, ‘m32cm’ for the
M16C/80 series, or ‘m32¢’ for the M32C/80 series.

-msim Specifies that the program will be run on the simulator. This causes an alternate
runtime library to be linked in which supports, for example, file I/O. You must
not use this option when generating programs that will run on real hardware;
you must provide your own runtime library for whatever I/O functions are
needed.

-memregs=number
Specifies the number of memory-based pseudo-registers GCC will use during
code generation. These pseudo-registers will be used like real registers, so there

158 Using the GNU Compiler Collection (GCC)

is a tradeoff between GCC'’s ability to fit the code into available registers, and
the performance penalty of using memory instead of registers. Note that all
modules in a program must be compiled with the same value for this option.
Because of that, you must not use this option with the default runtime libraries
gce builds.

3.17.17 M32R/D Options
These ‘-m’ options are defined for Renesas M32R /D architectures:

-m32r2 Generate code for the M32R/2.
-m32rx Generate code for the M32R/X.
-m32r Generate code for the M32R. This is the default.

-mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the 1d24 instruction), and assume all subroutines are reach-
able with the bl instruction. This is the default.

The addressability of a particular object can be set with the model attribute.

-mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and assume all
subroutines are reachable with the bl instruction.

-mmodel=large
Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume subrou-
tines may not be reachable with the bl instruction (the compiler will generate
the much slower seth/add3/j1 instruction sequence).

-msdata=none
Disable use of the small data area. Variables will be put into one of ‘.data’,
‘bss’, or ‘.rodata’ (unless the section attribute has been specified). This is
the default.

The small data area consists of sections ‘.sdata’ and ‘.sbss’. Objects may be
explicitly put in the small data area with the section attribute using one of
these sections.

-msdata=sdata
Put small global and static data in the small data area, but do not generate
special code to reference them.

-msdata=use
Put small global and static data in the small data area, and generate special
instructions to reference them.

-G num Put global and static objects less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss sections. The default
value of num is 8. The ‘-msdata’ option must be set to one of ‘sdata’ or ‘use’
for this option to have any effect.

Chapter 3: GCC Command Options 159

All modules should be compiled with the same ‘-G num’ value. Compiling with
different values of num may or may not work; if it doesn’t the linker will give
an error message—incorrect code will not be generated.

-mdebug Makes the M32R specific code in the compiler display some statistics that might
help in debugging programs.

-malign-loops
Align all loops to a 32-byte boundary.

-mno-align-loops
Do not enforce a 32-byte alignment for loops. This is the default.

-missue-rate=number
Issue number instructions per cycle. number can only be 1 or 2.

-mbranch-cost=number
number can only be 1 or 2. If it is 1 then branches will be preferred over
conditional code, if it is 2, then the opposite will apply.

-mflush-trap=number
Specifies the trap number to use to flush the cache. The default is 12. Valid
numbers are between 0 and 15 inclusive.

-mno-flush-trap
Specifies that the cache cannot be flushed by using a trap.

-mflush-func=name
Specifies the name of the operating system function to call to flush the cache.
The default is _flush_cache, but a function call will only be used if a trap is not
available.

-mno-flush-func
Indicates that there is no OS function for flushing the cache.

3.17.18 M680x0 Options

These are the ‘-m’ options defined for M680x0 and ColdFire processors. The default settings
depend on which architecture was selected when the compiler was configured; the defaults
for the most common choices are given below.

-march=arch

Generate code for a specific M680x0 or ColdFire instruction set architecture.
Permissible values of arch for M680x0 architectures are: ‘68000, ‘68010,
‘680207, ‘68030°, ‘68040°, ‘68060" and ‘cpu32’. ColdFire architectures are
selected according to Freescale’s ISA classification and the permissible values
are: ‘isaa’, ‘isaaplus’, ‘isab’ and ‘isac’.

gce defines a macro ‘__mcfarch__" whenever it is generating code for a ColdFire
target. The arch in this macro is one of the ‘-march’ arguments given above.

When used together, ‘-march’ and ‘-mtune’ select code that runs on a family
of similar processors but that is optimized for a particular microarchitecture.

160 Using the GNU Compiler Collection (GCC)

-mcpu=cpu
Generate code for a specific M680x0 or ColdFire processor. The M680x0 cpus
are: ‘680007, ‘68010, ‘680207, ‘68030°, ‘68040’, ‘68060, ‘68302’, ‘68332’ and
‘cpu32’. The ColdFire cpus are given by the table below, which also classifies
the CPUs into families:

Family ‘-mcpu’ arguments

‘61ge’ ‘61qge’

‘6206’ ‘5202’ ‘56204’ ‘562086’

‘6206¢’ ‘5206¢’

‘6208’ ‘6207’ ‘6208’

‘6211a’ ‘6210a’ ‘5211a’

‘6213’ ‘6211’ ‘5212’ ‘5213’

‘6216’ ‘6214’ ‘5216’

‘52235’ ‘52230’ ‘52231’ ‘52232’ ‘562233’ ‘52234’ ‘52235’
‘6225’ ‘6224’ ‘5225’

‘6235’ ‘6232’ ‘6233’ ‘5234’ ‘5235’ ‘5623x%’
‘6249’ ‘5249’

‘6250’ ‘5250’

‘6271’ ‘5270’ ‘56271’

‘6272’ ‘5272’

‘6275’ ‘6274’ ‘6275’

‘6282’ ‘6280’ ‘5281’ ‘5282’ ‘528%’
‘6307’ ‘5307’

‘6329’ ‘6327’ ‘6328’ ‘5329’ ‘532%’
‘6373’ ‘6372’ ‘6373’ ‘637x’

‘5407’ ‘5407’

‘6475’ ‘6470’ ‘6471’ ‘bAT2’ ‘GAT3’ ‘bAT4’ ‘G475’ ‘BATx’ ‘6480° ‘5481’ ‘5482’

‘6483’ ‘6484’ ‘5485’

‘-mcpu=cpu’ overrides ‘-march=arch’ if arch is compatible with cpu. Other

combinations of ‘-mcpu’ and ‘-march’ are rejected.

gce defines the macro ¢

It also defines *

the table above.

__mcf_cpu_cpu’ when ColdFire target cpu is selected.
_mcf_family_family’, where the value of family is given by

-mtune=tune
Tune the code for a particular microarchitecture, within the constraints set by
‘-march’ and ‘-mcpu’. The M680x0 microarchitectures are: ‘68000°, ‘68010,
‘680207, ‘68030, ‘680407, ‘68060’ and ‘cpu32’. The ColdFire microarchitectures
are: ‘cfvl’, ‘cfv2’, ‘cfv3’, ‘cfvd’ and ‘cfvie’.

You can also use ‘-mtune=68020-40’ for code that needs to run relatively well
on 68020, 68030 and 68040 targets. ‘-mtune=68020-60’ is similar but includes
68060 targets as well. These two options select the same tuning decisions as
‘-m68020-40’ and ‘-m68020-60° respectively.

¢ b

gee defines the macros ‘__mcarch’ and ‘__mcarch when tuning for 680x0
architecture arch. It also defines ‘mcarch’ unless either ‘-~ansi’ or a non-GNU

Chapter 3:

-m68000
-mc68000

-m68010

-m68020
-mc68020

-m68030

-m68040

-m68060

-mcpu3?2

-m5200

-m5206e

-mb528x

GCC Command Options 161

‘-std’ option is used. If gce is tuning for a range of architectures, as selected
by ‘-mtune=68020-40 or ‘-mtune=68020-60’, it defines the macros for every
architecture in the range.

gee also defines the macro ‘__muarch__’ when tuning for ColdFire microarchi-
tecture warch, where uarch is one of the arguments given above.

Generate output for a 68000. This is the default when the compiler is configured
for 68000-based systems. It is equivalent to ‘-march=68000’.

Use this option for microcontrollers with a 68000 or EC000 core, including the
68008, 68302, 68306, 68307, 68322, 68328 and 68356.

Generate output for a 68010. This is the default when the compiler is configured
for 68010-based systems. It is equivalent to ‘-march=68010’.

Generate output for a 68020. This is the default when the compiler is configured
for 68020-based systems. It is equivalent to ‘-march=68020’.

Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems. It is equivalent to ‘-march=68030’.

Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems. It is equivalent to ‘-march=68040’.

This option inhibits the use of 68881/68882 instructions that have to be em-
ulated by software on the 68040. Use this option if your 68040 does not have
code to emulate those instructions.

Generate output for a 68060. This is the default when the compiler is configured
for 68060-based systems. It is equivalent to ‘-march=68060’.

This option inhibits the use of 68020 and 68881/68882 instructions that have
to be emulated by software on the 68060. Use this option if your 68060 does
not have code to emulate those instructions.

Generate output for a CPU32. This is the default when the compiler is config-
ured for CPU32-based systems. It is equivalent to ‘-march=cpu32’.

Use this option for microcontrollers with a CPU32 or CPU32+ core, including
the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

Generate output for a 520X ColdFire CPU. This is the default when the com-
piler is configured for 520X-based systems. It is equivalent to ‘-mcpu=5206’,
and is now deprecated in favor of that option.

Use this option for microcontroller with a 5200 core, including the MCF5202,
MCF5203, MCF5204 and MCF5206.

Generate output for a 5206e ColdFire CPU. The option is now deprecated in
favor of the equivalent ‘-mcpu=5206e’.

Generate output for a member of the ColdFire 528X family. The option is now
deprecated in favor of the equivalent ‘-mcpu=528x’.

162 Using the GNU Compiler Collection (GCC)

-m5307 Generate output for a ColdFire 5307 CPU. The option is now deprecated in
favor of the equivalent ‘-mcpu=5307’.

-m5407 Generate output for a ColdFire 5407 CPU. The option is now deprecated in
favor of the equivalent ‘-mcpu=5407’.

-mcfvde Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This in-
cludes use of hardware floating point instructions. The option is equivalent to
‘-mcpu=547%’, and is now deprecated in favor of that option.

-m68020-40
Generate output for a 68040, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68040.

The option is equivalent to ‘-march=68020" ‘-mtune=68020-40’.

-m68020-60
Generate output for a 68060, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68060.

The option is equivalent to ‘-march=68020" ‘-mtune=68020-60’.

-mhard-float

-m68881 Generate floating-point instructions. This is the default for 68020 and
above, and for ColdFire devices that have an FPU. It defines the macro
‘__HAVE_68881__" on M680x0 targets and ‘__mcffpu__’ on ColdFire targets.

-msoft-float
Do not generate floating-point instructions; use library calls instead. This is the
default for 68000, 68010, and 68832 targets. It is also the default for ColdFire
devices that have no FPU.

-mdiv

-mno-div Generate (do not generate) ColdFire hardware divide and remainder instruc-
tions. If ‘-march’ is used without ‘-mcpu’, the default is “on” for ColdFire ar-
chitectures and “off” for M680x0 architectures. Otherwise, the default is taken
from the target CPU (either the default CPU, or the one specified by ‘-mcpu’).
For example, the default is “off” for ‘-mcpu=5206’ and “on” for ‘-mcpu=5206¢’.

gee defines the macro ‘__mcfhwdiv__’ when this option is enabled.

-mshort Consider type int to be 16 bits wide, like short int. Additionally, parameters
passed on the stack are also aligned to a 16-bit boundary even on targets whose
APIT mandates promotion to 32-bit.

-mno-short
Do not consider type int to be 16 bits wide. This is the default.

-mnobitfield

-mno-bitfield
Do not use the bit-field instructions. The ‘-m68000’, ‘-mcpu32’ and ‘-m5200
options imply ‘-mnobitfield’.

Chapter 3: GCC Command Options 163

-mbitfield

-mrtd

Do use the bit-field instructions. The ‘-m68020° option implies ‘-mbitfield’.
This is the default if you use a configuration designed for a 68020.

Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their argu-
ments while returning. This saves one instruction in the caller since there is no
need to pop the arguments there.

This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and
CPU32 processors, but not by the 68000 or 5200.

-mno-rtd Do not use the calling conventions selected by ‘-mrtd’. This is the default.

-malign-int
-mno-align-int

-mpcrel

Control whether GCC aligns int, long, long long, float, double, and long
double variables on a 32-bit boundary (‘-malign-int’) or a 16-bit boundary
(‘-mno-align-int’). Aligning variables on 32-bit boundaries produces code
that runs somewhat faster on processors with 32-bit busses at the expense of
more mMemory.

Warning: if you use the ‘-malign-int’ switch, GCC will align structures con-
taining the above types differently than most published application binary in-
terface specifications for the m68k.

Use the pc-relative addressing mode of the 68000 directly, instead of using a
global offset table. At present, this option implies ‘-fpic’, allowing at most a
16-bit offset for pc-relative addressing. ‘-fPIC’ is not presently supported with
‘-mpcrel’, though this could be supported for 68020 and higher processors.

-mno-strict-align
-mstrict-align

-msep-data

Do not (do) assume that unaligned memory references will be handled by the
system.

Generate code that allows the data segment to be located in a different area of
memory from the text segment. This allows for execute in place in an environ-
ment without virtual memory management. This option implies ‘-fPIC’.

-mno-sep-data

Generate code that assumes that the data segment follows the text segment.
This is the default.

164 Using the GNU Compiler Collection (GCC)

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This al-
lows for execute in place and shared libraries in an environment without virtual
memory management. This option implies ‘-fPIC’.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used.
This is the default.

-mshared-library-id=n
Specified the identification number of the ID based shared library being com-
piled. Specifying a value of 0 will generate more compact code, specifying other
values will force the allocation of that number to the current library but is no
more space or time efficient than omitting this option.

3.17.19 M68hclx Options

These are the ‘-m’ options defined for the 68hcll and 68hcl2 microcontrollers. The default
values for these options depends on which style of microcontroller was selected when the
compiler was configured; the defaults for the most common choices are given below.

-m6811
-m68hcil Generate output for a 68HC11. This is the default when the compiler is con-
figured for 68HC11-based systems.

-m6812
-m68hc12 Generate output for a 68HC12. This is the default when the compiler is con-
figured for 6811C12-based systems.

-m68S12
-m68hcs12
Generate output for a 68HCS12.

-mauto-incdec
Enable the use of 68HC12 pre and post auto-increment and auto-decrement
addressing modes.

-minmax
-nominmax
Enable the use of 68HC12 min and max instructions.

-mlong-calls

-mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be far away, the
compiler will use the call instruction to call a function and the rtc instruction
for returning.

-mshort Consider type int to be 16 bits wide, like short int.

-msoft-reg-count=count
Specify the number of pseudo-soft registers which are used for the code gener-
ation. The maximum number is 32. Using more pseudo-soft register may or
may not result in better code depending on the program. The default is 4 for
68HC11 and 2 for 68HC12.

Chapter 3: GCC Command Options 165

3.17.20 MCore Options

These are the ‘-m’ options defined for the Motorola M*Core processors.

-mhardlit

-mno-hardlit
Inline constants into the code stream if it can be done in two instructions or
less.

-mdiv
-mno-div Use the divide instruction. (Enabled by default).

-mrelax-immediate
-mno-relax-immediate
Allow arbitrary sized immediates in bit operations.

-mwide-bitfields
-mno-wide-bitfields
Always treat bit-fields as int-sized.

-mdbyte-functions
-mno-4byte-functions
Force all functions to be aligned to a four byte boundary.

-mcallgraph-data
-mno-callgraph-data
Emit callgraph information.
-mslow-bytes
-mno-slow-bytes
Prefer word access when reading byte quantities.
-mlittle-endian
-mbig-endian
Generate code for a little endian target.

-m210
-m340 Generate code for the 210 processor.

3.17.21 MIPS Options

-EB Generate big-endian code.
-EL Generate little-endian code. This is the default for ‘mips*el-*-*’ configura-
tions.

-march=arch
Generate code that will run on arch, which can be the name of a generic MIPS
ISA, or the name of a particular processor. The ISA names are: ‘mipsl’,
‘mips2’, ‘mips3’, ‘mips4’, ‘mips32’, ‘mips32r2’, and ‘mips64’. The processor
names are: ‘4kc’, ‘4km’, ‘4kp’, ‘4ksc’, ‘4dkec’, ‘dkem’, ‘4kep’, ‘4ksd’, ‘bkc’, ‘Bkf’,
‘20kc’, ‘24kc’, ‘24kf2_1', ‘24kf1_1’, ‘24kec’, ‘24kef2_1’, ‘24kefl_1’, ‘34kc’,
‘34kf2_1’, ‘34kf1_1’, ‘74kc’, ‘74kf2_1’, ‘7T4kf1_1’, ‘7T4kf3_2’, ‘mdk’, ‘orion’,
‘r2000°, ‘r3000’, ‘v3900°, ‘rd000’, ‘r4400°, ‘r4600’, ‘T4650°, ‘r6000’, ‘T8000’,

166

Using the GNU Compiler Collection (GCC)

‘rm7000’, ‘rm9000’, ‘sbl’, ‘sr71000’, ‘vr4100’, ‘vr4111’, ‘vr4120’, ‘vr4130’,
‘vr4300°, ‘vr5000’, ‘vr5400’, ‘vr5500°, ‘loongson2e’ and ‘loongson2f’. The
special value ‘from-abi’ selects the most compatible architecture for the se-
lected ABI (that is, ‘mips1’ for 32-bit ABIs and ‘mips3’ for 64-bit ABIs).

In processor names, a final ‘000’ can be abbreviated as ‘k’ (for example,
‘-march=r2k’). Prefixes are optional, and ‘vr’ may be written ‘r’.

Names of the form ‘nf2_1" refer to processors with FPUs clocked at half the rate
of the core, names of the form ‘nf1_1’ refer to processors with FPUs clocked
at the same rate as the core, and names of the form ‘n£3_2’ refer to processors
with FPUs clocked a ratio of 3:2 with respect to the core. For compatibility
reasons, ‘nf’ is accepted as a synonym for ‘nf2_1" while ‘nx’ and ‘bfx’ are
accepted as synonyms for ‘nf1_1".

GCC defines two macros based on the value of this option. The first is
‘_MIPS_ARCH’, which gives the name of target architecture, as a string. The
second has the form ‘_MIPS_ARCH_foo’, where foo is the capitalized value
of ‘_MIPS_ARCH'. For example, ‘-march=r2000’ will set ‘_MIPS_ARCH’ to
‘"r2000" and define the macro ‘_MIPS_ARCH_R2000’.

Note that the ‘_MIPS_ARCH’ macro uses the processor names given above. In
other words, it will have the full prefix and will not abbreviate ‘000’ as ‘k’.
In the case of ‘from-abi’, the macro names the resolved architecture (either
“'‘mips1"’ or ‘"mips3"’). It names the default architecture when no ‘-march’
option is given.

-mtune=arch

-mipsi
-mips2
-mips3
-mips4
-mips32

-mips32r2

-mips64

Optimize for arch. Among other things, this option controls the way instruc-
tions are scheduled, and the perceived cost of arithmetic operations. The list
of arch values is the same as for ‘“-march’.

When this option is not used, GCC will optimize for the processor specified by
‘-march’. By using ‘-march’ and ‘-mtune’ together, it is possible to generate
code that will run on a family of processors, but optimize the code for one
particular member of that family.

‘-mtune’ defines the macros ‘_MIPS_TUNE’ and ‘_MIPS_TUNE_foo’, which work
in the same way as the ‘-march’ ones described above.

Equivalent to ‘-march=mips1’.
Equivalent to ‘-march=mips2’.
Equivalent to ‘-march=mips3’.
Equivalent to ‘-march=mips4’.

Equivalent to ‘-march=mips32’.

Equivalent to ‘-march=mips32r2’.

Equivalent to ‘-march=mips64’.

Chapter 3: GCC Command Options 167

-mipsi6

-mipsl6e

-mno-mips16
Generate (do not generate) MIPS16 code. If GCC is targetting a MIPS32 or
MIPS64 architecture, it will make use of the MIPS16e ASE. ‘-mipsi6e’ is a
deprecated alias for ‘-mips16’.

-mabi=32
-mabi=064
-mabi=n32
-mabi=64
-mabi=eabi
Generate code for the given ABIL

Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates
64-bit code when you select a 64-bit architecture, but you can use ‘-mgp32’ to
get 32-bit code instead.

For information about the O64 ABI, see http://gcc.gnu.org/projects/mipso64-abi.html.|]

GCC supports a variant of the 032 ABI in which floating-point registers are
64 rather than 32 bits wide. You can select this combination with ‘-mabi=32’
‘-mfp64’. This ABI relies on the ‘mthcl’ and ‘mfhcl’ instructions and is there-
fore only supported for MIPS32R2 processors.

The register assignments for arguments and return values remain the same, but
each scalar value is passed in a single 64-bit register rather than a pair of 32-bit
registers. For example, scalar floating-point values are returned in ‘$£0’ only,
not a ‘$£0’/‘$£f1’ pair. The set of call-saved registers also remains the same,
but all 64 bits are saved.

-mabicalls

-mno-abicalls
Generate (do not generate) code that is suitable for SVR4-style dynamic ob-
jects. ‘-mabicalls’ is the default for SVR4-based systems.

-mshared

-mno-shared
Generate (do not generate) code that is fully position-independent, and that can
therefore be linked into shared libraries. This option only affects ‘-mabicalls’.

All ‘-mabicalls’ code has traditionally been position-independent, regardless of
options like ‘-fPIC’ and ‘-fpic’. However, as an extension, the GNU toolchain
allows executables to use absolute accesses for locally-binding symbols. It can
also use shorter GP initialization sequences and generate direct calls to locally-
defined functions. This mode is selected by ‘-mno-shared’.

‘-mno-shared’ depends on binutils 2.16 or higher and generates objects that
can only be linked by the GNU linker. However, the option does not affect the
ABI of the final executable; it only affects the ABI of relocatable objects. Using
‘-mno-shared’ will generally make executables both smaller and quicker.

‘-mshared’ is the default.

http://gcc.gnu.org/projects/mipso64-abi.html

168 Using the GNU Compiler Collection (GCC)

-mxgot

-mno-xgot
Lift (do not lift) the usual restrictions on the size of the global offset table.
GCC normally uses a single instruction to load values from the GOT. While
this is relatively efficient, it will only work if the GOT is smaller than about
64k. Anything larger will cause the linker to report an error such as:

relocation truncated to fit: R_MIPS_GOT16 foobar

If this happens, you should recompile your code with ‘-mxgot’. Tt should then
work with very large GO'Ts, although it will also be less efficient, since it will
take three instructions to fetch the value of a global symbol.
Note that some linkers can create multiple GOTs. If you have such a linker,

you should only need to use ‘-mxgot’ when a single object file accesses more
than 64k’s worth of GOT entries. Very few do.

These options have no effect unless GCC is generating position independent
code.

-mgp32 Assume that general-purpose registers are 32 bits wide.
-mgp64 Assume that general-purpose registers are 64 bits wide.
-mfp32 Assume that floating-point registers are 32 bits wide.
-mfp64 Assume that floating-point registers are 64 bits wide.

-mhard-float
Use floating-point coprocessor instructions.

-msoft-float
Do not use floating-point coprocessor instructions. Implement floating-point
calculations using library calls instead.

-msingle-float
Assume that the floating-point coprocessor only supports single-precision oper-
ations.

-mdouble-float
Assume that the floating-point coprocessor supports double-precision opera-
tions. This is the default.

-mdsp

-mno-dsp Use (do not use) revision 1 of the MIPS DSP ASE. See Section 5.48.7 [MIPS
DSP Built-in Functions|, page 418. This option defines the preprocessor macro
‘__mips_dsp’. It also defines ‘__mips_dsp_rev’ to 1.

-mdspr2

-mno-dspr2
Use (do not use) revision 2 of the MIPS DSP ASE. See Section 5.48.7 [MIPS
DSP Built-in Functions|, page 418. This option defines the preprocessor macros
‘__mips_dsp’ and ‘__mips_dspr2’. It also defines ‘__mips_dsp_rev’ to 2.

-msmartmips
-mno-smartmips

Use (do not use) the MIPS SmartMIPS ASE.

Chapter 3: GCC Command Options 169

-mpaired-single

-mno-paired-single
Use (do not use) paired-single floating-point instructions. See Section 5.48.8
[MIPS Paired-Single Support], page 422. This option can only be used when
generating 64-bit code and requires hardware floating-point support to be en-

abled.

-mdmx

-mno-mdmx
Use (do not use) MIPS Digital Media Extension instructions. This option can
only be used when generating 64-bit code and requires hardware floating-point
support to be enabled.

-mips3d

-mno-mips3d
Use (do not use) the MIPS-3D ASE. See Section 5.48.8.3 [MIPS-3D Built-in
Functions], page 424. The option ‘-mips3d’ implies ‘-mpaired-single’.

-mmt
-mno-mt Use (do not use) MT Multithreading instructions.

-mlong64 Force long types to be 64 bits wide. See ‘-mlong32’ for an explanation of the
default and the way that the pointer size is determined.

-mlong32 Force long, int, and pointer types to be 32 bits wide.

The default size of ints, longs and pointers depends on the ABI. All the
supported ABIs use 32-bit ints. The n64 ABI uses 64-bit longs, as does the
64-bit EABI; the others use 32-bit longs. Pointers are the same size as longs,
or the same size as integer registers, whichever is smaller.

-msym32

—mno-sym32
Assume (do not assume) that all symbols have 32-bit values, regardless of
the selected ABI. This option is useful in combination with ‘-mabi=64" and
‘-mno-abicalls’ because it allows GCC to generate shorter and faster refer-
ences to symbolic addresses.

-G num Put global and static items less than or equal to num bytes into the small data

or bss section instead of the normal data or bss section. This allows the data
to be accessed using a single instruction.

All modules should be compiled with the same ‘-G num’ value.

-membedded-data

-mno-embedded-data
Allocate variables to the read-only data section first if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing,
and thus may be preferred for some embedded systems.

170 Using the GNU Compiler Collection (GCC)

-muninit-const-in-rodata

-mno-uninit-const-in-rodata
Put uninitialized const variables in the read-only data section. This option is
only meaningful in conjunction with ‘-membedded-data’.

-msplit-addresses

-mno-split-addresses
Enable (disable) use of the %hi() and %lo() assembler relocation operators.
This option has been superseded by ‘-mexplicit-relocs’ but is retained for
backwards compatibility.

-mexplicit-relocs

-mno-explicit-relocs
Use (do not use) assembler relocation operators when dealing with symbolic
addresses. The alternative, selected by ‘-mno-explicit-relocs’, is to use as-
sembler macros instead.

‘-mexplicit-relocs’ is the default if GCC was configured to use an assembler
that supports relocation operators.

-mcheck-zero-division

-mno-check-zero-division
Trap (do not trap) on integer division by zero. The default is
‘-mcheck-zero-division’.

-mdivide-traps

-mdivide-breaks
MIPS systems check for division by zero by generating either a conditional
trap or a break instruction. Using traps results in smaller code, but is only
supported on MIPS II and later. Also, some versions of the Linux kernel have
a bug that prevents trap from generating the proper signal (SIGFPE). Use
‘-mdivide-traps’ to allow conditional traps on architectures that support them
and ‘-mdivide-breaks’ to force the use of breaks.

The default is usually ‘“-mdivide-traps’, but this can be overridden at configure
time using ‘--with-divide=breaks’. Divide-by-zero checks can be completely
disabled using ‘-mno-check-zero-division’.

-mmemcpy

-mno-memcpy
Force (do not force) the use of memcpy () for non-trivial block moves. The de-
fault is ‘-mno-memcpy’, which allows GCC to inline most constant-sized copies.

-mlong-calls

-mno-long-calls
Disable (do not disable) use of the jal instruction. Calling functions using
jal is more efficient but requires the caller and callee to be in the same 256
megabyte segment.

This option has no effect on abicalls code. The default is ‘-mno-long-calls’.
-mmad

-mno-mad Enable (disable) use of the mad, madu and mul instructions, as provided by the
R4650 ISA.

Chapter 3: GCC Command Options 171

-mfused-madd

-mno-fused-madd
Enable (disable) use of the floating point multiply-accumulate instructions,
when they are available. The default is ‘-mfused-madd’.
When multiply-accumulate instructions are used, the intermediate product is

calculated to infinite precision and is not subject to the FCSR Flush to Zero
bit. This may be undesirable in some circumstances.

