The GNU C Library Reference Manual

The GNU C Library

Reference Manual

Sandra Loosemore
with
Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper

Edition 0.10
last updated 2001-07-06

for version 2.3.x

Copyright (©) 1993, 1994, 1995, 1996, 1997, 1998, 2001, 2002 Free Software Foundation, Inc.

Published by the Free Software Foundation
59 Temple Place — Suite 330,

Boston, MA 02111-1307 USA

ISBN 1-882114-55-8

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being "Free Software Needs Free
Documentation" and "GNU Lesser General Public License", the Front-Cover texts being
(a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license
is included in the section entitled "GNU Free Documentation License".

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Cover art for the Free Software Foundation’s printed edition by Etienne Suvasa.

Chapter 1: Introduction 1

1 Introduction

The C language provides no built-in facilities for performing such common operations as
input/output, memory management, string manipulation, and the like. Instead, these fa-
cilities are defined in a standard library, which you compile and link with your programs.

The GNU C library, described in this document, defines all of the library functions that
are specified by the ISO C standard, as well as additional features specific to POSIX and
other derivatives of the Unix operating system, and extensions specific to the GNU system.

The purpose of this manual is to tell you how to use the facilities of the GNU library.
We have mentioned which features belong to which standards to help you identify things
that are potentially non-portable to other systems. But the emphasis in this manual is not
on strict portability.

1.1 Getting Started

This manual is written with the assumption that you are at least somewhat familiar with
the C programming language and basic programming concepts. Specifically, familiarity
with ISO standard C (see Section 1.2.1 [ISO C], page 2), rather than “traditional” pre-ISO
C dialects, is assumed.

The GNU C library includes several header files, each of which provides definitions and
declarations for a group of related facilities; this information is used by the C compiler
when processing your program. For example, the header file ‘stdio.h’ declares facilities
for performing input and output, and the header file ‘string.h’ declares string processing
utilities. The organization of this manual generally follows the same division as the header
files.

If you are reading this manual for the first time, you should read all of the introductory
material and skim the remaining chapters. There are a lot of functions in the GNU C
library and it’s not realistic to expect that you will be able to remember exactly how to
use each and every one of them. It’s more important to become generally familiar with the
kinds of facilities that the library provides, so that when you are writing your programs you
can recognize when to make use of library functions, and where in this manual you can find
more specific information about them.

1.2 Standards and Portability

This section discusses the various standards and other sources that the GNU C library is
based upon. These sources include the ISO C and POSIX standards, and the System V
and Berkeley Unix implementations.

The primary focus of this manual is to tell you how to make effective use of the GNU
library facilities. But if you are concerned about making your programs compatible with
these standards, or portable to operating systems other than GNU, this can affect how you
use the library. This section gives you an overview of these standards, so that you will know
what they are when they are mentioned in other parts of the manual.

See Appendix B [Summary of Library Facilities], page 831, for an alphabetical list of the
functions and other symbols provided by the library. This list also states which standards
each function or symbol comes from.

2 The GNU C Library

1.2.1 ISO C

The GNU C library is compatible with the C standard adopted by the American National
Standards Institute (ANSI): American National Standard X3.159-1989—“ANSI C” and
later by the International Standardization Organization (ISO): ISO/IEC 9899:1990, “Pro-
gramming languages—C”. We here refer to the standard as ISO C since this is the more
general standard in respect of ratification. The header files and library facilities that make
up the GNU library are a superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use the
‘-ansi’ option when you compile your programs with the GNU C compiler. This tells
the compiler to define only [SO standard features from the library header files, unless you
explicitly ask for additional features. See Section 1.3.4 [Feature Test Macros], page 7, for
information on how to do this.

Being able to restrict the library to include only ISO C features is important because
ISO C puts limitations on what names can be defined by the library implementation, and
the GNU extensions don’t fit these limitations. See Section 1.3.3 [Reserved Names|, page 5,
for more information about these restrictions.