-nocpp Tell the MIPS assembler to not run its preprocessor over user assembler files
(with a ‘.s’ suffix) when assembling them.
-mfix-r4000

-mno-fix-r4000
Work around certain R4000 CPU errata:

— A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.

— A double-word or a variable shift may give an incorrect result if executed
while an integer multiplication is in progress.

— An integer division may give an incorrect result if started in a delay slot of
a taken branch or a jump.

-mfix-r4400
-mno-fix-r4400
Work around certain R4400 CPU errata:
— A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.

-mfix-vr4120
-mno-fix-vr4120
Work around certain VR4120 errata:
— dmultu does not always produce the correct result.

— div and ddiv do not always produce the correct result if one of the operands
is negative.

The workarounds for the division errata rely on special functions in ‘libgcc.a’.
At present, these functions are only provided by the mips64vr*-elf configura-
tions.

Other VR4120 errata require a nop to be inserted between certain pairs of
instructions. These errata are handled by the assembler, not by GCC itself.

-mfix-vr4130
Work around the VR4130 mf1o/mfhi errata. The workarounds are implemented
by the assembler rather than by GCC, although GCC will avoid using mflo and
mfhi if the VR4130 macc, macchi, dmacc and dmacchi instructions are available
instead.

-mfix-sbl

-mno-fix-sbl
Work around certain SB-1 CPU core errata. (This flag currently works around
the SB-1 revision 2 “F1” and “F2” floating point errata.)

172 Using the GNU Compiler Collection (GCC)

-mflush-func=func

-mno-flush-func
Specifies the function to call to flush the I and D caches, or to not call any such
function. If called, the function must take the same arguments as the common
_flush_func(), that is, the address of the memory range for which the cache
is being flushed, the size of the memory range, and the number 3 (to flush
both caches). The default depends on the target GCC was configured for, but
commonly is either ‘_flush_func’ or ‘__cpu_flush’.

mbranch-cost=num
Set the cost of branches to roughly num “simple” instructions. This cost is only
a heuristic and is not guaranteed to produce consistent results across releases.
A zero cost redundantly selects the default, which is based on the ‘-mtune’
setting.

-mbranch-likely

-mno-branch-likely
Enable or disable use of Branch Likely instructions, regardless of the default
for the selected architecture. By default, Branch Likely instructions may be
generated if they are supported by the selected architecture. An exception
is for the MIPS32 and MIPS64 architectures and processors which implement
those architectures; for those, Branch Likely instructions will not be generated
by default because the MIPS32 and MIPS64 architectures specifically deprecate
their use.

-mfp-exceptions

-mno-fp-exceptions
Specifies whether FP exceptions are enabled. This affects how we schedule FP
instructions for some processors. The default is that FP exceptions are enabled.

For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
64-bit code, then we can use both FP pipes. Otherwise, we can only use one
FP pipe.

-mvr4130-align

-mno-vr4130-align
The VR4130 pipeline is two-way superscalar, but can only issue two instructions
together if the first one is 8-byte aligned. When this option is enabled, GCC
will align pairs of instructions that it thinks should execute in parallel.

This option only has an effect when optimizing for the VR4130. It normally
makes code faster, but at the expense of making it bigger. It is enabled by
default at optimization level ‘-=03’.

3.17.22 MMIX Options
These options are defined for the MMIX:

-mlibfuncs

-mno-libfuncs
Specify that intrinsic library functions are being compiled, passing all values in
registers, no matter the size.

Chapter 3: GCC Command Options 173

-mepsilon

-mno-epsilon
Generate floating-point comparison instructions that compare with respect to
the rE epsilon register.

-mabi=mmixware

-mabi=gnu
Generate code that passes function parameters and return values that (in the
called function) are seen as registers $0 and up, as opposed to the GNU ABI
which uses global registers $231 and up.

-mzero-extend

-mno-zero-extend
When reading data from memory in sizes shorter than 64 bits, use (do not use)
zero-extending load instructions by default, rather than sign-extending ones.

-mknuthdiv

-mno-knuthdiv
Make the result of a division yielding a remainder have the same sign as the
divisor. With the default, ‘-mno-knuthdiv’, the sign of the remainder follows
the sign of the dividend. Both methods are arithmetically valid, the latter being
almost exclusively used.

-mtoplevel-symbols

-mno-toplevel-symbols
Prepend (do not prepend) a ‘:’ to all global symbols, so the assembly code can
be used with the PREFIX assembly directive.

-melf Generate an executable in the ELF format, rather than the default ‘mmo’ format
used by the mmix simulator.

-mbranch-predict

-mno-branch-predict
Use (do not use) the probable-branch instructions, when static branch predic-
tion indicates a probable branch.

-mbase-addresses

-mno-base-addresses
Generate (do not generate) code that uses base addresses. Using a base address
automatically generates a request (handled by the assembler and the linker)
for a constant to be set up in a global register. The register is used for one or
more base address requests within the range 0 to 255 from the value held in the
register. The generally leads to short and fast code, but the number of different
data items that can be addressed is limited. This means that a program that
uses lots of static data may require ‘-mno-base-addresses’.

-msingle-exit
-mno-single-exit
Force (do not force) generated code to have a single exit point in each function.

3.17.23 MN10300 Options
These ‘-m’ options are defined for Matsushita MN10300 architectures:

174 Using the GNU Compiler Collection (GCC)

-mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.

-mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the MN10300
processors.

-mam33 Generate code which uses features specific to the AM33 processor.

-mno-am33
Do not generate code which uses features specific to the AM33 processor. This
is the default.

-mreturn-pointer-on-do
When generating a function which returns a pointer, return the pointer in both
a0 and d0. Otherwise, the pointer is returned only in a0, and attempts to call
such functions without a prototype would result in errors. Note that this option
is on by default; use ‘-mno-return-pointer-on-d0’ to disable it.

-mno-crt0
Do not link in the C run-time initialization object file.

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to
shorten branches, calls and absolute memory addresses. This option only has
an effect when used on the command line for the final link step.

This option makes symbolic debugging impossible.

3.17.24 MT Options

These ‘-m’ options are defined for Morpho MT architectures:

-march=cpu-type
Generate code that will run on cpu-type, which is the name of a system repre-
senting a certain processor type. Possible values for cpu-type are ‘ms1-64-001’,
‘ms1-16-002’, ‘ms1-16-003" and ‘ms2’.
When this option is not used, the default is ‘-march=ms1-16-002’.

-mbacc Use byte loads and stores when generating code.

-mno-bacc
Do not use byte loads and stores when generating code.

-msim Use simulator runtime

-mno-crt0
Do not link in the C run-time initialization object file ‘crti.o’. Other run-time
initialization and termination files such as ‘startup.o’ and ‘exit.o’ are still
included on the linker command line.

3.17.25 PDP-11 Options
These options are defined for the PDP-11:

-mfpu Use hardware FPP floating point. This is the default. (FIS floating point on
the PDP-11/40 is not supported.)

Chapter 3: GCC Command Options 175

-msoft-float
Do not use hardware floating point.

-macO Return floating-point results in acO (fr0 in Unix assembler syntax).

-mno-acO Return floating-point results in memory. This is the default.

-m40 Generate code for a PDP-11/40.
-m45 Generate code for a PDP-11/45. This is the default.
-m10 Generate code for a PDP-11/10.

-mbcopy-builtin
Use inline movmemhi patterns for copying memory. This is the default.

-mbcopy Do not use inline movmemhi patterns for copying memory.

-mint16
-mno-int32
Use 16-bit int. This is the default.
-mint32
-mno-int16
Use 32-bit int.
-mfloat64

-mno-float32
Use 64-bit float. This is the default.

-mfloat32
-mno-float64
Use 32-bit float.

-mabshi Use abshi2 pattern. This is the default.

-mno-abshi
Do not use abshi2 pattern.

-mbranch-expensive
Pretend that branches are expensive. This is for experimenting with code gen-
eration only.

-mbranch-cheap
Do not pretend that branches are expensive. This is the default.

-msplit Generate code for a system with split 1&D.

-mno-split
Generate code for a system without split 1&D. This is the default.

-munix-asm
Use Unix assembler syntax. This is the default when configured for
‘pdpll-*-bsd’.

-mdec-asm
Use DEC assembler syntax. This is the default when configured for any PDP-11
target other than ‘pdpl1-*-bsd’.

176

Using the GNU Compiler Collection (GCC)

3.17.26 PowerPC Options
These are listed under See Section 3.17.27 [RS/6000 and PowerPC Options], page 176.

3.17.27 IBM RS/6000 and PowerPC Options
These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower
-mMno-power
-mpower?2

-mno-power?2

-mpowerpc

-mno-powerpc
-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt
-mpowerpc64
-mno-powerpcé4

-mmfcrf
-mno-mfcrf
-mpopcntb

-mno-popcntb

-mfprnd
-mno-fprnd

GCC supports two related instruction set architectures for the RS/6000 and
PowerPC. The POWER instruction set are those instructions supported by
the ‘rios’ chip set used in the original RS/6000 systems and the PowerPC
instruction set is the architecture of the Freescale MPCbxx, MPC6xx, MPC8xx
microprocessors, and the IBM 4xx, 6xx, and follow-on microprocessors.

Neither architecture is a subset of the other. However there is a large com-
mon subset of instructions supported by both. An MQ register is included in
processors supporting the POWER, architecture.

You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GCC. Specifying the ‘-mcpu=cpu_type’ overrides the specification of these
options. We recommend you use the ‘-mcpu=cpu_type’ option rather than the
options listed above.

The ‘-mpower’ option allows GCC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifying ‘-mpower?2’
implies ‘-power’ and also allows GCC to generate instructions that are present
in the POWER2 architecture but not the original POWER architecture.

The ‘-mpowerpc’ option allows GCC to generate instructions that are
found only in the 32-bit subset of the PowerPC architecture. Specifying
‘-mpowerpc-gpopt’ implies ‘-mpowerpc’ and also allows GCC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifying ‘-mpowerpc-gfxopt’ implies

Chapter 3: GCC Command Options 177

‘-mpowerpc’ and also allows GCC to use the optional PowerPC architecture
instructions in the Graphics group, including floating-point select.

The ‘-mmfcrf’ option allows GCC to generate the move from condition register
field instruction implemented on the POWERA4 processor and other processors
that support the PowerPC V2.01 architecture. The ‘-mpopcntb’ option allows
GCC to generate the popcount and double precision FP reciprocal estimate
instruction implemented on the POWERS processor and other processors that
support the PowerPC V2.02 architecture. The ‘-mfprnd’ option allows GCC to
generate the FP round to integer instructions implemented on the POWERS5+
processor and other processors that support the PowerPC V2.03 architecture.

The ‘-mpowerpc64’ option allows GCC to generate the additional 64-bit instruc-
tions that are found in the full PowerPC64 architecture and to treat GPRs as
64-bit, doubleword quantities. GCC defaults to ‘-mno-powerpc64’.

If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GCC will use only the
instructions in the common subset of both architectures plus some special
AIX common-mode calls, and will not use the MQ register. Specifying both
‘-mpower’ and ‘-mpowerpc’ permits GCC to use any instruction from either
architecture and to allow use of the MQ register; specify this for the Motorola
MPC601.

-mnew-mnemonics

-mold-mnemonics
Select which mnemonics to use in the generated assembler code. With
‘-mnew-mnemonics’, GCC uses the assembler mnemonics defined for the
PowerPC architecture. =~ With ‘-mold-mnemonics’ it uses the assembler
mnemonics defined for the POWER architecture. Instructions defined in
only one architecture have only one mnemonic; GCC uses that mnemonic
irrespective of which of these options is specified.

GCC defaults to the mnemonics appropriate for the architecture in use. Spec-
ifying ‘-mcpu=cpu_type’ sometimes overrides the value of these option. Un-
less you are building a cross-compiler, you should normally not specify either
‘-mnew-mnemonics’ or ‘-mold-mnemonics’, but should instead accept the de-
fault.

-mcpu=cpu_type

Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cpu-type. Supported values for
cpu_type are ‘401, ‘403’, ‘405’, ‘405fp’, ‘440’, ‘440fp’, ‘505’, ‘601’, ‘602’,
‘603’, ‘603e’, ‘604’, ‘604e’, ‘620°, ‘630", ‘740", ‘T400’, ‘7450, ‘750", ‘8017, ‘821",
‘8237, ‘860, ‘970’, ‘8540’, ‘ec603e’, ‘G3’, ‘G4, ‘G5’, ‘power’, ‘power?2’, ‘powerd’,
‘power4d’, ‘powerb’, ‘powerb+’, ‘power6’, ‘common’, ‘powerpc’, ‘powerpc64’,
‘rios’, ‘rios?!’, ‘rios?2’, ‘rsc’, and ‘rs64’.

‘-mcpu=common’ selects a completely generic processor. Code generated under
this option will run on any POWER or PowerPC processor. GCC will use
only the instructions in the common subset of both architectures, and will not
use the MQ register. GCC assumes a generic processor model for scheduling
purposes.

178

Using the GNU Compiler Collection (GCC)

‘-mcpu=power’, ‘-mcpu=power?2’, ‘-mcpu=powerpc’, and ‘-mcpu=powerpc64’

specify generic POWER, POWER2, pure 32-bit PowerPC (i.e., not MPC601),
and 64-bit PowerPC architecture machine types, with an appropriate, generic
processor model assumed for scheduling purposes.

The other options specify a specific processor. Code generated under those
options will run best on that processor, and may not run at all on others.

The ‘-mcpu’ options automatically enable or disable the following options:

‘-maltivec’, ‘-mfprnd’, ‘-mhard-float’, ‘-mmfcrf’, ‘-mmultiple’,
‘-mnew-mnemonics’, ‘-mpopcntb’, ‘-mpower’, ‘-mpower2’, ‘-mpowerpc64’
‘-mpowerpc-gpopt’, ‘-mpowerpc-gfxopt’, ‘-mstring’, ‘-mmulhw’, ‘-mdlmzb’.

The particular options set for any particular CPU will vary between compiler
versions, depending on what setting seems to produce optimal code for that
CPU; it doesn’t necessarily reflect the actual hardware’s capabilities. If you
wish to set an individual option to a particular value, you may specify it after
the ‘-mcpu’ option, like ‘-mcpu=970 -mno-altivec’.

On AIX, the ‘-maltivec’ and ‘-mpowerpc64’ options are not enabled or disabled
by the ‘-mcpu’ option at present because AIX does not have full support for
these options. You may still enable or disable them individually if you're sure
it’ll work in your environment.

-mtune=cpu_type

-mswdiv

-mno-swdiv

-maltivec

Set the instruction scheduling parameters for machine type cpu_type, but
do not set the architecture type, register usage, or choice of mnemonics,
as ‘-mcpu=cpu_type’ would. The same values for cpu_type are used for
‘-mtune’ as for ‘-mcpu’. If both are specified, the code generated will use
the architecture, registers, and mnemonics set by ‘-mcpu’, but the scheduling
parameters set by ‘-mtune’.

Generate code to compute division as reciprocal estimate and iterative refine-
ment, creating opportunities for increased throughput. This feature requires:
optional PowerPC Graphics instruction set for single precision and FRE instruc-
tion for double precision, assuming divides cannot generate user-visible traps,
and the domain values not include Infinities, denormals or zero denominator.

-mno-altivec

-mvrsave

Generate code that uses (does not use) AltiVec instructions, and also enable the
use of built-in functions that allow more direct access to the AltiVec instruction
set. You may also need to set ‘-mabi=altivec’ to adjust the current ABI with
AltiVec ABI enhancements.

—mno-vrsave

Generate VRSAVE instructions when generating AltiVec code.

Chapter 3: GCC Command Options 179

-msecure-plt
Generate code that allows 1d and 1d.so to build executables and shared libraries
with non-exec .plt and .got sections. This is a PowerPC 32-bit SYSV ABI
option.

-mbss-plt
Generate code that uses a BSS .plt section that ld.so fills in, and requires .plt
and .got sections that are both writable and executable. This is a PowerPC
32-bit SYSV ABI option.

-misel
-mno-isel
This switch enables or disables the generation of ISEL instructions.
-misel=yes/no
This switch has been deprecated. Use ‘-misel’ and ‘-mno-isel’ instead.
-mspe
-mno-spe This switch enables or disables the generation of SPE simd instructions.
-mspe=yes/no
This option has been deprecated. Use ‘-mspe’ and ‘-mno-spe’ instead.
-mfloat-gprs=yes/single/double/no
-mfloat-gprs
This switch enables or disables the generation of floating point operations on
the general purpose registers for architectures that support it.
The argument yes or single enables the use of single-precision floating point
operations.
The argument double enables the use of single and double-precision floating
point operations.
The argument no disables floating point operations on the general purpose
registers.

This option is currently only available on the MPC854x.

-m32

-m64 Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets
(including GNU/Linux). The 32-bit environment sets int, long and pointer
to 32 bits and generates code that runs on any PowerPC variant. The 64-bit
environment sets int to 32 bits and long and pointer to 64 bits, and generates
code for PowerP(C64, as for ‘-mpowerpc64’.

-mfull-toc

-mno-fp-in-toc

-mno-sum-in-toc

-mminimal-toc
Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc’ option is selected by default. In that case,
GCC will allocate at least one TOC entry for each unique non-automatic vari-
able reference in your program. GCC will also place floating-point constants in
the TOC. However, only 16,384 entries are available in the TOC.

180

-maix64
-maix32

Using the GNU Compiler Collection (GCC)

If you receive a linker error message that saying you have overflowed the avail-
able TOC space, you can reduce the amount of TOC space used with the
‘-mno-fp-in-toc’ and ‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents
GCC from putting floating-point constants in the TOC and ‘-mno-sum-in-toc’
forces GCC to generate code to calculate the sum of an address and a constant
at run-time instead of putting that sum into the TOC. You may specify one
or both of these options. Each causes GCC to produce very slightly slower and
larger code at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these
options, specify ‘-mminimal-toc’ instead. This option causes GCC to make
only one TOC entry for every file. When you specify this option, GCC will
produce code that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on files that contain less frequently
executed code.

Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long
type, and the infrastructure needed to support them. Specifying ‘-maix64’
implies ‘-mpowerpc64’ and ‘-mpowerpc’, while ‘-maix32’ disables the 64-bit
ABI and implies ‘-mno-powerpc64’. GCC defaults to ‘-maix32’.

-mx1l-compat
-mno-xl-compat

-mpe

Produce code that conforms more closely to IBM XL compiler semantics when
using ATX-compatible ABI. Pass floating-point arguments to prototyped func-
tions beyond the register save area (RSA) on the stack in addition to argument
FPRs. Do not assume that most significant double in 128-bit long double value
is properly rounded when comparing values and converting to double. Use XL
symbol names for long double support routines.

The AIX calling convention was extended but not initially documented to han-
dle an obscure K&R C case of calling a function that takes the address of
its arguments with fewer arguments than declared. IBM XL compilers access
floating point arguments which do not fit in the RSA from the stack when a
subroutine is compiled without optimization. Because always storing floating-
point arguments on the stack is inefficient and rarely needed, this option is not
enabled by default and only is necessary when calling subroutines compiled by
IBM XL compilers without optimization.

Support IBM RS/6000 SP Parallel Environment (PE). Link an application
written to use message passing with special startup code to enable the ap-
plication to run. The system must have PE installed in the standard loca-
tion (‘/usr/lpp/ppe.poe/’), or the ‘specs’ file must be overridden with the
‘-gpecs=’ option to specify the appropriate directory location. The Parallel
Environment does not support threads, so the ‘-mpe’ option and the ‘-pthread’
option are incompatible.

Chapter 3: GCC Command Options 181

-malign-natural

-malign-power
On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
‘-malign-natural’ overrides the ABI-defined alignment of larger types, such
as floating-point doubles, on their natural size-based boundary. The option
‘-malign-power’ instructs GCC to follow the ABI-specified alignment rules.
GCC defaults to the standard alignment defined in the ABI.

On 64-bit Darwin, natural alignment is the default, and ‘-malign-power’ is not
supported.

-msoft-float

-mhard-float
Generate code that does not use (uses) the floating-point register set. Software
floating point emulation is provided if you use the ‘-msoft-float’ option, and
pass the option to GCC when linking.

-mmultiple

-mno-multiple
Generate code that uses (does not use) the load multiple word instructions
and the store multiple word instructions. These instructions are generated by
default on POWER systems, and not generated on PowerPC systems. Do not
use ‘-mmultiple’ on little endian PowerPC systems, since those instructions
do not work when the processor is in little endian mode. The exceptions are

PPC740 and PPC750 which permit the instructions usage in little endian mode.

-mstring

-mno-string
Generate code that uses (does not use) the load string instructions and the
store string word instructions to save multiple registers and do small block
moves. These instructions are generated by default on POWER systems, and
not generated on PowerPC systems. Do not use ‘-mstring’ on little endian
PowerPC systems, since those instructions do not work when the processor is
in little endian mode. The exceptions are PPC740 and PPC750 which permit
the instructions usage in little endian mode.

-mupdate

-mno-update
Generate code that uses (does not use) the load or store instructions that update
the base register to the address of the calculated memory location. These
instructions are generated by default. If you use ‘-mno-update’, there is a small
window between the time that the stack pointer is updated and the address of
the previous frame is stored, which means code that walks the stack frame
across interrupts or signals may get corrupted data.

-mfused-madd

-mno-fused-madd
Generate code that uses (does not use) the floating point multiply and accu-
mulate instructions. These instructions are generated by default if hardware
floating is used.

182 Using the GNU Compiler Collection (GCC)

-mmulhw

-mno-mulhw
Generate code that uses (does not use) the half-word multiply and multiply-
accumulate instructions on the IBM 405 and 440 processors. These instructions
are generated by default when targetting those processors.

-md1lmzb

-mno-dlmzb
Generate code that uses (does not use) the string-search ‘dlmzb’ instruction on
the IBM 405 and 440 processors. This instruction is generated by default when
targetting those processors.

-mno-bit-align

-mbit-align
On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the bit-field.

For example, by default a structure containing nothing but 8 unsigned bit-
fields of length 1 would be aligned to a 4 byte boundary and have a size of 4
bytes. By using ‘-mno-bit-align’, the structure would be aligned to a 1 byte
boundary and be one byte in size.

-mno-strict-align

-mstrict-align
On System V.4 and embedded PowerPC systems do not (do) assume that un-
aligned memory references will be handled by the system.

-mrelocatable

-mno-relocatable
On embedded PowerPC systems generate code that allows (does not allow)
the program to be relocated to a different address at runtime. If you use
‘-mrelocatable’ on any module, all objects linked together must be compiled
with ‘-mrelocatable’ or ‘-mrelocatable-1ib’.

-mrelocatable-1ib

-mno-relocatable-1ib
On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. Modules compiled
with ‘-mrelocatable-1ib’ can be linked with either modules compiled without
‘-mrelocatable’ and ‘-mrelocatable-1ib’ or with modules compiled with the
‘-mrelocatable’ options.

-mno-toc

-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that reg-
ister 2 contains a pointer to a global area pointing to the addresses used in the
program.

-mlittle

-mlittle-endian
On System V.4 and embedded PowerPC systems compile code for the processor
in little endian mode. The ‘-mlittle-endian’ option is the same as ‘-mlittle’.

Chapter 3: GCC Command Options 183

-mbig
-mbig-endian
On System V.4 and embedded PowerPC systems compile code for the processor
in big endian mode. The ‘-mbig-endian’ option is the same as ‘-mbig’.
-mdynamic-no-pic
On Darwin and Mac OS X systems, compile code so that it is not relocatable,
but that its external references are relocatable. The resulting code is suitable
for applications, but not shared libraries.

-mprioritize-restricted-insns=priority
This option controls the priority that is assigned to dispatch-slot restricted
instructions during the second scheduling pass. The argument priority takes
the value 0/1/2 to assign no/highest/second-highest priority to dispatch slot
restricted instructions.

-msched-costly-dep=dependence_type
This option controls which dependences are considered costly by the target
during instruction scheduling. The argument dependence_type takes one of the
following values: no: no dependence is costly, all: all dependences are costly,
true_store_to_load: a true dependence from store to load is costly, store_to_load:
any dependence from store to load is costly, number: any dependence which
latency >= number is costly.

-minsert-sched-nops=scheme

This option controls which nop insertion scheme will be used during the second
scheduling pass. The argument scheme takes one of the following values: no:
Don’t insert nops. pad: Pad with nops any dispatch group which has vacant
issue slots, according to the scheduler’s grouping. regroup_exact: Insert nops
to force costly dependent insns into separate groups. Insert exactly as many
nops as needed to force an insn to a new group, according to the estimated
processor grouping. number: Insert nops to force costly dependent insns into
separate groups. Insert number nops to force an insn to a new group.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless
you configured GCC using ‘powerpc-*-eabiaix’.

-mcall-sysv-eabi
Specify both ‘-mcall-sysv’ and ‘-meabi’ options.

-mcall-sysv-noeabi
Specify both ‘-mcall-sysv’ and ‘-mno-eabi’ options.

-mcall-solaris
On System V.4 and embedded PowerPC systems compile code for the Solaris
operating system.

-mcall-linux
On System V.4 and embedded PowerPC systems compile code for the Linux-
based GNU system.

184 Using the GNU Compiler Collection (GCC)

-mcall-gnu
On System V.4 and embedded PowerPC systems compile code for the Hurd-
based GNU system.

-mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD
operating system.

-maix-struct-return
Return all structures in memory (as specified by the AIX ABI).

-msvr4-struct-return
Return structures smaller than 8 bytes in registers (as specified by the SVR4
ABI).

-mabi=abi-type
Extend the current ABI with a particular extension, or remove such extension.
Valid values are altivec, no-altivec, spe, no-spe, ibmlongdouble, ieeelongdouble.

-mabi=spe
Extend the current ABI with SPE ABI extensions. This does not change the
default ABI, instead it adds the SPE ABI extensions to the current ABI.

-mabi=no-spe
Disable Booke SPE ABI extensions for the current ABI.

-mabi=ibmlongdouble
Change the current ABI to use IBM extended precision long double. This is a
PowerPC 32-bit SYSV ABI option.

-mabi=ieeelongdouble
Change the current ABI to use IEEE extended precision long double. This is a
PowerPC 32-bit Linux ABI option.

-mprototype

-mno-prototype
On System V.4 and embedded PowerPC systems assume that all calls to vari-
able argument functions are properly prototyped. Otherwise, the compiler must
insert an instruction before every non prototyped call to set or clear bit 6
of the condition code register (CR) to indicate whether floating point values
were passed in the floating point registers in case the function takes a variable
arguments. With ‘-mprototype’, only calls to prototyped variable argument
functions will set or clear the bit.

-msim On embedded PowerPC systems, assume that the startup module is called
‘sim-crt0.0’ and that the standard C libraries are ‘libsim.a’ and ‘libc.a’.
This is the default for ‘powerpc-*-eabisim’. configurations.

-mmvme On embedded PowerPC systems, assume that the startup module is called
‘crt0.0” and the standard C libraries are ‘libmvme.a’ and ‘libc.a’.

-mads On embedded PowerPC systems, assume that the startup module is called
‘crt0.0’ and the standard C libraries are ‘libads.a’ and ‘libc.a’.

Chapter 3: GCC Command Options 185

-myellowknife
On embedded PowerPC systems, assume that the startup module is called
‘crt0.0’ and the standard C libraries are ‘libyk.a’ and ‘libc.a’.

-mvxworks
On System V.4 and embedded PowerPC systems, specify that you are compiling
for a VxWorks system.

-mwindiss
Specify that you are compiling for the WindISS simulation environment.

-memb On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags header
to indicate that ‘eabi’ extended relocations are used.

-meabi

-mno-eabi
On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (eabi) which is a set of modifications
to the System V.4 specifications. Selecting ‘-meabi’ means that the stack is
aligned to an 8 byte boundary, a function __eabi is called to from main to set
up the eabi environment, and the ‘-msdata’ option can use both r2 and r13
to point to two separate small data areas. Selecting ‘-mno-eabi’ means that
the stack is aligned to a 16 byte boundary, do not call an initialization function
from main, and the ‘-msdata’ option will only use r13 to point to a single small
data area. The ‘-meabi’ option is on by default if you configured GCC using
one of the ‘powerpc*-*-eabi*’ options.

-msdata=eabi

On System V.4 and embedded PowerPC systems, put small initialized const
global and static data in the ‘.sdata2’ section, which is pointed to by register
r2. Put small initialized non-const global and static data in the ‘.sdata’
section, which is pointed to by register r13. Put small uninitialized global and
static data in the ‘.sbss’ section, which is adjacent to the ‘.sdata’ section.
The ‘-msdata=eabi’ option is incompatible with the ‘-mrelocatable’ option.
The ‘-msdata=eabi’ option also sets the ‘-memb’ option.

-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘.sdata’ section, which is pointed to by register r13. Put small
uninitialized global and static data in the ‘.sbss’ section, which is adjacent
to the ‘.sdata’ section. The ‘-msdata=sysv’ option is incompatible with the
‘-mrelocatable’ option.

-msdata=default

-msdata On System V.4 and embedded PowerPC systems, if ‘-meabi’ is used, com-
pile code the same as ‘-msdata=eabi’, otherwise compile code the same as
‘-msdata=sysv’.

-msdata-data
On System V.4 and embedded PowerPC systems, put small global data in the
‘.sdata’ section. Put small uninitialized global data in the ‘. sbss’ section. Do

186 Using the GNU Compiler Collection (GCC)

not use register r13 to address small data however. This is the default behavior
unless other ‘-msdata’ options are used.

-msdata=none

-mno-sdata
On embedded PowerPC systems, put all initialized global and static data in
the ‘.data’ section, and all uninitialized data in the ‘.bss’ section.

-G num On embedded PowerPC systems, put global and static items less than or equal
to num bytes into the small data or bss sections instead of the normal data or
bss section. By default, num is 8. The ‘-G num’ switch is also passed to the
linker. All modules should be compiled with the same ‘-G num’ value.

-mregnames
-mno-regnames
On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.

-mlongcall

-mno-longcall
By default assume that all calls are far away so that a longer more expensive
calling sequence is required. This is required for calls further than 32 megabytes
(33,554,432 bytes) from the current location. A short call will be generated if
the compiler knows the call cannot be that far away. This setting can be
overridden by the shortcall function attribute, or by #pragma longcall(0).

Some linkers are capable of detecting out-of-range calls and generating glue
code on the fly. On these systems, long calls are unnecessary and generate
slower code. As of this writing, the AIX linker can do this, as can the GNU
linker for PowerPC/64. It is planned to add this feature to the GNU linker for
32-bit PowerPC systems as well.

On Darwin/PPC systems, #pragma longcall will generate “jbsr callee, 1427,
plus a “branch island” (glue code). The two target addresses represent the
callee and the “branch island”. The Darwin/PPC linker will prefer the first
address and generate a “bl callee” if the PPC “bl” instruction will reach the
callee directly; otherwise, the linker will generate “bl 1.42” to call the “branch
island”. The “branch island” is appended to the body of the calling function;
it computes the full 32-bit address of the callee and jumps to it.

On Mach-O (Darwin) systems, this option directs the compiler emit to the glue
for every direct call, and the Darwin linker decides whether to use or discard
it.

In the future, we may cause GCC to ignore all longcall specifications when the
linker is known to generate glue.

-pthread Adds support for multithreading with the pthreads library. This option sets
flags for both the preprocessor and linker.

3.17.28 S/390 and zSeries Options
These are the ‘-m’ options defined for the S/390 and zSeries architecture.

Chapter 3: GCC Command Options 187

-mhard-float

-msoft-float
Use (do not use) the hardware floating-point instructions and registers
for floating-point operations. When ‘-msoft-float’ is specified, functions
in ‘libgcc.a’ will be used to perform floating-point operations. When
‘-mhard-float’ is specified, the compiler generates TEEE floating-point
instructions. This is the default.

-mlong-double-64

-mlong-double-128
These switches control the size of long double type. A size of 64bit makes the
long double type equivalent to the double type. This is the default.

-mbackchain

-mno-backchain
Store (do not store) the address of the caller’s frame as backchain pointer into
the callee’s stack frame. A backchain may be needed to allow debugging us-
ing tools that do not understand DWARF-2 call frame information. When
‘-mno-packed-stack’ is in effect, the backchain pointer is stored at the bottom
of the stack frame; when ‘-mpacked-stack’ is in effect, the backchain is placed
into the topmost word of the 96/160 byte register save area.

In general, code compiled with ‘-mbackchain’ is call-compatible with code com-
piled with ‘-mmo-backchain’; however, use of the backchain for debugging pur-
poses usually requires that the whole binary is built with ‘-mbackchain’. Note
that the combination of ‘-mbackchain’, ‘-mpacked-stack’ and ‘-mhard-float’
is not supported. In order to build a linux kernel use ‘-msoft-float’.

The default is to not maintain the backchain.

-mpacked-stack

-mno-packed-stack
Use (do not use) the packed stack layout. When ‘-mno-packed-stack’ is spec-
ified, the compiler uses the all fields of the 96/160 byte register save area
only for their default purpose; unused fields still take up stack space. When
‘-mpacked-stack’ is specified, register save slots are densely packed at the top
of the register save area; unused space is reused for other purposes, allowing for
more efficient use of the available stack space. However, when ‘-mbackchain’
is also in effect, the topmost word of the save area is always used to store the
backchain, and the return address register is always saved two words below the
backchain.

As long as the stack frame backchain is not wused, code generated
with ‘-mpacked-stack’ is call-compatible with code generated with
‘-mno-packed-stack’. Note that some non-FSF releases of GCC 2.95 for
S/390 or zSeries generated code that uses the stack frame backchain at run
time, not just for debugging purposes. Such code is not call-compatible with
code compiled with ‘-mpacked-stack’. Also, note that the combination of
‘-mbackchain’, ‘-mpacked-stack’ and ‘-mhard-float’ is not supported. In
order to build a linux kernel use ‘-msoft-float’.

The default is to not use the packed stack layout.

188 Using the GNU Compiler Collection (GCC)

-msmall-exec

-mno-small-exec
Generate (or do not generate) code using the bras instruction to do subroutine
calls. This only works reliably if the total executable size does not exceed 64k.
The default is to use the basr instruction instead, which does not have this
limitation.

-m64

-m31 When ‘-m31’ is specified, generate code compliant to the GNU /Linux for S/390
ABI. When ‘-m64’ is specified, generate code compliant to the GNU /Linux for
zSeries ABI. This allows GCC in particular to generate 64-bit instructions. For
the ‘8390’ targets, the default is ‘-m31’, while the ‘s390x’ targets default to
‘-m64’.

-mzarch

-mesa When ‘-mzarch’ is specified, generate code using the instructions available on
z/Architecture. When ‘-mesa’ is specified, generate code using the instructions
available on ESA/390. Note that ‘-mesa’ is not possible with ‘-m64’. When
generating code compliant to the GNU/Linux for S/390 ABI, the default is
‘-mesa’. When generating code compliant to the GNU/Linux for zSeries ABI,
the default is ‘-mzarch’.

-mmvcle

-mno-mvcle
Generate (or do not generate) code using the mvcle instruction to perform
block moves. When ‘-mno-mvcle’ is specified, use a mvc loop instead. This is
the default unless optimizing for size.

-mdebug

-mno-debug
Print (or do not print) additional debug information when compiling. The
default is to not print debug information.

-march=cpu-type
Generate code that will run on cpu-type, which is the name of a system repre-
senting a certain processor type. Possible values for cpu-type are ‘gh’, ‘gé’,
‘z900°, and ‘z990°. When generating code using the instructions available
on z/Architecture, the default is ‘-march=z900’. Otherwise, the default is
‘-march=gb’.

-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. The list of cpu-type values is the
same as for ‘-march’. The default is the value used for ‘-march’.

-mtpf-trace

-mno-tpf-trace
Generate code that adds (does not add) in TPF OS specific branches to trace
routines in the operating system. This option is off by default, even when
compiling for the TPF OS.

Chapter 3: GCC Command Options 189

-mfused-madd

-mno-fused-madd
Generate code that uses (does not use) the floating point multiply and accu-
mulate instructions. These instructions are generated by default if hardware
floating point is used.

-mwarn-framesize=framesize
Emit a warning if the current function exceeds the given frame size. Because
this is a compile time check it doesn’t need to be a real problem when the
program runs. It is intended to identify functions which most probably cause
a stack overflow. It is useful to be used in an environment with limited stack
size e.g. the linux kernel.

-mwarn-dynamicstack
Emit a warning if the function calls alloca or uses dynamically sized arrays.
This is generally a bad idea with a limited stack size.

-mstack-guard=stack-guard

-mstack-size=stack-size
These arguments always have to be used in conjunction. If they are present
the 390 back end emits additional instructions in the function prologue which
trigger a trap if the stack size is stack-guard bytes above the stack-size (remem-
ber that the stack on s390 grows downward). These options are intended to
be used to help debugging stack overflow problems. The additionally emitted
code causes only little overhead and hence can also be used in production like
systems without greater performance degradation. The given values have to be
exact powers of 2 and stack-size has to be greater than stack-guard without
exceeding 64k. In order to be efficient the extra code makes the assumption
that the stack starts at an address aligned to the value given by stack-size.

3.17.29 Score Options

These options are defined for Score implementations:

-meb Compile code for big endian mode. This is the default.
-mel Compile code for little endian mode.
-mnhwloop

Disable generate benz instruction.
-muls Enable generate unaligned load and store instruction.
-mmac Enable the use of multiply-accumulate instructions. Disabled by default.
-mscoreb Specify the SCORES as the target architecture.

-mscorebu
Specify the SCORESJU of the target architecture.

-mscore? Specify the SCORET as the target architecture. This is the default.

-mscore7d
Specify the SCORETD as the target architecture.

190 Using the GNU Compiler Collection (GCC)

3.17.30 SH Options

These ‘-m’ options are defined for the SH implementations:

-m1 Generate code for the SHI1.
-m2 Generate code for the SH2.
-m2e Generate code for the SH2e.
-m3 Generate code for the SH3.
-m3e Generate code for the SH3e.
-m4-nofpu

Generate code for the SH4 without a floating-point unit.

-m4-single-only
Generate code for the SH4 with a floating-point unit that only supports single-
precision arithmetic.

-m4-single
Generate code for the SH4 assuming the floating-point unit is in single-precision
mode by default.

-mé Generate code for the SH4.

-m4a-nofpu
Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-
point unit is not used.

-m4a-single-only
Generate code for the SH4a, in such a way that no double-precision floating
point operations are used.

-m4a-single
Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.

-méa Generate code for the SH4a.

-m4al Same as ‘-m4a-nofpu’, except that it implicitly passes ‘-dsp’ to the assembler.
GCC doesn’t generate any DSP instructions at the moment.

-mb Compile code for the processor in big endian mode.
-ml Compile code for the processor in little endian mode.

-mdalign Align doubles at 64-bit boundaries. Note that this changes the calling conven-
tions, and thus some functions from the standard C library will not work unless
you recompile it first with ‘-mdalign’.

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’.

-mbigtable
Use 32-bit offsets in switch tables. The default is to use 16-bit offsets.

-mfmovd Enable the use of the instruction fmovd.

Chapter 3: GCC Command Options 191

-mhitachi
Comply with the calling conventions defined by Renesas.

-mrenesas
Comply with the calling conventions defined by Renesas.

-mno-renesas
Comply with the calling conventions defined for GCC before the Renesas con-
ventions were available. This option is the default for all targets of the SH
toolchain except for ‘sh-symbianelf’.

-mnomacsave
Mark the MAC register as call-clobbered, even if ‘-mhitachi’ is given.

-mieee Increase IEEE-compliance of floating-point code. At the moment, this is equiv-
alent to ‘-fno-finite-math-only’. When generating 16 bit SI opcodes, get-
ting IEEE-conforming results for comparisons of NANs / infinities incurs extra
overhead in every floating point comparison, therefore the default is set to
‘~ffinite-math-only’.

-misize Dump instruction size and location in the assembly code.

-mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes, which is
incompatible with the SH ABI.

-mspace Optimize for space instead of speed. Implied by ‘-0s’.

-mprefergot
When generating position-independent code, emit function calls using the
Global Offset Table instead of the Procedure Linkage Table.

-musermode
Generate a library function call to invalidate instruction cache entries, after
fixing up a trampoline. This library function call doesn’t assume it can write
to the whole memory address space. This is the default when the target is
sh-*-1linuxx*.

-multcost=number
Set the cost to assume for a multiply insn.

-mdiv=strategy
Set the division strategy to use for SHmedia code. strategy must be one of:
call, call2, fp, inv, inv:minlat, inv20u, inv20l, inv:call, inv:call2, inv:fp . "fp"
performs the operation in floating point. This has a very high latency, but
needs only a few instructions, so it might be a good choice if your code has
enough easily exploitable ILP to allow the compiler to schedule the floating
point instructions together with other instructions. Division by zero causes a
floating point exception. "inv" uses integer operations to calculate the inverse
of the divisor, and then multiplies the dividend with the inverse. This strategy
allows cse and hoisting of the inverse calculation. Division by zero calculates an
unspecified result, but does not trap. "inv:minlat" is a variant of "inv" where
if no cse / hoisting opportunities have been found, or if the entire operation

192 Using the GNU Compiler Collection (GCC)

has been hoisted to the same place, the last stages of the inverse calculation are
intertwined with the final multiply to reduce the overall latency, at the expense
of using a few more instructions, and thus offering fewer scheduling opportuni-
ties with other code. "call" calls a library function that usually implements the
inv:minlat strategy. This gives high code density for m5-*media-nofpu compila-
tions. "call2" uses a different entry point of the same library function, where it
assumes that a pointer to a lookup table has already been set up, which exposes
the pointer load to cse / code hoisting optimizations. "inv:call", "inv:call2" and
"inv:fp" all use the "inv" algorithm for initial code generation, but if the code
stays unoptimized, revert to the "call", "call2", or "fp" strategies, respectively.
Note that the potentially-trapping side effect of division by zero is carried by a
separate instruction, so it is possible that all the integer instructions are hoisted
out, but the marker for the side effect stays where it is. A recombination to
fp operations or a call is not possible in that case. "inv20u" and "inv20l" are
variants of the "inv:minlat" strategy. In the case that the inverse calculation
was nor separated from the multiply, they speed up division where the dividend
fits into 20 bits (plus sign where applicable), by inserting a test to skip a num-
ber of operations in this case; this test slows down the case of larger dividends.
inv20u assumes the case of a such a small dividend to be unlikely, and inv201
assumes it to be likely.

-mdivsi3_libfunc=name
Set the name of the library function used for 32 bit signed division to name.
This only affect the name used in the call and inv:call division strategies, and
the compiler will still expect the same sets of input/output/clobbered registers
as if this option was not present.

-madjust-unroll
Throttle unrolling to avoid thrashing target registers. This option only has an
effect if the gee code base supports the TARGET_ADJUST_UNROLL_MAX
target hook.

-mindexed-addressing

Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
This is only safe if the hardware and/or OS implement 32 bit wrap-around
semantics for the indexed addressing mode. The architecture allows the imple-
mentation of processors with 64 bit MMU, which the OS could use to get 32
bit addressing, but since no current hardware implementation supports this or
any other way to make the indexed addressing mode safe to use in the 32 bit
ABI, the default is -mno-indexed-addressing.

-mgettrcost=number
Set the cost assumed for the gettr instruction to number. The default is 2 if
‘-mpt-fixed’ is in effect, 100 otherwise.

-mpt-fixed
Assume pt* instructions won’t trap. This will generally generate better sched-
uled code, but is unsafe on current hardware. The current architecture defini-
tion says that ptabs and ptrel trap when the target anded with 3 is 3. This

Chapter 3: GCC Command Options 193

has the unintentional effect of making it unsafe to schedule ptabs / ptrel be-
fore a branch, or hoist it out of a loop. For example, __do_global_ctors, a part
of libgce that runs constructors at program startup, calls functions in a list
which is delimited by -1. With the -mpt-fixed option, the ptabs will be done
before testing against -1. That means that all the constructors will be run a bit
quicker, but when the loop comes to the end of the list, the program crashes
because ptabs loads -1 into a target register. Since this option is unsafe for
any hardware implementing the current architecture specification, the default
is -mno-pt-fixed. Unless the user specifies a specific cost with ‘-mgettrcost’,
-mno-pt-fixed also implies ‘-mgettrcost=100’; this deters register allocation
using target registers for storing ordinary integers.

-minvalid-symbols

Assume symbols might be invalid. Ordinary function symbols generated
by the compiler will always be valid to load with movi/shori/ptabs or
movi/shori/ptrel, but with assembler and/or linker tricks it is possible
to generate symbols that will cause ptabs / ptrel to trap. This option is
only meaningful when ‘-mno-pt-fixed’ is in effect. It will then prevent
cross-basic-block cse, hoisting and most scheduling of symbol loads. The
default is ‘-mno-invalid-symbols’.

3.17.31 SPARC Options
These ‘-m’ options are supported on the SPARC:

-mno-app-regs

-mapp-regs

Specify ‘-mapp-regs’ to generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify
‘-mno-app-regs’. You should compile libraries and system software with this
option.

-mfpu
-mhard-float

Generate output containing floating point instructions. This is the default.
-mno-fpu

-msoft-float

Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘sparc-*-aout’
and ‘sparclite-*-*’ do provide software floating point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘“-msoft-float’ in order for this to work.

194 Using the GNU Compiler Collection (GCC)

-mhard-quad-float
Generate output containing quad-word (long double) floating point instructions.

-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating
point instructions. The functions called are those specified in the SPARC ABI.
This is the default.

As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating point instructions. They all invoke a trap
handler for one of these instructions, and then the trap handler emulates the
effect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus the ‘-msoft-quad-float’
option is the default.

-mno-unaligned-doubles
-munaligned-doubles
Assume that doubles have 8 byte alignment. This is the default.

With ‘-munaligned-doubles’, GCC assumes that doubles have 8 byte align-
ment only if they are contained in another type, or if they have an absolute
address. Otherwise, it assumes they have 4 byte alignment. Specifying this
option avoids some rare compatibility problems with code generated by other
compilers. It is not the default because it results in a performance loss, espe-
cially for floating point code.

-mno-faster-structs

-mfaster-structs
With ‘-mfaster-structs’, the compiler assumes that structures should have
8 byte alignment. This enables the use of pairs of 1dd and std instructions
for copies in structure assignment, in place of twice as many 1d and st pairs.
However, the use of this changed alignment directly violates the SPARC ABI.
Thus, it’s intended only for use on targets where the developer acknowledges
that their resulting code will not be directly in line with the rules of the ABI.

-mimpure-text
‘-mimpure-text’, used in addition to ‘-shared’, tells the compiler to not pass
‘-z text’ to the linker when linking a shared object. Using this option, you can
link position-dependent code into a shared object.

‘-mimpure-text’ suppresses the “relocations remain against allocatable but
non-writable sections” linker error message. However, the necessary reloca-
tions will trigger copy-on-write, and the shared object is not actually shared
across processes. Instead of using ‘-mimpure-text’, you should compile all
source code with ‘~fpic’ or ‘-fPIC’.

This option is only available on SunOS and Solaris.

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu_type. Supported values for cpu_type are ‘v7’, ‘cypress’,
‘v8’, ‘supersparc’, ‘sparclite’, ‘f930’°, ‘f934’, ‘hypersparc’, ‘sparclite86x’,
‘sparclet’, ‘tsc701’, ‘v9’, ‘ultrasparc’, ‘ultrasparcd’, and ‘niagara’.

Chapter 3: GCC Command Options 195

Default instruction scheduling parameters are used for values that select an
architecture and not an implementation. These are ‘v7’, ‘v8’, ‘sparclite’,
‘sparclet’, ‘v9’.

Here is a list of each supported architecture and their supported implementa-

tions.
vT: cypress
v8: supersparc, hypersparc
sparclite: £930, £934, sparclite86x
sparclet: tsc701
v9: ultrasparc, ultrasparc3, niagara

By default (unless configured otherwise), GCC generates code for the V7 vari-
ant of the SPARC architecture. With ‘-mcpu=cypress’, the compiler addition-
ally optimizes it for the Cypress CY7C602 chip, as used in the SPARCSta-
tion/SPARCServer 3xx series. This is also appropriate for the older SPARC-
Station 1, 2, IPX etc.

With ‘-mcpu=v8’, GCC generates code for the V8 variant of the SPARC archi-
tecture. The only difference from V7 code is that the compiler emits the integer
multiply and integer divide instructions which exist in SPARC-V8 but not in
SPARC-V7. With ‘-mcpu=supersparc’, the compiler additionally optimizes it
for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000
series.

With ‘-mcpu=sparclite’, GCC generates code for the SPARClite variant of the
SPARC architecture. This adds the integer multiply, integer divide step and
scan (ffs) instructions which exist in SPARClite but not in SPARC-V7. With
‘-mcpu=£f930’, the compiler additionally optimizes it for the Fujitsu MB86930
chip, which is the original SPARClite, with no FPU. With ‘-mcpu=£f934’, the
compiler additionally optimizes it for the Fujitsu MB86934 chip, which is the
more recent SPARClite with FPU.

With ‘-mcpu=sparclet’, GCC generates code for the SPARClet variant of the
SPARC architecture. This adds the integer multiply, multiply/accumulate,
integer divide step and scan (ffs) instructions which exist in SPARClet but
not in SPARC-V7. With ‘-mcpu=tsc701’, the compiler additionally optimizes
it for the TEMIC SPARClet chip.

With ‘-mcpu=v9’, GCC generates code for the V9 variant of the SPARC ar-
chitecture. This adds 64-bit integer and floating-point move instructions, 3
additional floating-point condition code registers and conditional move instruc-
tions. With ‘-mcpu=ultrasparc’, the compiler additionally optimizes it for
the Sun UltraSPARC I/11/11i chips. With ‘-mcpu=ultrasparc3’, the compiler
additionally optimizes it for the Sun UltraSPARC IIT/III+/I1Ti/I1Ti+/IV/IV+
chips. With ‘-mcpu=niagara’, the compiler additionally optimizes it for Sun
UltraSPARC T1 chips.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu_type, but do
not set the instruction set or register set that the option ‘-mcpu=cpu_type’
would.

196 Using the GNU Compiler Collection (GCC)

4 4

The same values for ‘-mcpu=cpu_type’ can be used for ‘-mtune=cpu_type’,
but the only useful values are those that select a particular cpu implemen-
tation. Those are ‘cypress’, ‘supersparc’, ‘hypersparc’, ‘£930°, ‘£934’,
‘sparclite86x’, ‘tsc701’, ‘ultrasparc’, ‘ultrasparc3’, and ‘niagara’.

-mv8plus

-mno-v8plus
With ‘-mv8plus’, GCC generates code for the SPARC-V8+ ABI. The difference
from the V8 ABI is that the global and out registers are considered 64-bit
wide. This is enabled by default on Solaris in 32-bit mode for all SPARC-V9
Processors.

-mvis
-mno-vis With ‘-mvis’, GCC generates code that takes advantage of the UltraSPARC
Visual Instruction Set extensions. The default is ‘-mno-vis’.

These ‘-m’ options are supported in addition to the above on SPARC-V9 processors in
64-bit environments:

-mlittle-endian
Generate code for a processor running in little-endian mode. It is only available
for a few configurations and most notably not on Solaris and Linux.

-m32

-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets
int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits.

-mcmodel=medlow
Generate code for the Medium/Low code model: 64-bit addresses, programs
must be linked in the low 32 bits of memory. Programs can be statically or
dynamically linked.

-mcmodel=medmid
Generate code for the Medium/Middle code model: 64-bit addresses, programs
must be linked in the low 44 bits of memory, the text and data segments must
be less than 2GDB in size and the data segment must be located within 2GB of
the text segment.

-mcmodel=medany
Generate code for the Medium/Anywhere code model: 64-bit addresses, pro-
grams may be linked anywhere in memory, the text and data segments must
be less than 2GDB in size and the data segment must be located within 2GB of
the text segment.

-mcmodel=embmedany
Generate code for the Medium/Anywhere code model for embedded systems:
64-bit addresses, the text and data segments must be less than 2GB in size, both
starting anywhere in memory (determined at link time). The global register
%g4 points to the base of the data segment. Programs are statically linked and
PIC is not supported.

Chapter 3: GCC Command Options 197

-mstack-bias

-mno-stack-bias
With ‘-mstack-bias’, GCC assumes that the stack pointer, and frame pointer
if present, are offset by —2047 which must be added back when making stack
frame references. This is the default in 64-bit mode. Otherwise, assume no
such offset is present.

These switches are supported in addition to the above on Solaris:

-threads Add support for multithreading using the Solaris threads library. This option
sets flags for both the preprocessor and linker. This option does not affect
the thread safety of object code produced by the compiler or that of libraries
supplied with it.

-pthreads
Add support for multithreading using the POSIX threads library. This option
sets flags for both the preprocessor and linker. This option does not affect
the thread safety of object code produced by the compiler or that of libraries
supplied with it.

-pthread This is a synonym for ‘-pthreads’.

3.17.32 Options for System V

These additional options are available on System V Release 4 for compatibility with other
compilers on those systems:

-G Create a shared object. It is recommended that ‘~symbolic’ or ‘~shared’ be
used instead.

-Qy Identify the versions of each tool used by the compiler, in a .ident assembler
directive in the output.

-Qn Refrain from adding .ident directives to the output file (this is the default).
-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-1’

-Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this
option.

3.17.33 TMS320C3x/C4x Options
These ‘-m’ options are defined for TMS320C3x/C4x implementations:

—-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu_type. Supported values for cpu_type are ‘c30’, ‘c31’, ‘c32’,
‘c40’, and ‘c44’. The default is ‘c40’ to generate code for the TMS320C40.

-mbig-memory

-mbig

-msmall-memory

-msmall Generates code for the big or small memory model. The small memory model
assumed that all data fits into one 64K word page. At run-time the data page
(DP) register must be set to point to the 64K page containing the .bss and .data

198

-mbk
-mno-bk

-mdb
-mno-db

Using the GNU Compiler Collection (GCC)

program sections. The big memory model is the default and requires reloading
of the DP register for every direct memory access.

Allow (disallow) allocation of general integer operands into the block count
register BK.

Enable (disable) generation of code using decrement and branch, DBcond(D),
instructions. This is enabled by default for the C4x. To be on the safe side,
this is disabled for the C3x, since the maximum iteration count on the C3x is
223 + 1 (but who iterates loops more than 2% times on the C3x7). Note that
GCC will try to reverse a loop so that it can utilize the decrement and branch
instruction, but will give up if there is more than one memory reference in the
loop. Thus a loop where the loop counter is decremented can generate slightly
more efficient code, in cases where the RPTB instruction cannot be utilized.

-mdp-isr-reload

-mparanoid

-mmpyi
-mno-mpyi

-mfast-fix
-mno-fast-

-mrptb
-mno-rptb

Force the DP register to be saved on entry to an interrupt service routine (ISR),
reloaded to point to the data section, and restored on exit from the ISR. This
should not be required unless someone has violated the small memory model
by modifying the DP register, say within an object library.

For the C3x use the 24-bit MPYI instruction for integer multiplies instead of
a library call to guarantee 32-bit results. Note that if one of the operands is
a constant, then the multiplication will be performed using shifts and adds. If
the ‘-mmpyi’ option is not specified for the C3x, then squaring operations are
performed inline instead of a library call.

fix

The C3x/C4x FIX instruction to convert a floating point value to an integer
value chooses the nearest integer less than or equal to the floating point value
rather than to the nearest integer. Thus if the floating point number is negative,
the result will be incorrectly truncated an additional code is necessary to detect
and correct this case. This option can be used to disable generation of the
additional code required to correct the result.

Enable (disable) generation of repeat block sequences using the RPTB instruc-
tion for zero overhead looping. The RPTB construct is only used for innermost
loops that do not call functions or jump across the loop boundaries. There is no
advantage having nested RPTB loops due to the overhead required to save and
restore the RC, RS, and RE registers. This is enabled by default with ‘-02’.

Chapter 3: GCC Command Options 199

-mrpts=count

—-mno-rpts
Enable (disable) the use of the single instruction repeat instruction RPTS. If a
repeat block contains a single instruction, and the loop count can be guaranteed
to be less than the value count, GCC will emit a RPTS instruction instead of
a RPTB. If no value is specified, then a RPTS will be emitted even if the loop
count cannot be determined at compile time. Note that the repeated instruction
following RPTS does not have to be reloaded from memory each iteration, thus
freeing up the CPU buses for operands. However, since interrupts are blocked
by this instruction, it is disabled by default.

-mloop-unsigned

-mno-loop-unsigned
The maximum iteration count when using RPTS and RPTB (and DB on the
C40) is 2%! 4 1 since these instructions test if the iteration count is negative to
terminate the loop. If the iteration count is unsigned there is a possibility than
the 23! + 1 maximum iteration count may be exceeded. This switch allows an
unsigned iteration count.

-mti Try to emit an assembler syntax that the TT assembler (asm30) is happy with.
This also enforces compatibility with the API employed by the TI C3x C com-
piler. For example, long doubles are passed as structures rather than in floating
point registers.

-mregparm
—mmemparm
Generate code that uses registers (stack) for passing arguments to functions.
By default, arguments are passed in registers where possible rather than by
pushing arguments on to the stack.

-mparallel-insns

-mno-parallel-insns
Allow the generation of parallel instructions. This is enabled by default with
‘=02,

-mparallel-mpy

-mno-parallel-mpy
Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
provided ‘-mparallel-insns’ is also specified. These instructions have tight
register constraints which can pessimize the code generation of large functions.

3.17.34 V850 Options

These ‘-m’ options are defined for V850 implementations:

-mlong-calls

-mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be far away,
the compiler will always load the functions address up into a register, and call
indirect through the pointer.

200 Using the GNU Compiler Collection (GCC)

-mno-ep

-mep Do not optimize (do optimize) basic blocks that use the same index pointer 4
or more times to copy pointer into the ep register, and use the shorter s1d and
sst instructions. The ‘-mep’ option is on by default if you optimize.

-mno-prolog-function

-mprolog-function
Do not use (do use) external functions to save and restore registers at the
prologue and epilogue of a function. The external functions are slower, but use
less code space if more than one function saves the same number of registers.
The ‘-mprolog-function’ option is on by default if you optimize.

-mspace Try to make the code as small as possible. At present, this just turns on the
‘-mep’ and ‘-mprolog-function’ options.

-mtda=n Put static or global variables whose size is n bytes or less into the tiny data
area that register ep points to. The tiny data area can hold up to 256 bytes in
total (128 bytes for byte references).

-msda=n Put static or global variables whose size is n bytes or less into the small data
area that register gp points to. The small data area can hold up to 64 kilobytes.

-mzda=n Put static or global variables whose size is n bytes or less into the first 32
kilobytes of memory.

-mv850 Specify that the target processor is the V850.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mapp-regs
This option will cause r2 and r5 to be used in the code generated by the compiler.
This setting is the default.

-mno-app-regs
This option will cause r2 and rb to be treated as fixed registers.

-mv850el Specify that the target processor is the V850K1. The preprocessor constants
‘__v850el__’ and ‘__v850e__" will be defined if this option is used.

-mv850e Specify that the target processor is the V850E. The preprocessor constant
‘__v850e__’ will be defined if this option is used.

If neither ‘-mv850’ nor ‘-mv850e’ nor ‘-mv850el’ are defined then a default tar-
get processor will be chosen and the relevant ‘__v850%__" preprocessor constant
will be defined.

The preprocessor constants ‘__v850’ and ‘__v851__’ are always defined, regard-
less of which processor variant is the target.

-mdisable-callt
This option will suppress generation of the CALLT instruction for the v850e and
v850el flavors of the v850 architecture. The default is ‘-mno-disable-callt’
which allows the CALLT instruction to be used.

Chapter 3: GCC Command Options 201

3.17.35 VAX Options
These ‘-m’ options are defined for the VAX:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix
assembler for the VAX cannot handle across long ranges.

-mgnu Do output those jump instructions, on the assumption that you will assemble
with the GNU assembler.

-mg Output code for g-format floating point numbers instead of d-format.

3.17.36 VxWorks Options

The options in this section are defined for all VxWorks targets. Options specific to the
target hardware are listed with the other options for that target.

-mrtp GCC can generate code for both VxWorks kernels and real time processes
(RTPs). This option switches from the former to the latter. It also defines
the preprocessor macro __RTP__

-non-static
Link an RTP executable against shared libraries rather than static libraries.
The options ‘-static’ and ‘-shared’ can also be used for RTPs (see Section 3.13
[Link Options|, page 109); ‘-static’ is the default.

-Bstatic

-Bdynamic
These options are passed down to the linker. They are defined for compatibility
with Diab.

-Xbind-lazy
Enable lazy binding of function calls. This option is equivalent to ‘-W1,-z,now’
and is defined for compatibility with Diab.

-Xbind-now

Disable lazy binding of function calls. This option is the default and is defined
for compatibility with Diab.

3.17.37 x86-64 Options
These are listed under See Section 3.17.14 [i386 and x86-64 Options], page 146.

3.17.38 Xstormy16 Options
These options are defined for Xstormy16:

-msim Choose startup files and linker script suitable for the simulator.

3.17.39 Xtensa Options
These options are supported for Xtensa targets:

-mconst16

-mno-const16
Enable or disable use of CONST16 instructions for loading constant values. The
CONST16 instruction is currently not a standard option from Tensilica. When

202 Using the GNU Compiler Collection (GCC)

enabled, CONST16 instructions are always used in place of the standard L32R in-
structions. The use of CONST16 is enabled by default only if the L32R instruction
is not available.

-mfused-madd

-mno-fused-madd
Enable or disable use of fused multiply /add and multiply /subtract instructions
in the floating-point option. This has no effect if the floating-point option
is not also enabled. Disabling fused multiply/add and multiply /subtract in-
structions forces the compiler to use separate instructions for the multiply and
add/subtract operations. This may be desirable in some cases where strict
IEEE 754-compliant results are required: the fused multiply add/subtract in-
structions do not round the intermediate result, thereby producing results with
more bits of precision than specified by the IEEE standard. Disabling fused
multiply add/subtract instructions also ensures that the program output is not
sensitive to the compiler’s ability to combine multiply and add/subtract oper-
ations.

-mtext-section-literals

-mno-text-section-literals
Control the treatment of literal pools. The default is ‘-mno-text-section-literals’]
which places literals in a separate section in the output file. This allows the
literal pool to be placed in a data RAM/ROM, and it also allows the linker to
combine literal pools from separate object files to remove redundant literals
and improve code size. With ‘-mtext-section-literals’, the literals are
interspersed in the text section in order to keep them as close as possible to
their references. This may be necessary for large assembly files.

-mtarget-align

-mno-target-align
When this option is enabled, GCC instructs the assembler to automatically align
instructions to reduce branch penalties at the expense of some code density. The
assembler attempts to widen density instructions to align branch targets and
the instructions following call instructions. If there are not enough preceding
safe density instructions to align a target, no widening will be performed. The
default is ‘-mtarget-align’. These options do not affect the treatment of auto-
aligned instructions like LOOP, which the assembler will always align, either by
widening density instructions or by inserting no-op instructions.

-mlongcalls

-mno-longcalls
When this option is enabled, GCC instructs the assembler to translate direct
calls to indirect calls unless it can determine that the target of a direct call is
in the range allowed by the call instruction. This translation typically occurs
for calls to functions in other source files. Specifically, the assembler translates
a direct CALL instruction into an L32R followed by a CALLX instruction. The
default is ‘-mno-longcalls’. This option should be used in programs where
the call target can potentially be out of range. This option is implemented in
the assembler, not the compiler, so the assembly code generated by GCC will

Chapter 3: GCC Command Options 203

still show direct call instructions—look at the disassembled object code to see
the actual instructions. Note that the assembler will use an indirect call for
every cross-file call, not just those that really will be out of range.

3.17.40 zSeries Options
These are listed under See Section 3.17.28 [S/390 and zSeries Options], page 186.

3.18 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code genera-

tion.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fbounds-check

-ftrapv

-fwrapv

For front-ends that support it, generate additional code to check that indices
used to access arrays are within the declared range. This is currently only
supported by the Java and Fortran front-ends, where this option defaults to
true and false respectively.

This option generates traps for signed overflow on addition, subtraction, mul-
tiplication operations.

This option instructs the compiler to assume that signed arithmetic overflow of
addition, subtraction and multiplication wraps around using twos-complement
representation. This flag enables some optimizations and disables others. This
option is enabled by default for the Java front-end, as required by the Java
language specification.

-fexceptions

Enable exception handling. Generates extra code needed to propagate excep-
tions. For some targets, this implies GCC will generate frame unwind informa-
tion for all functions, which can produce significant data size overhead, although
it does not affect execution. If you do not specify this option, GCC will enable
it by default for languages like C++ which normally require exception handling,
and disable it for languages like C that do not normally require it. However,
you may need to enable this option when compiling C code that needs to inter-
operate properly with exception handlers written in C++. You may also wish
to disable this option if you are compiling older C++ programs that don’t use
exception handling.

-fnon-call-exceptions

Generate code that allows trapping instructions to throw exceptions. Note that
this requires platform-specific runtime support that does not exist everywhere.
Moreover, it only allows {rapping instructions to throw exceptions, i.e. memory
references or floating point instructions. It does not allow exceptions to be
thrown from arbitrary signal handlers such as SIGALRM.

204 Using the GNU Compiler Collection (GCC)

-funwind-tables
Similar to ‘~fexceptions’, except that it will just generate any needed static
data, but will not affect the generated code in any other way. You will normally
not enable this option; instead, a language processor that needs this handling
would enable it on your behalf.

-fasynchronous-unwind-tables
Generate unwind table in dwarf2 format, if supported by target machine. The
table is exact at each instruction boundary, so it can be used for stack unwinding
from asynchronous events (such as debugger or garbage collector).

-fpcc-struct-return
Return “short” struct and union values in memory like longer ones, rather
than in registers. This convention is less efficient, but it has the advantage
of allowing intercallability between GCC-compiled files and files compiled with
other compilers, particularly the Portable C Compiler (pcc).

The precise convention for returning structures in memory depends on the tar-
get configuration macros.

Short structures and unions are those whose size and alignment match that of
some integer type.

Warning: code compiled with the ‘-fpcc-struct-return’ switch is not binary
compatible with code compiled with the ‘-freg-struct-return’ switch. Use
it to conform to a non-default application binary interface.

-freg-struct-return
Return struct and union values in registers when possible. This is more effi-
cient for small structures than ‘-fpcc-struct-return’.

If you specify neither ‘-fpcc-struct-return’ nor ‘-freg-struct-return’,
GCC defaults to whichever convention is standard for the target. If there is
no standard convention, GCC defaults to ‘-fpcc-struct-return’, except on
targets where GCC is the principal compiler. In those cases, we can choose
the standard, and we chose the more efficient register return alternative.

Warning: code compiled with the ‘~freg-struct-return’ switch is not binary
compatible with code compiled with the ‘~fpcc-struct-return’ switch. Use
it to conform to a non-default application binary interface.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range
of possible values. Specifically, the enum type will be equivalent to the smallest
integer type which has enough room.
Warning: the ‘~fshort-enums’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

-fshort-double
Use the same size for double as for float.

Warning: the ‘-fshort-double’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

Chapter 3: GCC Command Options 205

—-fshort-wchar

Override the underlying type for ‘wchar_t’ to be ‘short unsigned int’ instead
of the default for the target. This option is useful for building programs to run
under WINE.

Warning: the ‘-fshort-wchar’ switch causes GCC to generate code that is not

binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

-fno-common

-fno-ident

In C, allocate even uninitialized global variables in the data section of the object
file, rather than generating them as common blocks. This has the effect that
if the same variable is declared (without extern) in two different compilations,
you will get an error when you link them. The only reason this might be useful
is if you wish to verify that the program will work on other systems which
always work this way.

Ignore the ‘#ident’ directive.

—-finhibit-size-directive

Don’t output a .size assembler directive, or anything else that would cause
trouble if the function is split in the middle, and the two halves are placed at lo-
cations far apart in memory. This option is used when compiling ‘crtstuff.c’;
you should not need to use it for anything else.

-fverbose-asm

-fpic

-fPIC

Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually need
to read the generated assembly code (perhaps while debugging the compiler
itself).

‘~-fno-verbose-asm’, the default, causes the extra information to be omitted
and is useful when comparing two assembler files.

Generate position-independent code (PIC) suitable for use in a shared library,
if supported for the target machine. Such code accesses all constant addresses
through a global offset table (GOT). The dynamic loader resolves the GOT
entries when the program starts (the dynamic loader is not part of GCC; it
is part of the operating system). If the GOT size for the linked executable
exceeds a machine-specific maximum size, you get an error message from the
linker indicating that ‘~fpic’ does not work; in that case, recompile with ‘-fPIC’
instead. (These maximums are 8k on the SPARC and 32k on the m68k and
RS/6000. The 386 has no such limit.)

Position-independent code requires special support, and therefore works only on
certain machines. For the 386, GCC supports PIC for System V but not for the
Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

When this flag is set, the macros __pic__ and __PIC__ are defined to 1.
If supported for the target machine, emit position-independent code, suitable

for dynamic linking and avoiding any limit on the size of the global offset table.
This option makes a difference on the m68k, PowerPC and SPARC.

206

-fpie
-fPIE

Using the GNU Compiler Collection (GCC)

Position-independent code requires special support, and therefore works only
on certain machines.

When this flag is set, the macros __pic__ and __PIC__ are defined to 2.

These options are similar to ‘-fpic’ and ‘~fPIC’, but generated position inde-
pendent code can be only linked into executables. Usually these options are
used when ‘-pie’ GCC option will be used during linking.

‘~fpie’ and ‘-fPIE’ both define the macros __pie__ and __PIE__. The macros
have the value 1 for ‘~fpie’ and 2 for ‘-fPIE’.

—-fno-jump-tables

Do not use jump tables for switch statements even where it would be more effi-
cient than other code generation strategies. This option is of use in conjunction
with ‘-fpic’ or ‘~fPIC’ for building code which forms part of a dynamic linker
and cannot reference the address of a jump table. On some targets, jump tables
do not require a GOT and this option is not needed.

-ffixed-reg

Treat the register named reg as a fixed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other
fixed role).

reg must be the name of a register. The register names accepted are machine-
specific and are defined in the REGISTER_NAMES macro in the machine descrip-
tion macro file.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg

Treat the register named reg as an allocable register that is clobbered by func-
tion calls. Tt may be allocated for temporaries or variables that do not live
across a call. Functions compiled this way will not save and restore the register
reg.

It is an error to used this flag with the frame pointer or stack pointer. Use
of this flag for other registers that have fixed pervasive roles in the machine’s
execution model will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg

Treat the register named reg as an allocable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it.

It is an error to used this flag with the frame pointer or stack pointer. Use
of this flag for other registers that have fixed pervasive roles in the machine’s
execution model will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in
which function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

Chapter 3: GCC Command Options 207

-fpack-struct [=n]
Without a value specified, pack all structure members together without holes.
When a value is specified (which must be a small power of two), pack structure
members according to this value, representing the maximum alignment (that
is, objects with default alignment requirements larger than this will be output
potentially unaligned at the next fitting location.

Warning: the ‘~fpack-struct’ switch causes GCC to generate code that is
not binary compatible with code generated without that switch. Additionally,
it makes the code suboptimal. Use it to conform to a non-default application
binary interface.

-finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just after func-
tion entry and just before function exit, the following profiling functions will
be called with the address of the current function and its call site. (On some
platforms, __builtin_return_address does not work beyond the current func-
tion, so the call site information may not be available to the profiling functions
otherwise.)
void __cyg_profile_func_enter (void *this_fn,
void *call_site);
void __cyg_profile_func_exit (void #*this_fn,
void *call_site);
The first argument is the address of the start of the current function, which
may be looked up exactly in the symbol table.

This instrumentation is also done for functions expanded inline in other func-
tions. The profiling calls will indicate where, conceptually, the inline function
is entered and exited. This means that addressable versions of such functions
must be available. If all your uses of a function are expanded inline, this may
mean an additional expansion of code size. If you use ‘extern inline’ in your
C code, an addressable version of such functions must be provided. (This is
normally the case anyways, but if you get lucky and the optimizer always ex-
pands the functions inline, you might have gotten away without providing static
copies.)

A function may be given the attribute no_instrument_function, in which
case this instrumentation will not be done. This can be used, for example, for
the profiling functions listed above, high-priority interrupt routines, and any
functions from which the profiling functions cannot safely be called (perhaps
signal handlers, if the profiling routines generate output or allocate memory).

-fstack-check
Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this flag if you are running in an environment with multiple
threads, but only rarely need to specify it in a single-threaded environment
since stack overflow is automatically detected on nearly all systems if there is
only one stack.
Note that this switch does not actually cause checking to be done; the operating

system must do that. The switch causes generation of code to ensure that the
operating system sees the stack being extended.

208 Using the GNU Compiler Collection (GCC)

-fstack-limit-register=reg

-fstack-limit-symbol=sym

-fno-stack-limit
Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If the stack would grow
beyond the value, a signal is raised. For most targets, the signal is raised before
the stack overruns the boundary, so it is possible to catch the signal without
taking special precautions.
For instance, if the stack starts at absolute address ‘0x80000000’ and grows
downwards, you can use the flags ‘~fstack-limit-symbol=__stack_limit’
and ‘-Wl,--defsym,__stack_limit=0x7ffe0000" to enforce a stack limit of
128KB. Note that this may only work with the GNU linker.

-fargument-alias

-fargument-noalias

-fargument-noalias—-global

-fargument-noalias—-anything
Specify the possible relationships among parameters and between parameters
and global data.

‘~fargument-alias’ specifies that arguments (parameters) may alias each other
and may alias global storage.

‘~fargument-noalias’ specifies that arguments do not alias each other, but
may alias global storage.

‘~fargument-noalias-global’ specifies that arguments do not alias each other
and do not alias global storage. ‘~fargument-noalias-anything’ specifies that
arguments do not alias any other storage.

Each language will automatically use whatever option is required by the lan-
guage standard. You should not need to use these options yourself.

-fleading-underscore
This option and its counterpart, ‘-fno-leading-underscore’, forcibly change
the way C symbols are represented in the object file. One use is to help link
with legacy assembly code.

Warning: the ‘-fleading-underscore’ switch causes GCC to generate code
that is not binary compatible with code generated without that switch. Use it
to conform to a non-default application binary interface. Not all targets provide
complete support for this switch.

-ftls-model=model
Alter the thread-local storage model to be used (see Section 5.52 [Thread-
Local], page 464). The model argument should be one of global-dynamic,
local-dynamic, initial-exec or local-exec.
The default without ‘-fpic’ is initial-exec; with ‘-fpic’ the default is
global-dynamic.

-fvisibility=default|internall|hidden|protected
Set the default ELF image symbol visibility to the specified option—all symbols
will be marked with this unless overridden within the code. Using this feature

Chapter 3: GCC Command Options 209

can very substantially improve linking and load times of shared object libraries,
produce more optimized code, provide near-perfect API export and prevent
symbol clashes. It is strongly recommended that you use this in any shared
objects you distribute.

Despite the nomenclature, default always means public ie; available to be
linked against from outside the shared object. protected and internal are
pretty useless in real-world usage so the only other commonly used option will
be hidden. The default if ‘~fvisibility’ isn’t specified is default, i.e., make
every symbol public—this causes the same behavior as previous versions of
GCC.

A good explanation of the benefits offered by ensuring ELF symbols have
the correct visibility is given by “How To Write Shared Libraries” by Ulrich
Drepper (which can be found at http://people.redhat.com/ drepper/)—
however a superior solution made possible by this option to marking things
hidden when the default is public is to make the default hidden and
mark things public. This is the norm with DLL’s on Windows and with
‘~fvisibility=hidden’ and __attribute__ ((visibility("default")))
instead of __declspec(dllexport) you get almost identical semantics with
identical syntax. This is a great boon to those working with cross-platform

projects.

For those adding visibility support to existing code, you may find ‘#pragma GCC
visibility’ of use. This works by you enclosing the declarations you wish to
set visibility for with (for example) ‘#pragma GCC visibility push(hidden)’
and ‘#pragma GCC visibility pop’. Bear in mind that symbol visibility should
be viewed as part of the API interface contract and thus all new code should
always specify visibility when it is not the default ie; declarations only for
use within the local DSO should always be marked explicitly as hidden as so
to avoid PLT indirection overheads—making this abundantly clear also aids
readability and self-documentation of the code. Note that due to ISO C++
specification requirements, operator new and operator delete must always be of
default visibility.

Be aware that headers from outside your project, in particular system head-
ers and headers from any other library you use, may not be expecting to be
compiled with visibility other than the default. You may need to explicitly say
‘#pragma GCC visibility push(default)’ before including any such headers.

‘extern’ declarations are not affected by ‘-fvisibility’, so a lot of code can
be recompiled with ‘~fvisibility=hidden’ with no modifications. However,
this means that calls to ‘extern’ functions with no explicit visibility will use
the PLT, so it is more effective to use ‘__attribute ((visibility))’ and/or
‘#pragma GCC visibility’ to tell the compiler which ‘extern’ declarations
should be treated as hidden.

Note that ‘-fvisibility’ does affect C++ vague linkage entities. This means
that, for instance, an exception class that will be thrown between DSOs must
be explicitly marked with default visibility so that the ‘type_info’ nodes will
be unified between the DSOs.

http://people.redhat.com/~drepper/

210 Using the GNU Compiler Collection (GCC)

An overview of these techniques, their benefits and how to use them is at
http://gcc.gnu.org/wiki/Visibility.

3.19 Environment Variables Affecting GCC

This section describes several environment variables that affect how GCC operates. Some
of them work by specifying directories or prefixes to use when searching for various kinds
of files. Some are used to specify other aspects of the compilation environment.

Note that you can also specify places to search using options such as ‘-B’, ‘-I’ and
‘~L’ (see Section 3.14 [Directory Options], page 112). These take precedence over places
specified using environment variables, which in turn take precedence over those specified by
the configuration of GCC. See section “Controlling the Compilation Driver ‘gec’™ in GNU
Compiler Collection (GCC) Internals.

LANG

LC_CTYPE

LC_MESSAGES

LC_ALL These environment variables control the way that GCC uses localization in-

formation that allow GCC to work with different national conventions. GCC
inspects the locale categories LC_CTYPE and LC_MESSAGES if it has been config-
ured to do so. These locale categories can be set to any value supported by
your installation. A typical value is ‘en_GB.UTF-8’ for English in the United
Kingdom encoded in UTF-8.

The LC_CTYPE environment variable specifies character classification. GCC uses
it to determine the character boundaries in a string; this is needed for some
multibyte encodings that contain quote and escape characters that would oth-
erwise be interpreted as a string end or escape.

The LC_MESSAGES environment variable specifies the language to use in diag-
nostic messages.

If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and
LC_MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the
LANG environment variable. If none of these variables are set, GCC defaults to
traditional C English behavior.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GCC uses
temporary files to hold the output of one stage of compilation which is to be
used as input to the next stage: for example, the output of the preprocessor,
which is the input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the
subprograms executed by the compiler. No slash is added when this prefix is
combined with the name of a subprogram, but you can specify a prefix that
ends with a slash if you wish.

If GCC_EXEC_PREFIX is not set, GCC will attempt to figure out an appropriate
prefix to use based on the pathname it was invoked with.

If GCC cannot find the subprogram using the specified prefix, it tries looking
in the usual places for the subprogram.

http://gcc.gnu.org/wiki/Visibility

Chapter 3: GCC Command Options 211

The default value of GCC_EXEC_PREFIX is ‘prefix/lib/gcc/’ where prefix is
the value of prefix when you ran the ‘configure’ script.

Other prefixes specified with ‘-B’ take precedence over this prefix.
This prefix is also used for finding files such as ‘crt0.0’ that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories
to search for header files. For each of the standard directories whose name
normally begins with ‘/usr/local/lib/gcc’ (more precisely, with the value
of GCC_INCLUDE_DIR), GCC ftries replacing that beginning with the specified
prefix to produce an alternate directory name. Thus, with ‘-Bfoo/’, GCC will
search ‘foo/bar’ where it would normally search ‘/usr/local/lib/bar’. These
alternate directories are searched first; the standard directories come next.

COMPILER_PATH

The value of COMPILER_PATH is a colon-separated list of directories, much like
PATH. GCC tries the directories thus specified when searching for subprograms,
if it can’t find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH

LANG

The value of LIBRARY_PATH is a colon-separated list of directories, much like
PATH. When configured as a native compiler, GCC tries the directories thus
specified when searching for special linker files, if it can’t find them using GCC_
EXEC_PREFIX. Linking using GCC also uses these directories when searching for

ordinary libraries for the ‘-1’ option (but directories specified with ‘-L’ come
first).

This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used when
character literals, string literals and comments are parsed in C and C++. When
the compiler is configured to allow multibyte characters, the following values
for LANG are recognized:

‘C-JI8’ Recognize JIS characters.
‘C-SJIS” Recognize SJIS characters.
‘C-EUCJP’ Recognize EUCJP characters.

If LANG is not defined, or if it has some other value, then the compiler will use
mblen and mbtowc as defined by the default locale to recognize and translate
multibyte characters.

Some additional environments variables affect the behavior of the preprocessor.

CPATH

C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

Each variable’s value is a list of directories separated by a special character,
much like PATH, in which to look for header files. The special character, PATH_
SEPARATOR, is target-dependent and determined at GCC build time. For Mi-
crosoft Windows-based targets it is a semicolon, and for almost all other targets
it is a colon.

212 Using the GNU Compiler Collection (GCC)

CPATH specifies a list of directories to be searched as if specified with ‘-=I’, but
after any paths given with ‘~I” options on the command line. This environment
variable is used regardless of which language is being preprocessed.

The remaining environment variables apply only when preprocessing the par-
ticular language indicated. Each specifies a list of directories to be searched as
if specified with ‘~isystem’, but after any paths given with ‘~-isystem’ options
on the command line.

In all these variables, an empty element instructs the compiler to search its
current working directory. Empty elements can appear at the beginning or end
of a path. For instance, if the value of CPATH is :/special/include, that has
the same effect as ‘-I. -I/special/include’.

DEPENDENCIES_QOUTPUT
If this variable is set, its value specifies how to output dependencies for Make
based on the non-system header files processed by the compiler. System header
files are ignored in the dependency output.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the
Make rules are written to that file, guessing the target name from the source
file name. Or the value can have the form ‘file target’, in which case the
rules are written to file file using target as the target name.

In other words, this environment variable is equivalent to combining the options
‘MM’ and ‘-MF’ (see Section 3.11 [Preprocessor Options|, page 100), with an
optional ‘-MT’ switch too.

SUNPRO_DEPENDENCIES
This variable is the same as DEPENDENCIES_QOUTPUT (see above), except that
system header files are not ignored, so it implies ‘=M’ rather than ‘-MM’. However,
the dependence on the main input file is omitted. See Section 3.11 [Preprocessor
Options], page 100.

3.20 Using Precompiled Headers

Often large projects have many header files that are included in every source file. The time
the compiler takes to process these header files over and over again can account for nearly
all of the time required to build the project. To make builds faster, GCC allows users to
‘precompile’ a header file; then, if builds can use the precompiled header file they will be
much faster.

To create a precompiled header file, simply compile it as you would any other file, if
necessary using the ‘-x’ option to make the driver treat it as a C or C++ header file. You
will probably want to use a tool like make to keep the precompiled header up-to-date when
the headers it contains change.

A precompiled header file will be searched for when #include is seen in the compilation.
As it searches for the included file (see section “Search Path” in The C Preprocessor) the
compiler looks for a precompiled header in each directory just before it looks for the include
file in that directory. The name searched for is the name specified in the #include with
‘.gch’ appended. If the precompiled header file can’t be used, it is ignored.

Chapter 3: GCC Command Options 213

For instance, if you have #include "all.h", and you have ‘all.h.gch’ in the same
directory as ‘all.h’, then the precompiled header file will be used if possible, and the
original header will be used otherwise.

Alternatively, you might decide to put the precompiled header file in a directory and use
‘-’ to ensure that directory is searched before (or instead of) the directory containing the
original header. Then, if you want to check that the precompiled header file is always used,
you can put a file of the same name as the original header in this directory containing an
#error command.

This also works with ‘-include’. So yet another way to use precompiled headers, good
for projects not designed with precompiled header files in mind, is to simply take most
of the header files used by a project, include them from another header file, precompile
that header file, and ‘-include’ the precompiled header. If the header files have guards
against multiple inclusion, they will be skipped because they’ve already been included (in
the precompiled header).

If you need to precompile the same header file for different languages, targets, or compiler
options, you can instead make a directory named like ‘all.h.gch’, and put each precom-
piled header in the directory, perhaps using ‘-o’. It doesn’t matter what you call the files
in the directory, every precompiled header in the directory will be considered. The first
precompiled header encountered in the directory that is valid for this compilation will be
used; they’re searched in no particular order.

There are many other possibilities, limited only by your imagination, good sense, and the
constraints of your build system.

A precompiled header file can be used only when these conditions apply:
e Only one precompiled header can be used in a particular compilation.

e A precompiled header can’t be used once the first C token is seen. You can have
preprocessor directives before a precompiled header; you can even include a precompiled
header from inside another header, so long as there are no C tokens before the #include.

e The precompiled header file must be produced for the same language as the current
compilation. You can’t use a C precompiled header for a C++ compilation.

e The precompiled header file must have been produced by the same compiler binary as
the current compilation is using.

e Any macros defined before the precompiled header is included must either be defined
in the same way as when the precompiled header was generated, or must not affect the
precompiled header, which usually means that they don’t appear in the precompiled
header at all.

The ‘-D’ option is one way to define a macro before a precompiled header is included;
using a #define can also do it. There are also some options that define macros im-
plicitly, like ‘-0’ and ‘-Wdeprecated’; the same rule applies to macros defined this
way.

o If debugging information is output when using the precompiled header, using ‘-g’ or
similar, the same kind of debugging information must have been output when building
the precompiled header. However, a precompiled header built using ‘-g’ can be used
in a compilation when no debugging information is being output.

214 Using the GNU Compiler Collection (GCC)

e The same ‘-m’ options must generally be used when building and using the precompiled
header. See Section 3.17 [Submodel Options], page 122, for any cases where this rule
is relaxed.

e FKach of the following options must be the same when building and using the precom-
piled header:
-fexceptions —-funit-at-a-time
e Some other command-line options starting with ‘-=f’, ‘-p’, or ‘-0’ must be defined in
the same way as when the precompiled header was generated. At present, it’s not clear
which options are safe to change and which are not; the safest choice is to use exactly
the same options when generating and using the precompiled header. The following
are known to be safe:

-fmessage-length= -fpreprocessed -fsched-interblock -fsched-spec -fsched-spec-load -
fsched-spec-load-dangerous -fsched-verbose=<number> -fschedule-insns -fvisibility= -}

pedantic-errors

For all of these except the last, the compiler will automatically ignore the precompiled
header if the conditions aren’t met. If you find an option combination that doesn’t work
and doesn’t cause the precompiled header to be ignored, please consider filing a bug report,
see Chapter 11 [Bugs], page 515.

If you do use differing options when generating and using the precompiled header, the
actual behavior will be a mixture of the behavior for the options. For instance, if you use
‘~g’ to generate the precompiled header but not when using it, you may or may not get
debugging information for routines in the precompiled header.

3.21 Running Protoize

The program protoize is an optional part of GCC. You can use it to add prototypes to a
program, thus converting the program to ISO C in one respect. The companion program
unprotoize does the reverse: it removes argument types from any prototypes that are
found.

When you run these programs, you must specify a set of source files as command line
arguments. The conversion programs start out by compiling these files to see what functions
they define. The information gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all eligible to be converted;
any files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert
only source and header files in the current directory. You can specify additional directories
whose files should be converted with the ‘-d directory’ option. You can also specify
particular files to exclude with the ‘-x file’ option. A file is converted if it is eligible,
its directory name matches one of the specified directory names, and its name within the
directory has not been excluded.

Basic conversion with protoize consists of rewriting most function definitions and func-
tion declarations to specify the types of the arguments. The only ones not rewritten are
those for varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file, to
make them available for any calls that precede the function’s definition. Or it can insert
prototype declarations with block scope in the blocks where undeclared functions are called.

Chapter 3: GCC Command Options 215

Basic conversion with unprotoize consists of rewriting most function declarations to
remove any argument types, and rewriting function definitions to the old-style pre-ISO
form.

Both conversion programs print a warning for any function declaration or definition that
they can’t convert. You can suppress these warnings with ‘-q’.

The output from protoize or unprotoize replaces the original source file. The original
file is renamed to a name ending with ‘.save’ (for DOS, the saved filename ends in ‘.sav’
without the original ‘. ¢’ suffix). If the ‘.save’ (‘.sav’ for DOS) file already exists, then the
source file is simply discarded.

protoize and unprotoize both depend on GCC itself to scan the program and collect
information about the functions it uses. So neither of these programs will work until GCC
is installed.

Here is a table of the options you can use with protoize and unprotoize. Each option
works with both programs unless otherwise stated.

-B directory
Look for the file ‘SYSCALLS.c.X’ in directory, instead of the usual directory
(normally ‘/usr/local/1ib’). This file contains prototype information about
standard system functions. This option applies only to protoize.

-c compilation-options
Use compilation-options as the options when running gcc to produce the *.X’
files. The special option ‘~aux-info’ is always passed in addition, to tell gcc
to write a ‘. X’ file.

Note that the compilation options must be given as a single argument to
protoize or unprotoize. If you want to specify several gcc options, you must
quote the entire set of compilation options to make them a single word in the
shell.

There are certain gcc arguments that you cannot use, because they would
produce the wrong kind of output. These include ‘-g’, ‘-0, ‘-c’, ‘-8’, and ‘-0’
If you include these in the compilation-options, they are ignored.

-C Rename files to end in *.C’ (‘.cc’ for DOS-based file systems) instead of ‘.c’.
This is convenient if you are converting a C program to C++. This option
applies only to protoize.

-g Add explicit global declarations. This means inserting explicit declarations at
the beginning of each source file for each function that is called in the file and
was not declared. These declarations precede the first function definition that
contains a call to an undeclared function. This option applies only to protoize.

-1 string
Indent old-style parameter declarations with the string string. This option
applies only to protoize.

unprotoize converts prototyped function definitions to old-style function def-
initions, where the arguments are declared between the argument list and the
initial *{’. By default, unprotoize uses five spaces as the indentation. If you
want to indent with just one space instead, use ‘=i " ",

216 Using the GNU Compiler Collection (GCC)

-k Keep the . X’ files. Normally, they are deleted after conversion is finished.

-1 Add explicit local declarations. protoize with ‘-1’ inserts a prototype dec-
laration for each function in each block which calls the function without any
declaration. This option applies only to protoize.

-n Make no real changes. This mode just prints information about the conversions
that would have been done without ‘-n’.

-N Make no ‘.save’ files. The original files are simply deleted. Use this option
with caution.

-p program
Use the program program as the compiler. Normally, the name ‘gcc’ is used.

-q Work quietly. Most warnings are suppressed.
-v Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s source files, then
you should generate that file’s ¢. X’ file specially, by running gcc on that source file with the
appropriate options and the option ‘-aux-info’. Then run protoize on the entire set of
files. protoize will use the existing ‘.X’ file because it is newer than the source file. For
example:

gcc -Dfoo=bar filel.c -aux-info filel.X

protoize *.c
You need to include the special files along with the rest in the protoize command, even
though their . X’ files already exist, because otherwise they won’t get converted.

See Section 10.9 [Protoize Caveats], page 508, for more information on how to use
protoize successfully.

Chapter 4: C Implementation-defined behavior 217

4 C Implementation-defined behavior

A conforming implementation of ISO C is required to document its choice of behavior in
each of the areas that are designated “implementation defined”. The following lists all such
areas, along with the section numbers from the ISO/IEC 9899:1990 and ISO/IEC 9899:1999
standards. Some areas are only implementation-defined in one version of the standard.

Some choices depend on the externally determined ABI for the platform (in-
cluding standard character encodings) which GCC follows; these are listed as
“determined by ABI” below. See Chapter 8 [Binary Compatibility], page 485, and
http://gcc.gnu.org/readings.html. Some choices are documented in the preprocessor
manual. See section “Implementation-defined behavior” in The C Preprocessor. Some
choices are made by the library and operating system (or other environment when
compiling for a freestanding environment); refer to their documentation for details.

4.1 Translation

e How a diagnostic is identified (C90 3.7, C99 3.10, C90 and C99 5.1.1.3).
Diagnostics consist of all the output sent to stderr by GCC.

e Whether each nonempty sequence of white-space characters other than new-line is
retained or replaced by one space character in translation phase 3 (C90 and C99 5.1.1.2).

See section “Implementation-defined behavior” in The C Preprocessor.

4.2 Environment
The behavior of most of these points are dependent on the implementation of the C library,

and are not defined by GCC itself.

e The mapping between physical source file multibyte characters and the source character
set in translation phase 1 (C90 and C99 5.1.1.2).

See section “Implementation-defined behavior” in The C Preprocessor.

4.3 Identifiers

e Which additional multibyte characters may appear in identifiers and their correspon-
dence to universal character names (C99 6.4.2).

See section “Implementation-defined behavior” in The C Preprocessor.

e The number of significant initial characters in an identifier (C90 6.1.2, C90 and C99
5.2.4.1, C99 6.4.2).

For internal names, all characters are significant. For external names, the number of
significant characters are defined by the linker; for almost all targets, all characters are
significant.

e Whether case distinctions are significant in an identifier with external linkage (C90
6.1.2).

This is a property of the linker. C99 requires that case distinctions are always significant
in identifiers with external linkage and systems without this property are not supported
by GCC.

http://gcc.gnu.org/readings.html

218

Using the GNU Compiler Collection (GCC)

4.4 Characters

The number of bits in a byte (C90 3.4, C99 3.6).

Determined by ABI.

The values of the members of the execution character set (C90 and C99 5.2.1).
Determined by ABI.

The unique value of the member of the execution character set produced for each of
the standard alphabetic escape sequences (C90 and C99 5.2.2).

Determined by ABI.

The value of a char object into which has been stored any character other than a
member of the basic execution character set (C90 6.1.2.5, C99 6.2.5).

Determined by ABI.

Which of signed char or unsigned char has the same range, representation, and be-
havior as “plain” char (C90 6.1.2.5, C90 6.2.1.1, C99 6.2.5, C99 6.3.1.1).

Determined by ABI. The options ‘~funsigned-char’ and ‘-~fsigned-char’ change the
default. See Section 3.4 [Options Controlling C Dialect], page 22.

The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (C90 6.1.3.4, C99 6.4.4.4, C90 and
C99 5.1.1.2).

Determined by ABI.

The value of an integer character constant containing more than one character or
containing a character or escape sequence that does not map to a single-byte execution
character (C90 6.1.3.4, C99 6.4.4.4).

See section “Implementation-defined behavior” in The C Preprocessor.

The value of a wide character constant containing more than one multibyte character,
or containing a multibyte character or escape sequence not represented in the extended
execution character set (C90 6.1.3.4, C99 6.4.4.4).

See section “Implementation-defined behavior” in The C Preprocessor.

The current locale used to convert a wide character constant consisting of a single
multibyte character that maps to a member of the extended execution character set
into a corresponding wide character code (C90 6.1.3.4, C99 6.4.4.4).

See section “Implementation-defined behavior” in The C Preprocessor.

The current locale used to convert a wide string literal into corresponding wide char-
acter codes (C90 6.1.4, C99 6.4.5).

See section “Implementation-defined behavior” in The C Preprocessor.

The value of a string literal containing a multibyte character or escape sequence not
represented in the execution character set (C90 6.1.4, C99 6.4.5).

See section “Implementation-defined behavior” in The C Preprocessor.

4.5 Integers

Any extended integer types that exist in the implementation (C99 6.2.5).
GCC does not support any extended integer types.

Chapter 4: C Implementation-defined behavior 219

Whether signed integer types are represented using sign and magnitude, two’s comple-
ment, or one’s complement, and whether the extraordinary value is a trap representa-
tion or an ordinary value (C99 6.2.6.2).

GCC supports only two’s complement integer types, and all bit patterns are ordinary
values.

The rank of any extended integer type relative to another extended integer type with
the same precision (C99 6.3.1.1).

GCC does not support any extended integer types.

The result of, or the signal raised by, converting an integer to a signed integer type when
the value cannot be represented in an object of that type (C90 6.2.1.2, C99 6.3.1.3).

For conversion to a type of width N, the value is reduced modulo 2% to be within range
of the type; no signal is raised.

The results of some bitwise operations on signed integers (C90 6.3, C99 6.5).

Bitwise operators act on the representation of the value including both the sign and
value bits, where the sign bit is considered immediately above the highest-value value
bit. Signed ‘>>’ acts on negative numbers by sign extension.

GCC does not use the latitude given in C99 only to treat certain aspects of signed ‘<<’
as undefined, but this is subject to change.

The sign of the remainder on integer division (C90 6.3.5).

GCC always follows the C99 requirement that the result of division is truncated towards
Zero.

4.6 Floating point

The accuracy of the floating-point operations and of the library functions in <math.h>
and <complex.h> that return floating-point results (C90 and C99 5.2.4.2.2).

The accuracy is unknown.

The rounding behaviors characterized by non-standard values of FLT_ROUNDS
(C90 and C99 5.2.4.2.2).

GCC does not use such values.

The evaluation methods characterized by non-standard negative values of FLT_EVAL_
METHOD (C99 5.2.4.2.2).

GCC does not use such values.

The direction of rounding when an integer is converted to a floating-point number that
cannot exactly represent the original value (C90 6.2.1.3, C99 6.3.1.4).

C99 Annex F is followed.

The direction of rounding when a floating-point number is converted to a narrower
floating-point number (C90 6.2.1.4, C99 6.3.1.5).

C99 Annex F is followed.

How the nearest representable value or the larger or smaller representable value im-
mediately adjacent to the nearest representable value is chosen for certain floating
constants (C90 6.1.3.1, C99 6.4.4.2).

C99 Annex F is followed.

220

Using the GNU Compiler Collection (GCC)

Whether and how floating expressions are contracted when not disallowed by the FP_
CONTRACT pragma (C99 6.5).

Expressions are currently only contracted if ‘-funsafe-math-optimizations’ or
‘~ffast-math’ are used. This is subject to change.

The default state for the FENV_ACCESS pragma (C99 7.6.1).

This pragma is not implemented, but the default is to “off” unless ‘~frounding-math’
is used in which case it is “on”.

Additional floating-point exceptions, rounding modes, environments, and classifica-
tions, and their macro names (C99 7.6, C99 7.12).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

The default state for the FP_CONTRACT pragma (C99 7.12.2).

This pragma is not implemented. Expressions are currently only contracted if
‘~funsafe-math-optimizations’ or ‘-ffast-math’ are used. This is subject to
change.

Whether the “inexact” floating-point exception can be raised when the rounded result
actually does equal the mathematical result in an TEC 60559 conformant implementa-
tion (C99 F.9).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

Whether the “underflow” (and “inexact”) floating-point exception can be raised when
a result is tiny but not inexact in an IEC 60559 conformant implementation (C99 F.9).
This is dependent on the implementation of the C library, and is not defined by GCC
itself.

4.7 Arrays and pointers

The result of converting a pointer to an integer or vice versa (C90 6.3.4, C99 6.3.2.3).

A cast from pointer to integer discards most-significant bits if the pointer representation
is larger than the integer type, sign-extends! if the pointer representation is smaller
than the integer type, otherwise the bits are unchanged.

A cast from integer to pointer discards most-significant bits if the pointer representation
is smaller than the integer type, extends according to the signedness of the integer type
if the pointer representation is larger than the integer type, otherwise the bits are
unchanged.

When casting from pointer to integer and back again, the resulting pointer must ref-
erence the same object as the original pointer, otherwise the behavior is undefined.
That is, one may not use integer arithmetic to avoid the undefined behavior of pointer
arithmetic as proscribed in C99 6.5.6/8.

The size of the result of subtracting two pointers to elements of the same array (C90
6.3.6, C99 6.5.6).

The value is as specified in the standard and the type is determined by the ABI.

L Future versions of GCC may zero-extend, or use a target-defined ptr_extend pattern. Do not rely on
sign extension.

Chapter 4: C Implementation-defined behavior 221

4.8 Hints
e The extent to which suggestions made by using the register storage-class specifier
are effective (C90 6.5.1, C99 6.7.1).
The register specifier affects code generation only in these ways:

e When used as part of the register variable extension, see Section 5.38 [Explicit Reg
Vars], page 300.

e When ‘-00’ is in use, the compiler allocates distinct stack memory for all variables
that do not have the register storage-class specifier; if register is specified, the
variable may have a shorter lifespan than the code would indicate and may never
be placed in memory.

e On some rare x86 targets, setjmp doesn’t save the registers in all circumstances.
In those cases, GCC doesn’t allocate any variables in registers unless they are
marked register.

e The extent to which suggestions made by using the inline function specifier are effective
(C99 6.7.4).

GCC will not inline any functions if the ‘~fno-inline’ option is used or if ‘=00’ is
used. Otherwise, GCC may still be unable to inline a function for many reasons; the
‘~Winline’ option may be used to determine if a function has not been inlined and why
not.

4.9 Structures, unions, enumerations, and bit-fields

e A member of a union object is accessed using a member of a different type (C90 6.3.2.3).

The relevant bytes of the representation of the object are treated as an object of the
type used for the access. This may be a trap representation.

e Whether a “plain” int bit-field is treated as a signed int bit-field or as an unsigned
int bit-field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99 6.7.2.1).

By default it is treated as signed int but this may be changed by the
‘~funsigned-bitfields’ option.

e Allowable bit-field types other than _Bool, signed int, and unsigned int (C99
6.7.2.1).

No other types are permitted in strictly conforming mode.

o Whether a bit-field can straddle a storage-unit boundary (C90 6.5.2.1, C99 6.7.2.1).
Determined by ABI.

e The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99 6.7.2.1).
Determined by ABI.

e The alignment of non-bit-field members of structures (C90 6.5.2.1, C99 6.7.2.1).
Determined by ABI.

e The integer type compatible with each enumerated type (C90 6.5.2.2, C99 6.7.2.2).

Normally, the type is unsigned int if there are no negative values in the enumeration,
otherwise int. If ‘-fshort-enums’ is specified, then if there are negative values it is
the first of signed char, short and int that can represent all the values, otherwise it

222 Using the GNU Compiler Collection (GCC)

is the first of unsigned char, unsigned short and unsigned int that can represent
all the values.

On some targets, ‘~fshort-enums’ is the default; this is determined by the ABI.

4.10 Qualifiers

e What constitutes an access to an object that has volatile-qualified type (C90 6.5.3, C99
6.7.3).

Such an object is normally accessed by pointers and used for accessing hardware. In
most expressions, it is intuitively obvious what is a read and what is a write. For
example

volatile int *dst
volatile int *src
*dst = *src;

somevalue;
someothervalue;

will cause a read of the volatile object pointed to by src¢ and store the value into the
volatile object pointed to by dst. There is no guarantee that these reads and writes
are atomic, especially for objects larger than int.
However, if the volatile storage is not being modified, and the value of the volatile
storage is not used, then the situation is less obvious. For example

volatile int *src = somevalue;

*src;
According to the C standard, such an expression is an rvalue whose type is the unqual-
ified version of its original type, i.e. int. Whether GCC interprets this as a read of
the volatile object being pointed to or only as a request to evaluate the expression for
its side-effects depends on this type.
If it is a scalar type, or on most targets an aggregate type whose only member object
is of a scalar type, or a union type whose member objects are of scalar types, the
expression is interpreted by GCC as a read of the volatile object; in the other cases,
the expression is only evaluated for its side-effects.

4.11 Declarators

e The maximum number of declarators that may modify an arithmetic, structure or

union type (C90 6.5.4).
GCC is only limited by available memory.

4.12 Statements

e The maximum number of case values in a switch statement (C90 6.6.4.2).

GCC is only limited by available memory.

4.13 Preprocessing directives
See section “Implementation-defined behavior” in The C Preprocessor, for details of these
aspects of implementation-defined behavior.

e How sequences in both forms of header names are mapped to headers or external source
file names (C90 6.1.7, C99 6.4.7).

Chapter 4: C Implementation-defined behavior 223

e Whether the value of a character constant in a constant expression that controls con-
ditional inclusion matches the value of the same character constant in the execution
character set (C90 6.8.1, C99 6.10.1).

e Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion may have a negative value (C90 6.8.1, C99 6.10.1).

e The places that are searched for an included ‘<>’ delimited header, and how the places
are specified or the header is identified (C90 6.8.2, C99 6.10.2).

e How the named source file is searched for in an included """’ delimited header (C90
6.8.2, C99 6.10.2).

e The method by which preprocessing tokens (possibly resulting from macro expansion)
in a #include directive are combined into a header name (C90 6.8.2, C99 6.10.2).

e The nesting limit for #include processing (C90 6.8.2, C99 6.10.2).

o Whether the #’ operator inserts a ‘\’ character before the ‘\’ character that begins a
universal character name in a character constant or string literal (C99 6.10.3.2).

e The behavior on each recognized non-STDC #pragma directive (C90 6.8.6, C99 6.10.6).

See section “Pragmas” in The C Preprocessor, for details of pragmas accepted by GCC
on all targets. See Section 5.50 [Pragmas Accepted by GCC], page 460, for details of
target-specific pragmas.

e The definitions for __DATE__ and __TIME__ when respectively, the date and time of
translation are not available (C90 6.8.8, C99 6.10.8).

4.14 Library functions
The behavior of most of these points are dependent on the implementation of the C library,
and are not defined by GCC itself.

e The null pointer constant to which the macro NULL expands (C90 7.1.6, C99 7.17).

In <stddef .h>, NULL expands to ((void *)0). GCC does not provide the other headers
which define NULL and some library implementations may use other definitions in those
headers.

4.15 Architecture
e The values or expressions assigned to the macros specified in the headers <float.h>,
<limits.h>, and <stdint.h> (C90 and C99 5.2.4.2, C99 7.18.2, C99 7.18.3).
Determined by ABI.

e The number, order, and encoding of bytes in any object (when not explicitly specified
in this International Standard) (C99 6.2.6.1).

Determined by ABI.
e The value of the result of the sizeof operator (C90 6.3.3.4, C99 6.5.3.4).
Determined by ABI.

4.16 Locale-specific behavior

The behavior of these points are dependent on the implementation of the C library, and are
not defined by GCC itself.

224 Using the GNU Compiler Collection (GCC)

Chapter 5: Extensions to the C Language Family 225

5 Extensions to the C Language Family

GNU C provides several language features not found in ISO standard C. (The ‘-pedantic’
option directs GCC to print a warning message if any of these features is used.) To test for
the availability of these features in conditional compilation, check for a predefined macro
__GNUC__, which is always defined under GCC.

These extensions are available in C and Objective-C. Most of them are also available in
C++. See Chapter 6 [Extensions to the C++ Language], page 469, for extensions that apply
only to C++.

Some features that are in ISO C99 but not C89 or C++ are also, as extensions, accepted
by GCC in C89 mode and in C++.

5.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C.
This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in
this construct, parentheses go around the braces. For example:
({ int y = foo (); int z;

if (y > 0) z = y;

else z = - y;

z; 1)
is a valid (though slightly more complex than necessary) expression for the absolute value
of foo ().

The last thing in the compound statement should be an expression followed by a semi-
colon; the value of this subexpression serves as the value of the entire construct. (If you use
some other kind of statement last within the braces, the construct has type void, and thus
effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate
each operand exactly once). For example, the “maximum” function is commonly defined
as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side
effects. In GNU C, if you know the type of the operands (here taken as int), you can define
the macro safely as follows:

#define maxint(a,b) \
({int _a = (a), . b= (b); _a> b ? _a: _b; }

Embedded statements are not allowed in constant expressions, such as the value of an
enumeration constant, the width of a bit-field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use typeof
(see Section 5.6 [Typeof], page 231).

In G++, the result value of a statement expression undergoes array and function pointer
decay, and is returned by value to the enclosing expression. For instance, if A is a class,
then

226 Using the GNU Compiler Collection (GCC)

A a;

({a;1}) .Foo O

will construct a temporary A object to hold the result of the statement expression, and that
will be used to invoke Foo. Therefore the this pointer observed by Foo will not be the
address of a.

Any temporaries created within a statement within a statement expression will be de-
stroyed at the statement’s end. This makes statement expressions inside macros slightly
different from function calls. In the latter case temporaries introduced during argument
evaluation will be destroyed at the end of the statement that includes the function call. In
the statement expression case they will be destroyed during the statement expression. For
instance,

#define macro(a) ({__typeof__(a) b = (a); b + 3; })
template<typename T> T function(T a) { T b = a; return b + 3; }

void foo ()
{
macro (X ());
function (X);
}
will have different places where temporaries are destroyed. For the macro case, the tem-
porary X will be destroyed just after the initialization of b. In the function case that
temporary will be destroyed when the function returns.

These considerations mean that it is probably a bad idea to use statement-expressions of
this form in header files that are designed to work with C++. (Note that some versions of
the GNU C Library contained header files using statement-expression that lead to precisely
this bug.)

Jumping into a statement expression with goto or using a switch statement outside the
statement expression with a case or default label inside the statement expression is not
permitted. Jumping into a statement expression with a computed goto (see Section 5.3
[Labels as Values], page 227) yields undefined behavior. Jumping out of a statement ex-
pression is permitted, but if the statement expression is part of a larger expression then
it is unspecified which other subexpressions of that expression have been evaluated except
where the language definition requires certain subexpressions to be evaluated before or after
the statement expression. In any case, as with a function call the evaluation of a statement
expression is not interleaved with the evaluation of other parts of the containing expression.
For example,

foo (), (({ barl (); goto a; 0; }) + bar2 (), baz();

will call foo and barl and will not call baz but may or may not call bar2. If bar?2 is called,
it will be called after foo and before bar1

5.2 Locally Declared Labels

GCC allows you to declare local labels in any nested block scope. A local label is just like
an ordinary label, but you can only reference it (with a goto statement, or by taking its
address) within the block in which it was declared.

A local label declaration looks like this:

Chapter 5: Extensions to the C Language Family 227

__label__ label;

or

__label__ labell, label2, /* ... %*/;

Local label declarations must come at the beginning of the block, before any ordinary
declarations or statements.

The label declaration defines the label name, but does not define the label itself. You must
do this in the usual way, with label :, within the statements of the statement expression.

The local label feature is useful for complex macros. If a macro contains nested loops, a
goto can be useful for breaking out of them. However, an ordinary label whose scope is the
whole function cannot be used: if the macro can be expanded several times in one function,
the label will be multiply defined in that function. A local label avoids this problem. For
example:

#define SEARCH(value, array, target)
do {

__label__ found;

typeof (target) _SEARCH_target =

typeof (*(array)) *_SEARCH_array

int i, j;

int value;

for (i = 0; i < max; i++)

for (j = 0; j < max; j++)
if (_SEARCH_array[i][j] == _SEARCH_target)
{ (value) = i; goto found; }

e) = -1;

(target) ;
= (array);

(valu
found:;
} while (0)

P A G

This could also be written using a statement-expression:

#define SEARCH(array, target)
€
__label__ found;
typeof (target) _SEARCH_target =
typeof (x(array)) *_SEARCH_array
int i, j;
int value;
for (i = 0; i < max; i++)
for (j = 0; j < max; j++)
if (_SEARCH_array[i][j] == _SEARCH_target)
{ value = i; goto found; }
value = -1;
found:
value;

b

Local label declarations also make the labels they declare visible to nested functions, if
there are any. See Section 5.4 [Nested Functions], page 228, for details.

(target);
= (array);

P G S

5.3 Labels as Values

You can get the address of a label defined in the current function (or a containing function)
with the unary operator ‘&&’. The value has type void *. This value is a constant and can
be used wherever a constant of that type is valid. For example:

void *ptr;

228 Using the GNU Compiler Collection (GCC)

VAT
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the computed
goto statement’, goto *exp;. For example,
goto *ptr;
Any expression of type void * is allowed.
One way of using these constants is in initializing a static array that will serve as a jump
table:
static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds—array indexing in C never
does that.

Such an array of label values serves a purpose much like that of the switch statement.
The switch statement is cleaner, so use that rather than an array unless the problem does
not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function. If you do that,
totally unpredictable things will happen. The best way to avoid this is to store the label
address only in automatic variables and never pass it as an argument.

An alternate way to write the above example is

static const int array[] = { &foo - &&foo, &&bar - &&foo,
&&hack - &&foo };
goto *(&&foo + arrayl[il);
This is more friendly to code living in shared libraries, as it reduces the number of dynamic
relocations that are needed, and by consequence, allows the data to be read-only.

5.4 Nested Functions

A nested function is a function defined inside another function. (Nested functions are not
supported for GNU C++.) The nested function’s name is local to the block where it is
defined. For example, here we define a nested function named square, and call it twice:

foo (double a, double b)
{

double square (double z) { return z * z; }

return square (a) + square (b);
}
The nested function can access all the variables of the containing function that are visible
at the point of its definition. This is called lexical scoping. For example, here we show a
nested function which uses an inherited variable named offset:

L The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C,
where one can do more than simply store label addresses in label variables.

Chapter 5: Extensions to the C Language Family 229

bar (int *array, int offset, int size)
{
int access (int *array, int index)
{ return array[index + offset]; }

int i;
/*x ... %/
for (i = 0; 1 < size; i++)
/* ... */ access (array, i) /* ... */
}

Nested function definitions are permitted within functions in the places where variable
definitions are allowed; that is, in any block, mixed with the other declarations and state-
ments in the block.

It is possible to call the nested function from outside the scope of its name by storing its
address or passing the address to another function:

hack (int *array, int size)
{
void store (int index, int value)
{ arrayl[index] = value; }

intermediate (store, size);

}

Here, the function intermediate receives the address of store as an argument. If
intermediate calls store, the arguments given to store are used to store into array.
But this technique works only so long as the containing function (hack, in this example)
does not exit.

If you try to call the nested function through its address after the containing function has
exited, all hell will break loose. If you try to call it after a containing scope level has exited,
and if it refers to some of the variables that are no longer in scope, you may be lucky, but
it’s not wise to take the risk. If, however, the nested function does not refer to anything
that has gone out of scope, you should be safe.

GCC implements taking the address of a nested function using a technique called tram-
polines. A paper describing them is available as

http://people.debian.org/ aaronl/Usenix88-lexic.pdf.

A nested function can jump to a label inherited from a containing function, provided
the label was explicitly declared in the containing function (see Section 5.2 [Local Labels],
page 226). Such a jump returns instantly to the containing function, exiting the nested
function which did the goto and any intermediate functions as well. Here is an example:

http://people.debian.org/~aaronl/Usenix88-lexic.pdf

230 Using the GNU Compiler Collection (GCC)

bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];

}
int i;
/*x ... %/
for (i = 0; 1 < size; i++)
/* ... */ access (array, i) /* ... */
/x ... %/
return O;

/* Control comes here from access
if it detects an error. */
failure:
return -1;
}

A nested function always has no linkage. Declaring one with extern or static is erro-
neous. If you need to declare the nested function before its definition, use auto (which is
otherwise meaningless for function declarations).

bar (int *array, int offset, int size)
{
__label__ failure;
auto int access (int *, int);
VAT Y
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];

}
/* ... %/
}

5.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function
received, and call another function with the same arguments, without knowing the number
or types of the arguments.

You can also record the return value of that function call, and later return that value,
without knowing what data type the function tried to return (as long as your caller expects
that data type).

However, these built-in functions may interact badly with some sophisticated features or
other extensions of the language. It is, therefore, not recommended to use them outside
very simple functions acting as mere forwarders for their arguments.

void * __builtin_apply_args () [Built-in Function]
This built-in function returns a pointer to data describing how to perform a call with
the same arguments as were passed to the current function.

Chapter 5: Extensions to the C Language Family 231

The function saves the arg pointer register, structure value address, and all registers
that might be used to pass arguments to a function into a block of memory allocated
on the stack. Then it returns the address of that block.

void * __builtin_apply (void (*function)(), void [Built-in Function]
*arguments, size_t size)
This built-in function invokes function with a copy of the parameters described by
arguments and size.

The value of arguments should be the value returned by __builtin_apply_args.
The argument size specifies the size of the stack argument data, in bytes.

This function returns a pointer to data describing how to return whatever value was
returned by function. The data is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for size. The value is used by
__builtin_apply to compute the amount of data that should be pushed on the stack
and copied from the incoming argument area.

void __builtin_return (void *result) [Built-in Function]
This built-in function returns the value described by result from the containing func-
tion. You should specify, for result, a value returned by __builtin_apply.

5.6 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using of
this keyword looks like sizeof, but the construct acts semantically like a type name defined
with typedef.

There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:
typeof (x[0](1))

This assumes that x is an array of pointers to functions; the type described is that of the
values of the functions.

Here is an example with a typename as the argument:
typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ISO C programs, write
__typeof__ instead of typeof. See Section 5.39 [Alternate Keywords], page 302.

A typeof-construct can be used anywhere a typedef name could be used. For example,
you can use it in a declaration, in a cast, or inside of sizeof or typeof.

typeof is often useful in conjunction with the statements-within-expressions feature.
Here is how the two together can be used to define a safe “maximum” macro that operates
on any arithmetic type and evaluates each of its arguments exactly once:

#define max(a,b) \
({ typeof (a) _a = (a); \
typeof (b) _b = (b); \
_,a>_b?7 _a: _b;})

The reason for using names that start with underscores for the local variables is to avoid
conflicts with variable names that occur within the expressions that are substituted for a

232 Using the GNU Compiler Collection (GCC)

and b. Eventually we hope to design a new form of declaration syntax that allows you to
declare variables whose scopes start only after their initializers; this will be a more reliable
way to prevent such conflicts.

Some more examples of the use of typeof:

e This declares y with the type of what x points to.
typeof (*x) y;

e This declares y as an array of such values.
typeof (*x) y[4];

e This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way
to write, rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [NI])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

Compatibility Note: In addition to typeof, GCC 2 supported a more limited extension
which permitted one to write

typedef T = expr;
with the effect of declaring T to have the type of the expression expr. This extension does

not work with GCC 3 (versions between 3.0 and 3.2 will crash; 3.2.1 and later give an error).
Code which relies on it should be rewritten to use typeof:

typedef typeof (expr) T;
This will work with all versions of GCC.

5.7 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand
is nonzero, its value is the value of the conditional expression.
Therefore, the expression
xX?7:y5
has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to
xX?7x:y
In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the first operand does, or may (if it is a macro argument), contain a
side effect. Then repeating the operand in the middle would perform the side effect twice.

Omitting the middle operand uses the value already computed without the undesirable
effects of recomputing it.

Chapter 5: Extensions to the C Language Family 233

5.8 Double-Word Integers

ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension
GCC supports them in C89 mode and in C++. Simply write long long int for a signed
integer, or unsigned long long int for an unsigned integer. To make an integer constant
of type long long int, add the suffix ‘LL’ to the integer. To make an integer constant of
type unsigned long long int, add the suffix ‘ULL’ to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction,
and bitwise boolean operations on these types are open-coded on all types of machines.
Multiplication is open-coded if the machine supports fullword-to-doubleword a widening
multiply instruction. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special library routines that
come with GCC.

There may be pitfalls when you use long long types for function arguments, unless you
declare function prototypes. If a function expects type int for its argument, and you pass
a value of type long long int, confusion will result because the caller and the subroutine
will disagree about the number of bytes for the argument. Likewise, if the function expects
long long int and you pass int. The best way to avoid such problems is to use prototypes.

5.9 Complex Numbers

ISO C99 supports complex floating data types, and as an extension GCC supports them in
C89 mode and in C++, and supports complex integer data types which are not part of ISO
C99. You can declare complex types using the keyword _Complex. As an extension, the
older GNU keyword __complex__ is also supported.

For example, ‘_Complex double x;’ declares x as a variable whose real part and imagi-

nary part are both of type double. ‘_Complex short int y;’ declares y to have real and
imaginary parts of type short int; this is not likely to be useful, but it shows that the set
of complex types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or ‘j’ (either one; they are
equivalent). For example, 2.5fi has type _Complex float and 3i has type _Complex int.
Such a constant always has a pure imaginary value, but you can form any complex value
you like by adding one to a real constant. This is a GNU extension; if you have an ISO
C99 conforming C library (such as GNU libc), and want to construct complex constants of
floating type, you should include <complex.h> and use the macros I or _Complex_I instead.

To extract the real part of a complex-valued expression exp, write __real__ exp. Like-
wise, use __imag__ to extract the imaginary part. This is a GNU extension; for values of
floating type, you should use the ISO C99 functions crealf, creal, creall, cimagf, cimag
and cimagl, declared in <complex.h> and also provided as built-in functions by GCC.

(o~

The operator ‘~’ performs complex conjugation when used on a value with a complex
type. This is a GNU extension; for values of floating type, you should use the ISO C99
functions conjf, conj and conjl, declared in <complex.h> and also provided as built-in
functions by GCC.

GCC can allocate complex automatic variables in a noncontiguous fashion; it’s even
possible for the real part to be in a register while the imaginary part is on the stack (or
vice-versa). Only the DWARF2 debug info format can represent this, so use of DWARF?2 is

234 Using the GNU Compiler Collection (GCC)

recommended. If you are using the stabs debug info format, GCC describes a noncontiguous
complex variable as if it were two separate variables of noncomplex type. If the variable’s
actual name is foo, the two fictitious variables are named foo$real and foo$imag. You
can examine and set these two fictitious variables with your debugger.

5.10 Decimal Floating Types

As an extension, the GNU C compiler supports decimal floating types as defined in the
N1176 draft of ISO/IEC WDTR24732. Support for decimal floating types in GCC will
evolve as the draft technical report changes. Calling conventions for any target might also
change. Not all targets support decimal floating types.

The decimal floating types are _Decimal32, _Decimal64, and _Decimall28. They use a
radix of ten, unlike the floating types float, double, and long double whose radix is not
specified by the C standard but is usually two.

Support for decimal floating types includes the arithmetic operators add, subtract, mul-
tiply, divide; unary arithmetic operators; relational operators; equality operators; and con-
versions to and from integer and other floating types. Use a suffix ‘df’ or ‘DF’ in a literal
constant of type _Decimal32, ‘dd’ or ‘DD’ for _Decimal64, and ‘d1l’ or ‘DL’ for _Decimall28.

GCC support of decimal float as specified by the draft technical report is incomplete:
e Translation time data type (TTDT) is not supported.

e Characteristics of decimal floating types are defined in header file ‘decfloat.h’ rather
than ‘float.h’.

e When the value of a decimal floating type cannot be represented in the integer type to
which it is being converted, the result is undefined rather than the result value specified
by the draft technical report.

Types _Decimal32, _Decimal64, and _Decimal128 are supported by the DWARF2 debug
information format.

5.11 Hex Floats

ISO C99 supports floating-point numbers written not only in the usual decimal notation,
such as 1.55e1, but also numbers such as 0x1.fp3 written in hexadecimal format. As
a GNU extension, GCC supports this in C89 mode (except in some cases when strictly
conforming) and in C++. In that format the ‘0x’ hex introducer and the ‘p’ or ‘P’ exponent
field are mandatory. The exponent is a decimal number that indicates the power of 2 by
which the significant part will be multiplied. Thus ‘0x1.f’ is 1%, ‘p3’” multiplies it by 8,
and the value of 0x1.fp3 is the same as 1.55el.

Unlike for floating-point numbers in the decimal notation the exponent is always required
in the hexadecimal notation. Otherwise the compiler would not be able to resolve the
ambiguity of, e.g., 0x1.f. This could mean 1.0f or 1.9375 since ‘f’ is also the extension
for floating-point constants of type float.

5.12 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a
structure which is really a header for a variable-length object:

Chapter 5: Extensions to the C Language Family 235

struct line {
int length;
char contents[0];

};

struct line #*thisline = (struct line *)
malloc (sizeof (struct line) + this_length);
thisline->length = this_length;
In ISO C90, you would have to give contents a length of 1, which means either you
waste space or complicate the argument to malloc.

In ISO (99, you would use a flexible array member, which is slightly different in syntax
and semantics:

e Flexible array members are written as contents[] without the 0.

e Flexible array members have incomplete type, and so the sizeof operator may not
be applied. As a quirk of the original implementation of zero-length arrays, sizeof
evaluates to zero.

e Flexible array members may only appear as the last member of a struct that is
otherwise non-empty.

e A structure containing a flexible array member, or a union containing such a structure
(possibly recursively), may not be a member of a structure or an element of an array.
(However, these uses are permitted by GCC as extensions.)

GCC versions before 3.0 allowed zero-length arrays to be statically initialized, as if they
were flexible arrays. In addition to those cases that were useful, it also allowed initializations
in situations that would corrupt later data. Non-empty initialization of zero-length arrays is
now treated like any case where there are more initializer elements than the array holds, in
that a suitable warning about "excess elements in array" is given, and the excess elements
(all of them, in this case) are ignored.

Instead GCC allows static initialization of flexible array members. This is equivalent to
defining a new structure containing the original structure followed by an array of sufficient
size to contain the data. l.e. in the following, £1 is constructed as if it were declared like
f2.

struct f1 {

int x; int y[];
yf1=4{1, {2, 3,41} }

struct £2 {
struct f1 f1; int datal[3];
rf2={{1} {2,3, 4%} 1}
The convenience of this extension is that £1 has the desired type, eliminating the need to
consistently refer to £2.f1.

This has symmetry with normal static arrays, in that an array of unknown size is also
written with [].

Of course, this extension only makes sense if the extra data comes at the end of a top-level
object, as otherwise we would be overwriting data at subsequent offsets. To avoid undue
complication and confusion with initialization of deeply nested arrays, we simply disallow
any non-empty initialization except when the structure is the top-level object. For example:

236 Using the GNU Compiler Collection (GCC)

oy

struct foo { int x; int y[1; };

struct bar { struct foo z; };

struct fooa={1, {2, 3, 4 } }; // Valid.
struct bar b={ {1, {2, 3, 4%} 1} }; // Invalid.
struct bar ¢ = { {1, { } } }; // Valid.
struct foo d[1] = { {1 {2, 3, 4} } }; // Invalid.

5.13 Structures With No Members

GCC permits a C structure to have no members:
struct empty {
};
The structure will have size zero. In C++, empty structures are part of the language. G++
treats empty structures as if they had a single member of type char.

5.14 Arrays of Variable Length

Variable-length automatic arrays are allowed in ISO C99, and as an extension GCC accepts
them in C89 mode and in C++. (However, GCC’s implementation of variable-length arrays
does not yet conform in detail to the ISO C99 standard.) These arrays are declared like any
other automatic arrays, but with a length that is not a constant expression. The storage
is allocated at the point of declaration and deallocated when the brace-level is exited. For
example:

FILE *
concat_fopen (char *sl, char *s2, char *mode)

{
char str[strlen (sl1) + strlemn (s2) + 1];
strcpy (str, si);
strcat (str, s2);
return fopen (str, mode);

}
Jumping or breaking out of the scope of the array name deallocates the storage. Jumping
into the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The
function alloca is available in many other C implementations (but not in all). On the
other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca
exists until the containing function returns. The space for a variable-length array is deal-
located as soon as the array name’s scope ends. (If you use both variable-length arrays
and alloca in the same function, deallocation of a variable-length array will also deallocate
anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char datal[len] [len])
{
/* ... %/
}

The length of an array is computed once when the storage is allocated and is remembered
for the scope of the array in case you access it with sizeof.

Chapter 5: Extensions to the C Language Family 237

If you want to pass the array first and the length afterward, you can use a forward
declaration in the parameter list—another GNU extension.

struct entry
tester (int len; char datal[len][len], int len)
{
/*x ... %/
}
The ‘int len’ before the semicolon is a parameter forward declaration, and it serves the

purpose of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter list.
They can be separated by commas or semicolons, but the last one must end with a semicolon,
which is followed by the “real” parameter declarations. Each forward declaration must
match a “real” declaration in parameter name and data type. ISO C99 does not support
parameter forward declarations.

5.15 Macros with a Variable Number of Arguments.

In the ISO C standard of 1999, a macro can be declared to accept a variable number of
arguments much as a function can. The syntax for defining the macro is similar to that of
a function. Here is an example:

#define debug(format, ...) fprintf (stderr, format VA_ARGS__)

Here is a variable argument. In the invocation of such a macro, it represents the
zero or more tokens until the closing parenthesis that ends the invocation, including any
commas. This set of tokens replaces the identifier __VA_ARGS__ in the macro body wherever
it appears. See the CPP manual for more information.

| J——

4 ?

GCC has long supported variadic macros, and used a different syntax that allowed you
to give a name to the variable arguments just like any other argument. Here is an example:
#define debug(format, args...) fprintf (stderr, format, args)
This is in all ways equivalent to the ISO C example above, but arguably more readable
and descriptive.
GNU CPP has two further variadic macro extensions, and permits them to be used with
either of the above forms of macro definition.

In standard C, you are not allowed to leave the variable argument out entirely; but you
are allowed to pass an empty argument. For example, this invocation is invalid in ISO C,
because there is no comma after the string:

debug ("A message")

GNU CPP permits you to completely omit the variable arguments in this way. In the
above examples, the compiler would complain, though since the expansion of the macro still
has the extra comma after the format string.

To help solve this problem, CPP behaves specially for variable arguments used with the

token paste operator, ‘##’. If instead you write
#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)

and if the variable arguments are omitted or empty, the ‘## operator causes the pre-
processor to remove the comma before it. If you do provide some variable arguments in
your macro invocation, GNU CPP does not complain about the paste operation and instead
places the variable arguments after the comma. Just like any other pasted macro argument,
these arguments are not macro expanded.

238 Using the GNU Compiler Collection (GCC)

5.16 Slightly Looser Rules for Escaped Newlines

Recently, the preprocessor has relaxed its treatment of escaped newlines. Previously, the
newline had to immediately follow a backslash. The current implementation allows white-
space in the form of spaces, horizontal and vertical tabs, and form feeds between the back-
slash and the subsequent newline. The preprocessor issues a warning, but treats it as a valid
escaped newline and combines the two lines to form a single logical line. This works within
comments and tokens, as well as between tokens. Comments are not treated as whitespace
for the purposes of this relaxation, since they have not yet been replaced with spaces.

5.17 Non-Lvalue Arrays May Have Subscripts

In ISO C99, arrays that are not Ivalues still decay to pointers, and may be subscripted,
although they may not be modified or used after the next sequence point and the unary
‘&’ operator may not be applied to them. As an extension, GCC allows such arrays to
be subscripted in C89 mode, though otherwise they do not decay to pointers outside C99
mode. For example, this is valid in GNU C though not valid in C89:

struct foo {int al[4];};

struct foo f();

bar (int index)
{
return f().a[index];

}

5.18 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on
pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and
returns 1.

The option ‘~Wpointer-arith’ requests a warning if these extensions are used.

5.19 Non-Constant Initializers

As in standard C++ and ISO C99, the elements of an aggregate initializer for an automatic
variable are not required to be constant expressions in GNU C. Here is an example of an
initializer with run-time varying elements:

foo (float f, float g)

{
float beat_fregs[2] = { f-g, f+g };
VAT Y

}

5.20 Compound Literals

ISO C99 supports compound literals. A compound literal looks like a cast containing an
initializer. Its value is an object of the type specified in the cast, containing the elements
specified in the initializer; it is an Ivalue. As an extension, GCC supports compound literals
in C89 mode and in C++.

Chapter 5: Extensions to the C Language Family 239

Usually, the specified type is a structure. Assume that struct foo and structure are
declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a compound literal:

structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:

¢ struct foo temp = {x + y, ’a’, 0};
structure = temp;
}

You can also construct an array. If all the elements of the compound literal are (made
up of) simple constant expressions, suitable for use in initializers of objects of static storage
duration, then the compound literal can be coerced to a pointer to its first element and
used in such an initializer, as shown here:

char **foo = (char *[]) { "x", ny.u’ "z},

Compound literals for scalar types and union types are is also allowed, but then the
compound literal is equivalent to a cast.

As a GNU extension, GCC allows initialization of objects with static storage duration
by compound literals (which is not possible in ISO C99, because the initializer is not a
constant). Tt is handled as if the object was initialized only with the bracket enclosed list if
the types of the compound literal and the object match. The initializer list of the compound
literal must be constant. If the object being initialized has array type of unknown size, the
size is determined by compound literal size.

static struct foo x = (struct foo) {1, ’a’, ’b’};
static int y[] = (int [1) {1, 2, 3};
static int z[] = (int [3]) {1};

The above lines are equivalent to the following:

static struct foo x = {1, ’a’, ’b’};
static int y[1 = {1, 2, 3};
static int z[] = {1, 0, 0};

5.21 Designated Initializers

Standard C89 requires the elements of an initializer to appear in a fixed order, the same as
the order of the elements in the array or structure being initialized.

In ISO C99 you can give the elements in any order, specifying the array indices or structure
field names they apply to, and GNU C allows this as an extension in C89 mode as well.
This extension is not implemented in GNU C++.

To specify an array index, write ‘[index] =’ before the element value. For example,

int al6] = { [4] = 29, [2] = 156 };
is equivalent to

int al[6] = { 0, 0, 15, 0, 29, 0 };
The index values must be constant expressions, even if the array being initialized is auto-
matic.

An alternative syntax for this which has been obsolete since GCC 2.5 but GCC still
accepts is to write ‘[index]’ before the element value, with no ‘=’.

240 Using the GNU Compiler Collection (GCC)

To initialize a range of elements to the same value, write ‘[first ... last] = value’.
This is a GNU extension. For example,
int widths[] = { [0 ... 9] =1, [10 ... 99] = 2, [100] = 3 };

If the value in it has side-effects, the side-effects will happen only once, not for each initial-
ized field by the range initializer.
Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize with ‘. fieldname =’

before the element value. For example, given the following structure,
struct point { int x, y; };

the following initialization

struct point p = { .y = yvalue, .x = xvalue };

is equivalent to

struct point p = { xvalue, yvalue };

Another syntax which has the same meaning, obsolete since GCC 2.5, is ‘fieldname :’,
as shown here:

struct point p = { y: yvalue, x: xvalue };

The ‘[index]’ or ‘. fieldname’ is known as a designator. You can also use a designator
(or the obsolete colon syntax) when initializing a union, to specify which element of the
union should be used. For example,

union foo { int i; double d; };

union foo £ = { .d = 4 };

will convert 4 to a double to store it in the union using the second element. By contrast,
casting 4 to type union foo would store it into the union as the integer i, since it is an
integer. (See Section 5.23 [Cast to Union], page 241.)

You can combine this technique of naming elements with ordinary C initialization of
successive elements. FEach initializer element that does not have a designator applies to the
next consecutive element of the array or structure. For example,

int af6] = { [1] = v1, v2, [4] = v4 };

is equivalent to
int al[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are
characters or belong to an enum type. For example:

int whitespace[256]
={["°]=1, ’\t’1 =1, [’\k’] =1,
[\f’1 =1, [’\n’]1 =1, [’\r’] =1 };

You can also write a series of ‘.fieldname’ and ‘[index]’ designators before an ‘=" to
specify a nested subobject to initialize; the list is taken relative to the subobject correspond-
ing to the closest surrounding brace pair. For example, with the ‘struct point’ declaration
above:

struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };
If the same field is initialized multiple times, it will have value from the last initialization.

If any such overridden initialization has side-effect, it is unspecified whether the side-effect
happens or not. Currently, GCC will discard them and issue a warning.

Chapter 5: Extensions to the C Language Family 241

5.22 Case Ranges

You can specify a range of consecutive values in a single case label, like this:
case low ... high:
This has the same effect as the proper number of individual case labels, one for each integer
value from low to high, inclusive.
This feature is especially useful for ranges of ASCII character codes:
case A’ ... ’Z’:
Be careful: Write spaces around the . . ., for otherwise it may be parsed wrong when you
use it with integer values. For example, write this:

case 1 ... b:

rather than this:

case 1...5:

5.23 Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union type.
You can specify the type either with union tag or with a typedef name. A cast to union
is actually a constructor though, not a cast, and hence does not yield an lvalue like normal
casts. (See Section 5.20 [Compound Literals|, page 238.)

The types that may be cast to the union type are those of the members of the union.
Thus, given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable of union type is
equivalent to storing in a member of the union:
union foo u;
VAT Y
u = (union foo) x
u = (union foo) y

u.i
u.d

X
y

You can also use the union cast as a function argument:

void hack (union foo);
/x ... %/

hack ((union foo) x);

5.24 Mixed Declarations and Code

ISO C99 and ISO C++ allow declarations and code to be freely mixed within compound
statements. As an extension, GCC also allows this in C89 mode. For example, you could
do:

int i;

/* ... %/

i++;

int j =1 + 2;

Each identifier is visible from where it is declared until the end of the enclosing block.

242 Using the GNU Compiler Collection (GCC)

5.25 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help
the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making
a declaration. This keyword is followed by an attribute specification inside double
parentheses. The following attributes are currently defined for functions on all targets:
noreturn, returns_twice, noinline, always_inline, flatten, pure, const, nothrow,
sentinel, format, format_arg, no_instrument_function, section, constructor,
destructor, used, unused, deprecated, weak, malloc, alias, warn_unused_result,
nonnull, gnu_inline and externally_visible. Several other attributes are defined for
functions on particular target systems. Other attributes, including section are supported
for variables declarations (see Section 5.32 [Variable Attributes]|, page 261) and for types
(see Section 5.33 [Type Attributes], page 268).

You may also specify attributes with ‘__’ preceding and following each keyword. This
allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __noreturn__ instead of noreturn.

See Section 5.26 [Attribute Syntax|, page 256, for details of the exact syntax for using
attributes.

alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified. For instance,

void __f () { /* Do something. */; }
void £ () attribute ((weak, alias ("__f")));

defines ‘£’ to be a weak alias for ‘__f’. In C++, the mangled name for the target
must be used. It is an error if ‘__£’ is not defined in the same translation unit.

Not all target machines support this attribute.

always_inline
Generally, functions are not inlined unless optimization is specified. For func-
tions declared inline, this attribute inlines the function even if no optimization
level was specified.

gnu_inline
This attribute should be used with a function which is also declared with the
inline keyword. It directs GCC to treat the function as if it were defined in
gnu89 mode even when compiling in C99 or gnu99 mode.

If the function is declared extern, then this definition of the function is used
only for inlining. In no case is the function compiled as a standalone function,
not even if you take its address explicitly. Such an address becomes an external
reference, as if you had only declared the function, and had not defined it. This
has almost the effect of a macro. The way to use this is to put a function
definition in a header file with this attribute, and put another copy of the
function, without extern, in a library file. The definition in the header file
will cause most calls to the function to be inlined. If any uses of the function
remain, they will refer to the single copy in the library. Note that the two

Chapter 5: Extensions to the C Language Family 243

flatten

cdecl

const

definitions of the functions need not be precisely the same, although if they do
not have the same effect your program may behave oddly.

If the function is neither extern nor static, then the function is compiled as
a standalone function, as well as being inlined where possible.

This is how GCC traditionally handled functions declared inline. Since ISO
(99 specifies a different semantics for inline, this function attribute is provided
as a transition measure and as a useful feature in its own right. This attribute
is available in GCC 4.1.3 and later. It is available if either of the preproces-
sor macros __GNUC_GNU_INLINE__ or __GNUC_STDC_INLINE__ are defined. See
Section 5.34 [An Inline Function is As Fast As a Macro], page 273.

Note that since the first version of GCC to support C99 inline semantics is 4.3,
earlier versions of GCC which accept this attribute effectively assume that it
is always present, whether or not it is given explicitly. In versions prior to 4.3,
the only effect of explicitly including it is to disable warnings about using inline
functions in C99 mode.

Generally, inlining into a function is limited. For a function marked with this
attribute, every call inside this function will be inlined, if possible. Whether
the function itself is considered for inlining depends on its size and the current
inlining parameters. The flatten attribute only works reliably in unit-at-a-
time mode.

On the Intel 386, the cdecl attribute causes the compiler to assume that the
calling function will pop off the stack space used to pass arguments. This is
useful to override the effects of the ‘-mrtd’ switch.

Many functions do not examine any values except their arguments, and have
no effects except the return value. Basically this is just slightly more strict
class than the pure attribute below, since function is not allowed to read global
memory.
Note that a function that has pointer arguments and examines the data pointed
to must not be declared const. Likewise, a function that calls a non-const
function usually must not be const. It does not make sense for a const function
to return void.
The attribute const is not implemented in GCC versions earlier than 2.5. An
alternative way to declare that a function has no side effects, which works in
the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that the ‘const’ must be attached to the return value.

constructor

destructor

constructor (priority)
destructor (priority)

The constructor attribute causes the function to be called automatically be-
fore execution enters main (). Similarly, the destructor attribute causes the

244

deprecated

dllexport

Using the GNU Compiler Collection (GCC)

function to be called automatically after main () has completed or exit () has
been called. Functions with these attributes are useful for initializing data that
will be used implicitly during the execution of the program.

You may provide an optional integer priority to control the order in which
constructor and destructor functions are run. A constructor with a smaller
priority number runs before a constructor with a larger priority number; the
opposite relationship holds for destructors. So, if you have a constructor that
allocates a resource and a destructor that deallocates the same resource, both
functions typically have the same priority. The priorities for constructor and
destructor functions are the same as those specified for namespace-scope C++
objects (see Section 6.7 [C++ Attributes|, page 475).

These attributes are not currently implemented for Objective-C.

The deprecated attribute results in a warning if the function is used anywhere
in the source file. This is useful when identifying functions that are expected
to be removed in a future version of a program. The warning also includes the
location of the declaration of the deprecated function, to enable users to easily
find further information about why the function is deprecated, or what they
should do instead. Note that the warnings only occurs for uses:

int old_fn () attribute ((deprecated));

int old_fn QO;
int (*fn_ptr) () = old_fn;

results in a warning on line 3 but not line 2.

The deprecated attribute can also be used for variables and types (see Sec-
tion 5.32 [Variable Attributes], page 261, see Section 5.33 [Type Attributes],
page 268.)

On Microsoft Windows targets and Symbian OS targets the dllexport at-
tribute causes the compiler to provide a global pointer to a pointer in a DLL,
so that it can be referenced with the d1limport attribute. On Microsoft Win-
dows targets, the pointer name is formed by combining _imp__ and the function
or variable name.

You can use __declspec(dllexport) as a synonym for __attribute_

((d1llexport)) for compatibility with other compilers.

On systems that support the visibility attribute, this attribute also implies
“default” visibility. It is an error to explicitly specify any other visibility.
Currently, the dllexport attribute is ignored for inlined functions, unless the
‘~fkeep-inline-functions’ flag has been used. The attribute is also ignored
for undefined symbols.

When applied to C++ classes, the attribute marks defined non-inlined member
functions and static data members as exports. Static consts initialized in-class
are not marked unless they are also defined out-of-class.

For Microsoft Windows targets there are alternative methods for including the
symbol in the DLL’s export table such as using a ‘.def’ file with an EXPORTS
section or, with GNU 1d, using the ‘--export-all’ linker flag.

Chapter 5: Extensions to the C Language Family 245

dllimport

On Microsoft Windows and Symbian OS targets, the dllimport attribute
causes the compiler to reference a function or variable via a global pointer
to a pointer that is set up by the DLL exporting the symbol. The attribute
implies extern. On Microsoft Windows targets, the pointer name is formed by
combining _imp__ and the function or variable name.

You can use __declspec(dllimport) as a synonym for __attribute__
((d11limport)) for compatibility with other compilers.

On systems that support the visibility attribute, this attribute also implies
“default” visibility. It is an error to explicitly specify any other visibility.
Currently, the attribute is ignored for inlined functions. If the attribute is ap-
plied to a symbol definition, an error is reported. If a symbol previously declared
dllimport is later defined, the attribute is ignored in subsequent references,
and a warning is emitted. The attribute is also overridden by a subsequent
declaration as d1lexport.

When applied to C++ classes, the attribute marks non-inlined member functions
and static data members as imports. However, the attribute is ignored for
virtual methods to allow creation of vtables using thunks.

On the SH Symbian OS target the d11limport attribute also has another affect—
it can cause the vtable and run-time type information for a class to be exported.
This happens when the class has a dllimport’ed constructor or a non-inline, non-
pure virtual function and, for either of those two conditions, the class also has
a inline constructor or destructor and has a key function that is defined in the
current translation unit.

For Microsoft Windows based targets the use of the d1limport attribute on
functions is not necessary, but provides a small performance benefit by elimi-
nating a thunk in the DLL. The use of the d1limport attribute on imported
variables was required on older versions of the GNU linker, but can now be
avoided by passing the ‘--enable-auto-import’ switch to the GNU linker. As
with functions, using the attribute for a variable eliminates a thunk in the DLL.
One drawback to using this attribute is that a pointer to a function or variable
marked as dllimport cannot be used as a constant address. On Microsoft
Windows targets, the attribute can be disabled for functions by setting the
‘-mnop-fun-dllimport’ flag.

eightbit_data

Use this attribute on the H8/300, H8/300H, and HS8S to indicate that the
specified variable should be placed into the eight bit data section. The compiler
will generate more efficient code for certain operations on data in the eight bit
data area. Note the eight bit data area is limited to 256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for this
attribute to work correctly.

exception_handler

Use this attribute on the Blackfin to indicate that the specified function is an
exception handler. The compiler will generate function entry and exit sequences
suitable for use in an exception handler when this attribute is present.

246

far

fastcall

Using the GNU Compiler Collection (GCC)

On 68HC11 and 68HC12 the far attribute causes the compiler to use a call-
ing convention that takes care of switching memory banks when entering and
leaving a function. This calling convention is also the default when using the
‘-mlong-calls’ option.
On 68HC12 the compiler will use the call and rtc instructions to call and
return from a function.

On 68HCI11 the compiler will generate a sequence of instructions to invoke a
board-specific routine to switch the memory bank and call the real function.
The board-specific routine simulates a call. At the end of a function, it will
jump to a board-specific routine instead of using rts. The board-specific return
routine simulates the rtc.

On the Intel 386, the fastcall attribute causes the compiler to pass the first
argument (if of integral type) in the register ECX and the second argument (if
of integral type) in the register EDX. Subsequent and other typed arguments
are passed on the stack. The called function will pop the arguments off the
stack. If the number of arguments is variable all arguments are pushed on the
stack.

format (archetype, string-index, first-to-check)

The format attribute specifies that a function takes printf, scanf, strftime
or strfmon style arguments which should be type-checked against a format
string. For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)
__attribute ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency
with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and
should be printf, scanf, strftime or strfmon. (You can also use __printf_
_, __scanf strftime__ or __strfmon__.) The parameter string-index
specifies which argument is the format string argument (starting from 1), while
first-to-check is the number of the first argument to check against the format
string. For functions where the arguments are not available to be checked (such
as vprintf), specify the third parameter as zero. In this case the compiler
only checks the format string for consistency. For strftime formats, the third
parameter is required to be zero. Since non-static C++ methods have an implicit
this argument, the arguments of such methods should be counted from two,
not one, when giving values for string-index and first-to-check.

—_ ==

In the example above, the format string (my_format) is the second argument
of the function my_print, and the arguments to check start with the third
argument, so the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take
format strings as arguments, so that GCC can check the calls to these functions
for errors. The compiler always (unless ‘~ffreestanding’ or ‘~fno-builtin’
is used) checks formats for the standard library functions printf, fprintf,
sprintf, scanf, fscanf, sscanf, strftime, vprintf, vfprintf and vsprintf

Chapter 5: Extensions to the C Language Family 247

whenever such warnings are requested (using ‘-Wformat’), so there is no need
to modify the header file ‘stdio.h’. In C99 mode, the functions snprintf,
vsnprintf, vscanf, vfscanf and vsscanf are also checked. Except in strictly
conforming C standard modes, the X/Open function strfmon is also checked
as are printf_unlocked and fprintf_unlocked. See Section 3.4 [Options
Controlling C Dialect], page 22.

=

The target may provide additional types of format checks. See Section 5.49
[Format Checks Specific to Particular Target Machines|, page 459.

format_arg (string-index)
The format_arg attribute specifies that a function takes a format string for
a printf, scanf, strftime or strfmon style function and modifies it (for ex-
ample, to translate it into another language), so the result can be passed to
a printf, scanf, strftime or strfmon style function (with the remaining ar-
guments to the format function the same as they would have been for the
unmodified string). For example, the declaration:
extern char *

my_dgettext (char *my_domain, const char *my_format)
__attribute__ ((format_arg (2)));

causes the compiler to check the arguments in calls to a printf, scanf,
strftime or strfmon type function, whose format string argument is a
call to the my_dgettext function, for consistency with the format string
argument my_format. If the format_arg attribute had not been specified, all
the compiler could tell in such calls to format functions would be that the
format string argument is not constant; this would generate a warning when
‘~Wformat-nonliteral’ is used, but the calls could not be checked without
the attribute.

The parameter string-index specifies which argument is the format string argu-
ment (starting from one). Since non-static C++ methods have an implicit this
argument, the arguments of such methods should be counted from two.

The format-arg attribute allows you to identify your own functions which
modify format strings, so that GCC can check the calls to printf, scanf,
strftime or strfmon type function whose operands are a call to one of your
own function. The compiler always treats gettext, dgettext, and dcgettext
in this manner except when strict ISO C support is requested by ‘~ansi’ or an
appropriate ‘-std’ option, or ‘~-ffreestanding’ or ‘~fno-builtin’ is used. See
Section 3.4 [Options Controlling C Dialect], page 22.

function_vector
Use this attribute on the H8/300, H8/300H, and HS8S to indicate that the spec-
ified function should be called through the function vector. Calling a function
through the function vector will reduce code size, however; the function vector
has a limited size (maximum 128 entries on the H8/300 and 64 entries on the
H8/300H and H8S) and shares space with the interrupt vector.

You must use GAS and GLD from GNU binutils version 2.7 or later for this
attribute to work correctly.

248

interrupt

interrupt_

interrupt_

kspisusp

Using the GNU Compiler Collection (GCC)

Use this attribute on the ARM, AVR, C4x, CRX, M32C, M32R/D, m68k, MS1,
and Xstormyl6 ports to indicate that the specified function is an interrupt
handler. The compiler will generate function entry and exit sequences suitable
for use in an interrupt handler when this attribute is present.

Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, and SH pro-
cessors can be specified via the interrupt_handler attribute.

Note, on the AVR, interrupts will be enabled inside the function.

Note, for the ARM, you can specify the kind of interrupt to be handled by
adding an optional parameter to the interrupt attribute like this:
void £ () attribute ((interrupt ("IRQ")));

Permissible values for this parameter are: 1RQ, FIQ, SWI, ABORT and UN-
DEF.

handler

Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH
to indicate that the specified function is an interrupt handler. The compiler
will generate function entry and exit sequences suitable for use in an interrupt
handler when this attribute is present.

thread

Use this attribute on fido, a subarchitecture of the m68k, to indicate that the
specified function is an interrupt handler that is designed to run as a thread.
The compiler omits generate prologue/epilogue sequences and replaces the re-

turn instruction with a sleep instruction. This attribute is available only on
fido.

When used together with interrupt_handler, exception_handler or nmi_
handler, code will be generated to load the stack pointer from the USP register
in the function prologue.

long_call/short_call

This attribute specifies how a particular function is called on ARM. Both
attributes override the ‘-mlong-calls’ (see Section 3.17.2 [ARM Options],
page 122) command line switch and #pragma long_calls settings. The long_
call attribute indicates that the function might be far away from the call site
and require a different (more expensive) calling sequence. The short_call at-
tribute always places the offset to the function from the call site into the ‘BL’
instruction directly.

longcall/shortcall

On the Blackfin, RS/6000 and PowerPC, the longcall attribute indicates that
the function might be far away from the call site and require a different (more
expensive) calling sequence. The shortcall attribute indicates that the func-
tion is always close enough for the shorter calling sequence to be used. These
attributes override both the ‘-mlongcall’ switch and, on the RS/6000 and
PowerPC, the #pragma longcall setting.

See Section 3.17.27 [RS/6000 and PowerPC Options], page 176, for more infor-
mation on whether long calls are necessary.

Chapter 5: Extensions to the C Language Family 249

long_call/near/far

malloc

These attributes specify how a particular function is called on MIPS. The
attributes override the ‘-mlong-calls’ (see Section 3.17.21 [MIPS Options],
page 165) command-line switch. The long_call and far attributes are syn-
onyms, and cause the compiler to always call the function by first loading its
address into a register, and then using the contents of that register. The near
attribute has the opposite effect; it specifies that non-PIC calls should be made
using the more efficient jal instruction.

The malloc attribute is used to tell the compiler that a function may be treated
as if any non-NULL pointer it returns cannot alias any other pointer valid when
the function returns. This will often improve optimization. Standard functions
with this property include malloc and calloc. realloc-like functions have this
property as long as the old pointer is never referred to (including comparing it
to the new pointer) after the function returns a non-NULL value.

model (model-name)

naked

near

On the M32R/D, use this attribute to set the addressability of an object, and of
the code generated for a function. The identifier model-name is one of small,
medium, or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the 1d24 instruction), and are callable with the bl instruc-
tion.

Medium model objects may live anywhere in the 32-bit address space (the
compiler will generate seth/add3 instructions to load their addresses), and are
callable with the bl instruction.

Large model objects may live anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and may not be
reachable with the bl instruction (the compiler will generate the much slower
seth/add3/j1 instruction sequence).

On TA-64, use this attribute to set the addressability of an object. At present,
the only supported identifier for model-name is small, indicating addressabil-
ity via “small” (22-bit) addresses (so that their addresses can be loaded with
the addl instruction). Caveat: such addressing is by definition not position
independent and hence this attribute must not be used for objects defined by
shared libraries.

Use this attribute on the ARM, AVR, C4x and IP2K ports to indicate that
the specified function does not need prologue/epilogue sequences generated by
the compiler. Tt is up to the programmer to provide these sequences. The only
statements that can be safely included in naked functions are asm statements
that do not have operands. All other statements, including declarations of local
variables, if statements, and so forth, should be avoided. Naked functions
should be used to implement the body of an assembly function, while allowing
the compiler to construct the requisite function declaration for the assembler.

On 68HCI11 and 68HC12 the near attribute causes the compiler to use the
normal calling convention based on jsr and rts. This attribute can be used to
cancel the effect of the ‘-mlong-calls’ option.

250 Using the GNU Compiler Collection (GCC)

nesting Use this attribute together with interrupt_handler, exception_handler or
nmi_handler to indicate that the function entry code should enable nested
interrupts or exceptions.

nmi_handler
Use this attribute on the Blackfin to indicate that the specified function is an
NMI handler. The compiler will generate function entry and exit sequences
suitable for use in an NMI handler when this attribute is present.

no_instrument_function
If ‘-finstrument-functions’ is given, profiling function calls will be generated
at entry and exit of most user-compiled functions. Functions with this attribute
will not be so instrumented.

noinline This function attribute prevents a function from being considered for inlining.

nonnull (arg-index, ...)
The nonnull attribute specifies that some function parameters should be non-
null pointers. For instance, the declaration:

extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull (1, 2)));

causes the compiler to check that, in calls to my_memcpy, arguments dest and
src¢ are non-null. If the compiler determines that a null pointer is passed in
an argument slot marked as non-null, and the ‘~Wnonnull’ option is enabled, a
warning is issued. The compiler may also choose to make optimizations based
on the knowledge that certain function arguments will not be null.

If no argument index list is given to the nonnull attribute, all pointer arguments
are marked as non-null. To illustrate, the following declaration is equivalent to
the previous example:

extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull));

noreturn A few standard library functions, such as abort and exit, cannot return. GCC
knows this automatically. Some programs define their own functions that never
return. You can declare them noreturn to tell the compiler this fact. For
example,
void fatal () attribute ((noreturn)) ;

void

fatal (/* ... */)

{
/* ... %/ /* Print error message. */ /* ... x/
exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot return.
It can then optimize without regard to what would happen if fatal ever did
return. This makes slightly better code. More importantly, it helps avoid
spurious warnings of uninitialized variables.

Chapter 5: Extensions to the C Language Family 251

nothrow

pure

The noreturn keyword does not affect the exceptional path when that applies:
a noreturn-marked function may still return to the caller by throwing an ex-
ception or calling longjmp.

Do not assume that registers saved by the calling function are restored before
calling the noreturn function.

It does not make sense for a noreturn function to have a return type other
than void.

The attribute noreturn is not implemented in GCC versions earlier than 2.5.
An alternative way to declare that a function does not return, which works in
the current version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

This approach does not work in GNU C++.

The nothrow attribute is used to inform the compiler that a function cannot
throw an exception. For example, most functions in the standard C library can
be guaranteed not to throw an exception with the notable exceptions of gsort
and bsearch that take function pointer arguments. The nothrow attribute is
not implemented in GCC versions earlier than 3.3.

Many functions have no effects except the return value and their return value
depends only on the parameters and/or global variables. Such a function can
be subject to common subexpression elimination and loop optimization just as
an arithmetic operator would be. These functions should be declared with the
attribute pure. For example,

int square (int) __attribute__ ((pure));
says that the hypothetical function square is safe to call fewer times than the
program says.
Some of common examples of pure functions are strlen or memcmp. Inter-
esting non-pure functions are functions with infinite loops or those depending
on volatile memory or other system resource, that may change between two
consecutive calls (such as feof in a multithreading environment).

The attribute pure is not implemented in GCC versions earlier than 2.96.

regparm (number)

On the Intel 386, the regparm attribute causes the compiler to pass arguments
number one to number if they are of integral type in registers EAX, EDX,
and ECX instead of on the stack. Functions that take a variable number of
arguments will continue to be passed all of their arguments on the stack.

Beware that on some ELF systems this attribute is unsuitable for global func-
tions in shared libraries with lazy binding (which is the default). Lazy binding
will send the first call via resolving code in the loader, which might assume
EAX, EDX and ECX can be clobbered, as per the standard calling conven-
tions. Solaris 8 is affected by this. GNU systems with GLIBC 2.1 or higher,
and FreeBSD, are believed to be safe since the loaders there save all registers.
(Lazy binding can be disabled with the linker or the loader if desired, to avoid
the problem.)

252 Using the GNU Compiler Collection (GCC)

sseregparm
On the Intel 386 with SSE support, the sseregparm attribute causes the com-
piler to pass up to 3 floating point arguments in SSE registers instead of on
the stack. Functions that take a variable number of arguments will continue to
pass all of their floating point arguments on the stack.

force_align_arg_pointer

On the Intel x86, the force_align_arg_pointer attribute may be applied to
individual function definitions, generating an alternate prologue and epilogue
that realigns the runtime stack. This supports mixing legacy codes that run
with a 4-byte aligned stack with modern codes that keep a 16-byte stack for
SSE compatibility. The alternate prologue and epilogue are slower and bigger
than the regular ones, and the alternate prologue requires a scratch register;
this lowers the number of registers available if used in conjunction with the
regparm attribute. The force_align_arg_pointer attribute is incompatible
with nested functions; this is considered a hard error.

returns_twice
The returns_twice attribute tells the compiler that a function may return
more than one time. The compiler will ensure that all registers are dead before
calling such a function and will emit a warning about the variables that may be
clobbered after the second return from the function. Examples of such functions
are setjmp and vfork. The longjmp-like counterpart of such function, if any,
might need to be marked with the noreturn attribute.

saveall Use this attribute on the Blackfin, H8/300, H8/300H, and HS8S to indicate that
all registers except the stack pointer should be saved in the prologue regardless
of whether they are used or not.

section ("section-name")
Normally, the compiler places the code it generates in the text section. Some-
times, however, you need additional sections, or you need certain particular
functions to appear in special sections. The section attribute specifies that a
function lives in a particular section. For example, the declaration:

extern void foobar (void) __attribute__ ((section ("bar")));
puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

sentinel This function attribute ensures that a parameter in a function call is an explicit
NULL. The attribute is only valid on variadic functions. By default, the sentinel
is located at position zero, the last parameter of the function call. If an optional
integer position argument P is supplied to the attribute, the sentinel must be
located at position P counting backwards from the end of the argument list.
__attribute__ ((sentinel))

is equivalent to
__attribute__ ((sentinel(0)))

Chapter 5: Extensions to the C Language Family 253

short_call

shortcall

signal

sp_switch

stdcall

tiny_data

trap_exit

unused

used

The attribute is automatically set with a position of 0 for the built-in functions
execl and execlp. The built-in function execle has the attribute set with a
position of 1.

A valid NULL in this context is defined as zero with any pointer type. If your
system defines the NULL macro with an integer type then you need to add
an explicit cast. GCC replaces stddef.h with a copy that redefines NULL
appropriately.

The warnings for missing or incorrect sentinels are enabled with ‘~-Wformat’.
See long_call/short_call.

See longcall/shortcall.

Use this attribute on the AVR to indicate that the specified function is a signal
handler. The compiler will generate function entry and exit sequences suitable
for use in a signal handler when this attribute is present. Interrupts will be
disabled inside the function.

Use this attribute on the SH to indicate an interrupt_handler function should
switch to an alternate stack. It expects a string argument that names a global
variable holding the address of the alternate stack.

void *alt_stack;

void £ () __attribute__ ((interrupt_handler,

sp_switch ("alt_stack")));

On the Intel 386, the stdcall attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless it
takes a variable number of arguments.

Use this attribute on the H8/300H and H8S to indicate that the specified vari-
able should be placed into the tiny data section. The compiler will generate
more efficient code for loads and stores on data in the tiny data section. Note
the tiny data area is limited to slightly under 32kbytes of data.

Use this attribute on the SH for an interrupt_handler to return using trapa
instead of rte. This attribute expects an integer argument specifying the trap
number to be used.

This attribute, attached to a function, means that the function is meant to be
possibly unused. GCC will not produce a warning for this function.

This attribute, attached to a function, means that code must be emitted for the
function even if it appears that the function is not referenced. This is useful,
for example, when the function is referenced only in inline assembly.

visibility ("visibility_type")

This attribute affects the linkage of the declaration to which it is attached.
There are four supported visibility_type values: default, hidden, protected or
internal visibility.

254 Using the GNU Compiler Collection (GCC)

void __attribute__ ((visibility ("protected")))

f () { /* Do something. */; }

int i __attribute__ ((visibility ("hidden")));
The possible values of visibility_type correspond to the visibility settings in the
ELF gABI.

default Default visibility is the normal case for the object file format. This
value is available for the visibility attribute to override other options
that may change the assumed visibility of entities.

On ELF, default visibility means that the declaration is visible to
other modules and, in shared libraries, means that the declared
entity may be overridden.

On Darwin, default visibility means that the declaration is visible
to other modules.

Default visibility corresponds to “external linkage” in the language.

hidden Hidden visibility indicates that the entity declared will have a new
form of linkage, which we’ll call “hidden linkage”. Two declarations
of an object with hidden linkage refer to the same object if they
are in the same shared object.

internal Internal visibility is like hidden visibility, but with additional pro-
cessor specific semantics. Unless otherwise specified by the psABI,
GCC defines internal visibility to mean that a function is never
called from another module. Compare this with hidden functions
which, while they cannot be referenced directly by other modules,
can be referenced indirectly via function pointers. By indicating
that a function cannot be called from outside the module, GCC
may for instance omit the load of a PIC register since it is known
that the calling function loaded the correct value.

protected Protected visibility is like default visibility except that it indicates
that references within the defining module will bind to the definition
in that module. That is, the declared entity cannot be overridden
by another module.

All visibilities are supported on many, but not all, ELF targets (supported
when the assembler supports the ‘.visibility’ pseudo-op). Default visibility
is supported everywhere. Hidden visibility is supported on Darwin targets.

The visibility attribute should be applied only to declarations which would
otherwise have external linkage. The attribute should be applied consistently,
so that the same entity should not be declared with different settings of the
attribute.

In C++, the visibility attribute applies to types as well as functions and objects,
because in C++ types have linkage. A class must not have greater visibility than
its non-static data member types and bases, and class members default to the
visibility of their class. Also, a declaration without explicit visibility is limited
to the visibility of its type.

Chapter 5: Extensions to the C Language Family 255

In C++, you can mark member functions and static member variables of a class
with the visibility attribute. This is useful if if you know a particular method
or static member variable should only be used from one shared object; then you
can mark it hidden while the rest of the class has default visibility. Care must
be taken to avoid breaking the One Definition Rule; for example, it is usually
not useful to mark an inline method as hidden without marking the whole class
as hidden.

A C++ namespace declaration can also have the visibility attribute. This at-
tribute applies only to the particular namespace body, not to other definitions
of the same namespace; it is equivalent to using ‘#pragma GCC visibility’ be-
fore and after the namespace definition (see Section 5.50.10 [Visibility Pragmas],
page 463).

In C++, if a template argument has limited visibility, this restriction is implicitly
propagated to the template instantiation. Otherwise, template instantiations
and specializations default to the visibility of their template.

If both the template and enclosing class have explicit visibility, the visibility
from the template is used.

warn_unused_result
The warn_unused_result attribute causes a warning to be emitted if a caller of
the function with this attribute does not use its return value. This is useful for
functions where not checking the result is either a security problem or always
a bug, such as realloc.

int fn () __attribute
int foo ()
{
if (fn () < 0) return -1;
fn ()
return 0O;

}

results in warning on line 5.

((warn_unused_result));

weak The weak attribute causes the declaration to be emitted as a weak symbol
rather than a global. This is primarily useful in defining library functions which
can be overridden in user code, though it can also be used with non-function
declarations. Weak symbols are supported for ELF targets, and also for a.out
targets when using the GNU assembler and linker.

weakref

weakref ("target")
The weakref attribute marks a declaration as a weak reference. Without ar-
guments, it should be accompanied by an alias attribute naming the target
symbol. Optionally, the target may be given as an argument to weakref itself.
In either case, weakref implicitly marks the declaration as weak. Without a
target, given as an argument to weakref or to alias, weakref is equivalent to
weak.

static int x() __attribute__ ((weakref ("y")));
/* is equivalent to... */
static int x() __attribute__ ((weak, weakref, alias ("y")));

256 Using the GNU Compiler Collection (GCC)

/* and to... */
static int x() __attribute ((weakref));
static int x() __attribute__ ((alias ("y")));

A weak reference is an alias that does not by itself require a definition to be
given for the target symbol. If the target symbol is only referenced through
weak references, then the becomes a weak undefined symbol. If it is directly
referenced, however, then such strong references prevail, and a definition will
be required for the symbol, not necessarily in the same translation unit.

The effect is equivalent to moving all references to the alias to a separate trans-
lation unit, renaming the alias to the aliased symbol, declaring it as weak,
compiling the two separate translation units and performing a reloadable link
on them.

At present, a declaration to which weakref is attached can only be static.

externally_visible
This attribute, attached to a global variable or function nullify effect of
‘~fwhole-program’ command line option, so the object remain visible outside
the current compilation unit

You can specify multiple attributes in a declaration by separating them by commas within
the double parentheses or by immediately following an attribute declaration with another
attribute declaration.

Some people object to the __attribute__ feature, suggesting that ISO C’s #pragma
should be used instead. At the time __attribute__ was designed, there were two reasons
for not doing this.

1. It is impossible to generate #pragma commands from a macro.

2. There is no telling what the same #pragma might mean in another compiler.

These two reasons applied to almost any application that might have been proposed for
#pragma. It was basically a mistake to use #pragma for anything.

The ISO C99 standard includes _Pragma, which now allows pragmas to be generated
from macros. In addition, a #pragma GCC namespace is now in use for GCC-specific prag-
mas. However, it has been found convenient to use __attribute__ to achieve a natural
attachment of attributes to their corresponding declarations, whereas #pragma GCC is of use
for constructs that do not naturally form part of the grammar. See section “Miscellaneous
Preprocessing Directives” in The GNU C Preprocessor.

5.26 Attribute Syntax

This section describes the syntax with which __attribute__ may be used, and the con-
structs to which attribute specifiers bind, for the C language. Some details may vary for
C++ and Objective-C. Because of infelicities in the grammar for attributes, some forms
described here may not be successfully parsed in all cases.

There are some problems with the semantics of attributes in C++. For example, there
are no manglings for attributes, although they may affect code generation, so problems
may arise when attributed types are used in conjunction with templates or overloading.
Similarly, typeid does not distinguish between types with different attributes. Support for

Chapter 5: Extensions to the C Language Family 257

attributes in C++ may be restricted in future to attributes on declarations only, but not on
nested declarators.

See Section 5.25 [Function Attributes], page 242, for details of the semantics of attributes
applying to functions. See Section 5.32 [Variable Attributes|, page 261, for details of the
semantics of attributes applying to variables. See Section 5.33 [Type Attributes], page 268,
for details of the semantics of attributes applying to structure, union and enumerated types.

An attribute specifier is of the form __attribute__ ((attribute-1ist)). An attribute
list is a possibly empty comma-separated sequence of attributes, where each attribute is
one of the following:

e Empty. Empty attributes are ignored.
e A word (which may be an identifier such as unused, or a reserved word such as const).

e A word, followed by, in parentheses, parameters for the attribute. These parameters
take one of the following forms:

e An identifier. For example, mode attributes use this form.

e An identifier followed by a comma and a non-empty comma-separated list of ex-
pressions. For example, format attributes use this form.

e A possibly empty comma-separated list of expressions. For example, format_arg
attributes use this form with the list being a single integer constant expression,
and alias attributes use this form with the list being a single string constant.

An attribute specifier list is a sequence of one or more attribute specifiers, not separated
by any other tokens.

In GNU C, an attribute specifier list may appear after the colon following a label, other
than a case or default label. The only attribute it makes sense to use after a label is
unused. This feature is intended for code generated by programs which contains labels that
may be unused but which is compiled with ‘-Wall’. Tt would not normally be appropriate
to use in it human-written code, though it could be useful in cases where the code that
jumps to the label is contained within an #ifdef conditional. GNU C++ does not permit
such placement of attribute lists, as it is permissible for a declaration, which could begin
with an attribute list, to be labelled in C++. Declarations cannot be labelled in C90 or C99,
so the ambiguity does not arise there.

An attribute specifier list may appear as part of a struct, union or enum specifier. It
may go either immediately after the struct, union or enum keyword, or after the closing
brace. The former syntax is preferred. Where attribute specifiers follow the closing brace,
they are considered to relate to the structure, union or enumerated type defined, not to any
enclosing declaration the type specifier appears in, and the type defined is not complete
until after the attribute specifiers.

Otherwise, an attribute specifier appears as part of a declaration, counting declarations
of unnamed parameters and type names, and relates to that declaration (which may be
nested in another declaration, for example in the case of a parameter declaration), or to
a particular declarator within a declaration. Where an attribute specifier is applied to a
parameter declared as a function or an array, it should apply to the function or array rather
than the pointer to which the parameter is implicitly converted, but this is not yet correctly
implemented.

258 Using the GNU Compiler Collection (GCC)

Any list of specifiers and qualifiers at the start of a declaration may contain attribute
specifiers, whether or not such a list may in that context contain storage class specifiers.
(Some attributes, however, are essentially in the nature of storage class specifiers, and only
make sense where storage class specifiers may be used; for example, section.) There is one
necessary limitation to this syntax: the first old-style parameter declaration in a function
definition cannot begin with an attribute specifier, because such an attribute applies to the
function instead by syntax described below (which, however, is not yet implemented in this
case). In some other cases, attribute specifiers are permitted by this grammar but not yet
supported by the compiler. All attribute specifiers in this place relate to the declaration as
a whole. In the obsolescent usage where a type of int is implied by the absence of type
specifiers, such a list of specifiers and qualifiers may be an attribute specifier list with no
other specifiers or qualifiers.

At present, the first parameter in a function prototype must have some type specifier
which is not an attribute specifier; this resolves an ambiguity in the interpretation of void
f(int (__attribute__((foo)) %)), but is subject to change. At present, if the parenthe-
ses of a function declarator contain only attributes then those attributes are ignored, rather
than yielding an error or warning or implying a single parameter of type int, but this is
subject to change.

An attribute specifier list may appear immediately before a declarator (other than the
first) in a comma-separated list of declarators in a declaration of more than one identifier
using a single list of specifiers and qualifiers. Such attribute specifiers apply only to the
identifier before whose declarator they appear. For example, in

__attribute__((noreturn)) void d0 (void),
__attribute__((format (printf, 1, 2))) dl (const char *, ...),
d2 (void)
the noreturn attribute applies to all the functions declared; the format attribute only
applies to d1.

An attribute specifier list may appear immediately before the comma, = or semicolon
terminating the declaration of an identifier other than a function definition. At present,
such attribute specifiers apply to the declared object or function, but in future they may
attach to the outermost adjacent declarator. In simple cases there is no difference, but, for
example, in

void (****f) (void) __attribute__((noreturn));

at present the noreturn attribute applies to £, which causes a warning since f is not a
function, but in future it may apply to the function ****f. The precise semantics of what
attributes in such cases will apply to are not yet specified. Where an assembler name for
an object or function is specified (see Section 5.37 [Asm Labels|, page 299), at present the
attribute must follow the asm specification; in future, attributes before the asm specification
may apply to the adjacent declarator, and those after it to the declared object or function.

An attribute specifier list may, in future, be permitted to appear after the declarator in
a function definition (before any old-style parameter declarations or the function body).

Attribute specifiers may be mixed with type qualifiers appearing inside the [] of a pa-
rameter array declarator, in the C99 construct by which such qualifiers are applied to the
pointer to which the array is implicitly converted. Such attribute specifiers apply to the
pointer, not to the array, but at present this is not implemented and they are ignored.

Chapter 5: Extensions to the C Language Family 259

An attribute specifier list may appear at the start of a nested declarator. At present,
there are some limitations in this usage: the attributes correctly apply to the declarator,
but for most individual attributes the semantics this implies are not implemented. When
attribute specifiers follow the * of a pointer declarator, they may be mixed with any type
qualifiers present. The following describes the formal semantics of this syntax. It will make
the most sense if you are familiar with the formal specification of declarators in the ISO C
standard.

Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration T D1, where T contains
declaration specifiers that specify a type Type (such as int) and D1 is a declarator that
contains an identifier ident. The type specified for ident for derived declarators whose type
does not include an attribute specifier is as in the ISO C standard.

If D1 has the form (attribute-specifier-1ist D), and the declaration T D specifies
the type “derived-declarator-type-list Type” for ident, then T D1 specifies the type “derived-
declarator-type-list attribute-specifier-list Type” for ident.

If D1 has the form * type-qualifier-and-attribute-specifier-1ist D, and the dec-
laration T D specifies the type “derived-declarator-type-list Type” for ident, then T D1 spec-
ifies the type “derived-declarator-type-list type-qualifier-and-attribute-specifier-list Type”
for ident.

For example,

void (__attribute__((noreturn)) ****f) (void);

specifies the type “pointer to pointer to pointer to pointer to non-returning function return-
ing void”. As another example,
char *__attribute__((aligned(8))) *f;

specifies the type “pointer to 8-byte-aligned pointer to char”. Note again that this does not
work with most attributes; for example, the usage of ‘aligned’ and ‘noreturn’ attributes
given above is not yet supported.

For compatibility with existing code written for compiler versions that did not implement
attributes on nested declarators, some laxity is allowed in the placing of attributes. If an
attribute that only applies to types is applied to a declaration, it will be treated as applying
to the type of that declaration. If an attribute that only applies to declarations is applied
to the type of a declaration, it will be treated as applying to that declaration; and, for
compatibility with code placing the attributes immediately before the identifier declared,
such an attribute applied to a function return type will be treated as applying to the
function type, and such an attribute applied to an array element type will be treated as
applying to the array type. If an attribute that only applies to function types is applied to
a pointer-to-function type, it will be treated as applying to the pointer target type; if such
an attribute is applied to a function return type that is not a pointer-to-function type, it
will be treated as applying to the function type.

5.27 Prototypes and Old-Style Function Definitions

GNU C extends ISO C to allow a function prototype to override a later old-style non-
prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#ifdef STDC__

#define P(x) x

260 Using the GNU Compiler Collection (GCC)

#else
#define P(x) (O
#endif

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */
int
isroot (x) /* 777 lossage here 777 */
uid_t x;
{
return x == 0;

}

Suppose the type uid_t happens to be short. ISO C does not allow this example,
because subword arguments in old-style non-prototype definitions are promoted. Therefore
in this example the function definition’s argument is really an int, which does not match
the prototype argument type of short.

This restriction of ISO C makes it hard to write code that is portable to traditional C
compilers, because the programmer does not know whether the uid_t type is short, int,
or long. Therefore, in cases like these GNU C allows a prototype to override a later old-
style definition. More precisely, in GNU C, a function prototype argument type overrides
the argument type specified by a later old-style definition if the former type is the same as
the latter type before promotion. Thus in GNU C the above example is equivalent to the
following;:

int isroot (uid_t);

int
isroot (uid_t x)
{

return x == 0;

}

GNU C++ does not support old-style function definitions, so this extension is irrelevant.

5.28 C++ Style Comments

In GNU C, you may use C++ style comments, which start with ‘//’ and continue until
the end of the line. Many other C implementations allow such comments, and they are
included in the 1999 C standard. However, C++ style comments are not recognized if you
specify an ‘-std’ option specifying a version of ISO C before C99, or ‘-~ansi’ (equivalent to
‘-std=c89’).

5.29 Dollar Signs in Identifier Names

In GNU C, you may normally use dollar signs in identifier names. This is because many
traditional C implementations allow such identifiers. However, dollar signs in identifiers are
not supported on a few target machines, typically because the target assembler does not
allow them.

Chapter 5: Extensions to the C Language Family 261

5.30 The Character in Constants

You can use the sequence ‘\e’ in a string or character constant to stand for the ASCII

character .

5.31 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the
minimum alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an §-byte
boundary, then __alignof__ (double) is 8. This is true on many RISC machines. On
more traditional machine designs, __alignof__ (double) is 4 or even 2.

[——

Some machines never actually require alignment; they allow reference to any data type
even at an odd address. For these machines, __alignof__ reports the recommended align-
ment of a type.

[J——

If the operand of __alignof__ is an Ivalue rather than a type, its value is the required
alignment for its type, taking into account any minimum alignment specified with GCC’s
__attribute__ extension (see Section 5.32 [Variable Attributes], page 261). For example,
after this declaration:

struct foo { int x; char y; } fool;

the value of __alignof__ (fool.y) is 1, even though its actual alignment is probably 2 or
4, the same as __alignof__ (int).

It is an error to ask for the alignment of an incomplete type.

5.32 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure
fields. This keyword is followed by an attribute specification inside double parentheses.
Some attributes are currently defined generically for variables. Other attributes are defined
for variables on particular target systems. Other attributes are available for functions
(see Section 5.25 [Function Attributes], page 242) and for types (see Section 5.33 [Type
Attributes], page 268). Other front ends might define more attributes (see Chapter 6
[Extensions to the C++ Language], page 469).

You may also specify attributes with ‘__’ preceding and following each keyword. This
allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __aligned__ instead of aligned.

See Section 5.26 [Attribute Syntax|, page 256, for details of the exact syntax for using
attributes.

aligned (alignment)
This attribute specifies a minimum alignment for the variable or structure field,
measured in bytes. For example, the declaration:
int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On
a 68040, this could be used in conjunction with an asm expression to access the
movel6 instruction which requires 16-byte aligned operands.

262

Using the GNU Compiler Collection (GCC)

You can also specify the alignment of structure fields. For example, to create a
double-word aligned int pair, you could write:
struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces
the union to be double-word aligned.

As in the preceding examples, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given variable or structure field. Alter-
natively, you can leave out the alignment factor and just ask the compiler to
align a variable or field to the maximum useful alignment for the target machine
you are compiling for. For example, you could write:

short array[3] attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specifica-
tion, the compiler automatically sets the alignment for the declared variable or
field to the largest alignment which is ever used for any data type on the target
machine you are compiling for. Doing this can often make copy operations more
efficient, because the compiler can use whatever instructions copy the biggest
chunks of memory when performing copies to or from the variables or fields
that you have aligned this way.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

cleanup (cleanup_function)

common
nocommon

The cleanup attribute runs a function when the variable goes out of scope.
This attribute can only be applied to auto function scope variables; it may not
be applied to parameters or variables with static storage duration. The function
must take one parameter, a pointer to a type compatible with the variable. The
return value of the function (if any) is ignored.

If ‘~fexceptions’ is enabled, then cleanup_function will be run during the stack
unwinding that happens during the processing of the exception. Note that the
cleanup attribute does not allow the exception to be caught, only to perform
an action. It is undefined what happens if cleanup_function does not return
normally.

The common attribute requests GCC to place a variable in “common” storage.
The nocommon attribute requests the opposite—to allocate space for it directly.

These attributes override the default chosen by the ‘-fno-common’ and
‘~fcommon’ flags respectively.

Chapter 5: Extensions to the C Language Family 263

deprecated
The deprecated attribute results in a warning if the variable is used anywhere
in the source file. This is useful when identifying variables that are expected
to be removed in a future version of a program. The warning also includes the
location of the declaration of the deprecated variable, to enable users to easily
find further information about why the variable is deprecated, or what they
should do instead. Note that the warning only occurs for uses:

extern int old_var
extern int old_var;
int new_fn () { return old_var; }

_attribute__ ((deprecated));

results in a warning on line 3 but not line 2.

The deprecated attribute can also be used for functions and types (see Sec-
tion 5.25 [Function Attributes], page 242, see Section 5.33 [Type Attributes],
page 268.)

mode (mode)
This attribute specifies the data type for the declaration—whichever type cor-
responds to the mode mode. This in effect lets you request an integer or floating
point type according to its width.

You may also specify a mode of ‘byte’ or ‘__byte__’ to indicate the mode
corresponding to a one-byte integer, ‘word’ or ‘__word__’ for the mode of a one-
word integer, and ‘pointer’ or ‘__pointer__’ for the mode used to represent

pointers.

packed The packed attribute specifies that a variable or structure field should have the
smallest possible alignment—one byte for a variable, and one bit for a field,
unless you specify a larger value with the aligned attribute.

Here is a structure in which the field x is packed, so that it immediately follows
a:
struct foo

{

char a;
int x[2] __attribute__ ((packed));
};

section ("section-name")
Normally, the compiler places the objects it generates in sections like data and
bss. Sometimes, however, you need additional sections, or you need certain
particular variables to appear in special sections, for example to map to special
hardware. The section attribute specifies that a variable (or function) lives
in a particular section. For example, this small program uses several specific
section names:
struct duart a __attribute__ ((section ("DUART_A")))

struct duart b __attribute__ ((section ("DUART_B"))) ;
char stack[10000] attribute ((section ("STACK"))) ={ 0 };

int init_data __attribute__ ((section ("INITDATA"))) = O;

[TT]
-
o o
[

main()
{

/* Initialize stack pointer */

264

shared

Using the GNU Compiler Collection (GCC)

init_sp (stack + sizeof (stack));

/* Initialize initialized data */
memcpy (&init_data, &data, &edata - &data);

/% Turn on the serial ports */
init_duart (&a);
init_duart (&b);
}
Use the section attribute with an initialized definition of a global variable,
as shown in the example. GCC issues a warning and otherwise ignores the
section attribute in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global definition
because of the way linkers work. The linker requires each object be defined once,
with the exception that uninitialized variables tentatively go in the common (or
bss) section and can be multiply “defined”. You can force a variable to be
initialized with the ‘-fno-common’ flag or the nocommon attribute.

Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

On Microsoft Windows, in addition to putting variable definitions in a named
section, the section can also be shared among all running copies of an executable
or DLL. For example, this small program defines shared data by putting it in
a named section shared and marking the section shareable:

int foo __attribute__((section ('"shared"), shared)) = 0;

int
main ()
{
/* Read and write foo. All running
copies see the same value. */
return 0O;

}

You may only use the shared attribute along with section attribute with a
fully initialized global definition because of the way linkers work. See section
attribute for more information.

The shared attribute is only available on Microsoft Windows.

tls_model ("tls_model")

unused

used

The tls_model attribute sets thread-local storage model (see Section 5.52
[Thread-Local], page 464) of a particular __thread variable, overriding
‘~ftls-model=" command line switch on a per-variable basis. The tls_model
argument should be one of global-dynamic, local-dynamic, initial-exec
or local-exec.

Not all targets support this attribute.

This attribute, attached to a variable, means that the variable is meant to be
possibly unused. GCC will not produce a warning for this variable.

This attribute, attached to a variable, means that the variable must be emitted
even if it appears that the variable is not referenced.

Chapter 5: Extensions to the C Language Family 265

vector_size (bytes)

selectany

weak

dllimport

dllexport

This attribute specifies the vector size for the variable, measured in bytes. For
example, the declaration:

int foo __attribute ((vector_size (16)));

causes the compiler to set the mode for foo, to be 16 bytes, divided into int
sized units. Assuming a 32-bit int (a vector of 4 units of 4 bytes), the corre-
sponding mode of foo will be V4SI.

This attribute is only applicable to integral and float scalars, although arrays,
pointers, and function return values are allowed in conjunction with this con-
struct.

Aggregates with this attribute are invalid, even if they are of the same size as
a corresponding scalar. For example, the declaration:
struct S { int a; };

struct S __attribute__ ((vector_size (16))) foo;

is invalid even if the size of the structure is the same as the size of the int.

The selectany attribute causes an initialized global variable to have link-once
semantics. When multiple definitions of the variable are encountered by the
linker, the first is selected and the remainder are discarded. Following usage
by the Microsoft compiler, the linker is told not to warn about size or content
differences of the multiple definitions.

Although the primary usage of this attribute is for POD types, the attribute can
also be applied to global C++ objects that are initialized by a constructor. In
this case, the static initialization and destruction code for the object is emitted
in each translation defining the object, but the calls to the constructor and
destructor are protected by a link-once guard variable.

The selectany attribute is only available on Microsoft Windows targets.
You can use __declspec (selectany) as a synonym for __attribute__
((selectany)) for compatibility with other compilers.

The weak attribute is described in See Section 5.25 [Function Attributes],
page 242.

The d1limport attribute is described in See Section 5.25 [Function Attributes],
page 242.

The d1llexport attribute is described in See Section 5.25 [Function Attributes],
page 242.

5.32.1 M32R/D Variable Attributes
One attribute is currently defined for the M32R/D.

model (model-name)

Use this attribute on the M32R/D to set the addressability of an object. The
identifier model-name is one of small, medium, or large, representing each of
the code models.

266 Using the GNU Compiler Collection (GCC)

Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the 1d24 instruction).

Medium and large model objects may live anywhere in the 32-bit address space
(the compiler will generate seth/add3 instructions to load their addresses).

5.32.2 i386 Variable Attributes
Two attributes are currently defined for 1386 configurations: ms_struct and gcc_struct

ms_struct

gcc_struct
If packed is used on a structure, or if bit-fields are used it may be that the
Microsoft ABI packs them differently than GCC would normally pack them.
Particularly when moving packed data between functions compiled with GCC
and the native Microsoft compiler (either via function call or as data in a file),
it may be necessary to access either format.

Currently ‘-m[no-Ims-bitfields’ is provided for the Microsoft Windows X86
compilers to match the native Microsoft compiler.

The Microsoft structure layout algorithm is fairly simple with the exception of
the bitfield packing:

The padding and alignment of members of structures and whether a bit field
can straddle a storage-unit boundary

1. Structure members are stored sequentially in the order in which they are
declared: the first member has the lowest memory address and the last
member the highest.

2. Every data object has an alignment-requirement. 'The alignment-
requirement for all data except structures, unions, and arrays is either
the size of the object or the current packing size (specified with either
the aligned attribute or the pack pragma), whichever is less. For
structures, unions, and arrays, the alignment-requirement is the largest
alignment-requirement of its members. Every object is allocated an offset
so that:

offset % alignment-requirement ==
3. Adjacent bit fields are packed into the same 1-, 2-; or 4-byte allocation
unit if the integral types are the same size and if the next bit field fits into

the current allocation unit without crossing the boundary imposed by the
common alignment requirements of the bit fields.

Handling of zero-length bitfields:
MSVC interprets zero-length bitfields in the following ways:
1. If a zero-length bitfield is inserted between two bitfields that would nor-
mally be coalesced, the bitfields will not be coalesced.

For example:

struct

{
unsigned long bf_1 : 12;
unsigned long : O;

Chapter 5: Extensions to the C Language Family 267

unsigned long bf_2 : 12;
}ot1;
The size of t1 would be 8 bytes with the zero-length bitfield. If the zero-
length bitfield were removed, t1’s size would be 4 bytes.

2. If a zero-length bitfield is inserted after a bitfield, foo, and the alignment
of the zero-length bitfield is greater than the member that follows it, bar,
bar will be aligned as the type of the zero-length bitfield.

For example:

struct

{
char foo : 4;
short : O;
char bar;

} t2;

struct

{

char foo : 4;
short : 0;
double bar;
} t3;
For t2, bar will be placed at offset 2, rather than offset 1. Accordingly,
the size of t2 will be 4. For t3, the zero-length bitfield will not affect the

alignment of bar or, as a result, the size of the structure.
Taking this into account, it is important to note the following:

1. If a zero-length bitfield follows a normal bitfield, the type of the zero-
length bitfield may affect the alignment of the structure as whole. For
example, t2 has a size of 4 bytes, since the zero-length bitfield follows
a normal bitfield, and is of type short.

2. Even if a zero-length bitfield is not followed by a normal bitfield, it
may still affect the alignment of the structure:

struct
{
char foo : 6;
long : O;
} t4;

Here, t4 will take up 4 bytes.
3. Zero-length bitfields following non-bitfield members are ignored:

struct

{
char foo;
long : O;
char bar;

} t5;

Here, t5 will take up 2 bytes.

5.32.3 PowerPC Variable Attributes

Three attributes currently are defined for PowerPC configurations: altivec, ms_struct
and gcc_struct.

268 Using the GNU Compiler Collection (GCC)

For full documentation of the struct attributes please see the documentation in the See
[i386 Variable Attributes], page 266, section.

For documentation of altivec attribute please see the documentation in the See [Pow-
erPC Type Attributes], page 273, section.

5.32.4 Xstormy16 Variable Attributes

One attribute is currently defined for xstormy16 configurations: below100

belowl00

If a variable has the below100 attribute (BELOW100 is allowed also), GCC will
place the variable in the first 0x100 bytes of memory and use special opcodes
to access it. Such variables will be placed in either the .bss_below100 section
or the .data_belowl00 section.

5.33 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and union
types when you define such types. This keyword is followed by an attribute specification in-
side double parentheses. Seven attributes are currently defined for types: aligned, packed,
transparent_union, unused, deprecated, visibility, and may_alias. Other attributes
are defined for functions (see Section 5.25 [Function Attributes], page 242) and for variables
(see Section 5.32 [Variable Attributes], page 261).

You may also specify any one of these attributes with ‘__’ preceding and following its
keyword. This allows you to use these attributes in header files without being concerned
about a possible macro of the same name. For example, you may use __aligned__ instead
of aligned.

You may specify type attributes either in a typedef declaration or in an enum, struct or
union type declaration or definition.

For an enum, struct or union type, you may specify attributes either between the enum,
struct or union tag and the name of the type, or just past the closing curly brace of the
definition. The former syntax is preferred.

See Section 5.26 [Attribute Syntax|, page 256, for details of the exact syntax for using
attributes.

aligned (alignment)

This attribute specifies a minimum alignment (in bytes) for variables of the
specified type. For example, the declarations:

struct S { short £[3]; } __attribute__ ((aligned (8)));

typedef int more_aligned_int __attribute__ ((aligned (8)));
force the compiler to insure (as far as it can) that each variable whose type
is struct S or more_aligned_int will be allocated and aligned at least on a
8-byte boundary. On a SPARC, having all variables of type struct S aligned to
8-byte boundaries allows the compiler to use the 1dd and std (doubleword load
and store) instructions when copying one variable of type struct S to another,
thus improving run-time efficiency.

Note that the alignment of any given struct or union type is required by the
ISO C standard to be at least a perfect multiple of the lowest common multiple

Chapter 5: Extensions to the C Language Family 269

packed

of the alignments of all of the members of the struct or union in question. This
means that you can effectively adjust the alignment of a struct or union type
by attaching an aligned attribute to any one of the members of such a type,
but the notation illustrated in the example above is a more obvious, intuitive,
and readable way to request the compiler to adjust the alignment of an entire
struct or union type.

As in the preceding example, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given struct or union type. Alterna-
tively, you can leave out the alignment factor and just ask the compiler to
align a type to the maximum useful alignment for the target machine you are
compiling for. For example, you could write:

struct S { short £[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specifica-
tion, the compiler automatically sets the alignment for the type to the largest
alignment which is ever used for any data type on the target machine you are
compiling for. Doing this can often make copy operations more efficient, be-
cause the compiler can use whatever instructions copy the biggest chunks of
memory when performing copies to or from the variables which have types that
you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size of the
entire struct S type is 6 bytes. The smallest power of two which is greater
than or equal to that is 8, so the compiler sets the alignment for the entire
struct S type to 8 bytes.

Note that although you can ask the compiler to select a time-efficient alignment
for a given type and then declare only individual stand-alone objects of that
type, the compiler’s ability to select a time-efficient alignment is primarily useful
only when you plan to create arrays of variables having the relevant (efficiently
aligned) type. If you declare or use arrays of variables of an efficiently-aligned
type, then it is likely that your program will also be doing pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the relevant type,
and the code that the compiler generates for these pointer arithmetic operations
will often be more efficient for efficiently-aligned types than for other types.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

This attribute, attached to struct or union type definition, specifies that each
member (other than zero-width bitfields) of the structure or union is placed
to minimize the memory required. When attached to an enum definition, it
indicates that the smallest integral type should be used.

270

Using the GNU Compiler Collection (GCC)

Specifying this attribute for struct and union types is equivalent to specifying
the packed attribute on each of the structure or union members. Specifying
the ‘~fshort-enums’ flag on the line is equivalent to specifying the packed
attribute on all enum definitions.

In the following example struct my_packed_struct’s members are packed
closely together, but the internal layout of its s member is not packed—to
do that, struct my_unpacked_struct would need to be packed too.

struct my_unpacked_struct
{

char c;

int i;

};

struct __attribute__ ((__packed__)) my_packed_struct
{
char c;
int 1i;
struct my_unpacked_struct s;
};
You may only specify this attribute on the definition of a enum, struct or union,
not on a typedef which does not also define the enumerated type, structure or

union.

transparent_union

This attribute, attached to a union type definition, indicates that any function
parameter having that union type causes calls to that function to be treated in
a special way.

First, the argument corresponding to a transparent union type can be of any
type in the union; no cast is required. Also, if the union contains a pointer type,
the corresponding argument can be a null pointer constant or a void pointer
expression; and if the union contains a void pointer type, the corresponding
argument can be any pointer expression. If the union member type is a pointer,
qualifiers like const on the referenced type must be respected, just as with
normal pointer conversions.

Second, the argument is passed to the function using the calling conventions of
the first member of the transparent union, not the calling conventions of the
union itself. All members of the union must have the same machine represen-
tation; this is necessary for this argument passing to work properly.

Transparent unions are designed for library functions that have multiple inter-
faces for compatibility reasons. For example, suppose the wait function must
accept either a value of type int * to comply with Posix, or a value of type
union wait * to comply with the 4.1BSD interface. If wait’s parameter were
void *, wait would accept both kinds of arguments, but it would also accept
any other pointer type and this would make argument type checking less useful.
Instead, <sys/wait.h> might define the interface as follows:

typedef union
{
int *__ip;
union wait *__up;

Chapter 5: Extensions to the C Language Family 271

unused

deprecated

may_alias

} wait_status_ptr_t __attribute__ ((__transparent_union__));

pid_t wait (wait_status_ptr_t);

This interface allows either int * or union wait * arguments to be passed,
using the int * calling convention. The program can call wait with arguments
of either type:

int wi () { int w; return wait (&w); }

int w2 () { union wait w; return wait (&w); }
With this interface, wait’s implementation might look like this:

pid_t wait (wait_status_ptr_t p)
{

return waitpid (-1, p.__ip, 0);
}

When attached to a type (including a union or a struct), this attribute means
that variables of that type are meant to appear possibly unused. GCC will not
produce a warning for any variables of that type, even if the variable appears to
do nothing. This is often the case with lock or thread classes, which are usually
defined and then not referenced, but contain constructors and destructors that
have nontrivial bookkeeping functions.

The deprecated attribute results in a warning if the type is used anywhere in
the source file. This is useful when identifying types that are expected to be
removed in a future version of a program. If possible, the warning also includes
the location of the declaration of the deprecated type, to enable users to easily
find further information about why the type is deprecated, or what they should
do instead. Note that the warnings only occur for uses and then only if the type
is being applied to an identifier that itself is not being declared as deprecated.

typedef int