This manual does not attempt to give you complete details on the differences between
ISO C and older dialects. It gives advice on how to write programs to work portably under
multiple C dialects, but does not aim for completeness.

1.2.2 POSIX (The Portable Operating System Interface)

The GNU library is also compatible with the ISO POSIX family of standards, known more
formally as the Portable Operating System Interface for Computer Environments (ISO/IEC
9945). They were also published as ANSI/IEEE Std 1003. POSIX is derived mostly from

various versions of the Unix operating system.

The library facilities specified by the POSIX standards are a superset of those required
by ISO C; POSIX specifies additional features for ISO C functions, as well as specifying
new additional functions. In general, the additional requirements and functionality defined
by the POSIX standards are aimed at providing lower-level support for a particular kind of
operating system environment, rather than general programming language support which
can run in many diverse operating system environments.

The GNU C library implements all of the functions specified in ISO/IEC 9945-1:1996,
the POSIX System Application Program Interface, commonly referred to as POSIX.1. The
primary extensions to the ISO C facilities specified by this standard include file system
interface primitives (see Chapter 14 [File System Interface], page 347), device-specific ter-
minal control functions (see Chapter 17 [Low-Level Terminal Interface], page 439), and
process control functions (see Chapter 26 [Processes], page 699).

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU library. These include utilities for dealing
with regular expressions and other pattern matching facilities (see Chapter 10 [Pattern
Matching], page 203).

1.2.3 Berkeley Unix

The GNU C library defines facilities from some versions of Unix which are not formally
standardized, specifically from the 4.2 BSD, 4.3 BSD, and 4.4 BSD Unix systems (also

Chapter 1: Introduction 3

known as Berkeley Unix) and from SunOS (a popular 4.2 BSD derivative that includes
some Unix System V functionality). These systems support most of the ISO C and POSIX
facilities, and 4.4 BSD and newer releases of SunOS in fact support them all.

The BSD facilities include symbolic links (see Section 14.5 [Symbolic Links], page 361),
the select function (see Section 13.8 [Waiting for Input or Output], page 316), the BSD
signal functions (see Section 24.10 [BSD Signal Handling], page 654), and sockets (see
Chapter 16 [Sockets], page 395).

1.2.4 SVID (The System V Interface Description)

The System V Interface Description (SVID) is a document describing the AT&T Unix
System V operating system. It is to some extent a superset of the POSIX standard (see
Section 1.2.2 [POSIX (The Portable Operating System Interface)], page 2).

The GNU C library defines most of the facilities required by the SVID that are not also
required by the ISO C or POSIX standards, for compatibility with System V Unix and
other Unix systems (such as SunOS) which include these facilities. However, many of the
more obscure and less generally useful facilities required by the SVID are not included. (In
fact, Unix System V itself does not provide them all.)

The supported facilities from System V include the methods for inter-process commu-
nication and shared memory, the hsearch and drand48 families of functions, fmtmsg and
several of the mathematical functions.

1.2.5 XPG (The X/Open Portability Guide)

The X/Open Portability Guide, published by the X/Open Company, Ltd., is a more gen-
eral standard than POSIX. X/Open owns the Unix copyright and the XPG specifies the
requirements for systems which are intended to be a Unix system.

The GNU C library complies to the X/Open Portability Guide, Issue 4.2, with all exten-
sions common to XSI (X/Open System Interface) compliant systems and also all X/Open
UNIX extensions.

The additions on top of POSIX are mainly derived from functionality available in
System V and BSD systems. Some of the really bad mistakes in System V systems were
corrected, though. Since fulfilling the XPG standard with the Unix extensions is a precon-
dition for getting the Unix brand chances are good that the functionality is available on
commercial systems.

1.3 Using the Library

This section describes some of the practical issues involved in using the GNU C library.

1.3.1 Header Files

Libraries for use by C programs really consist of two parts: header files that define types and
macros and declare variables and functions; and the actual library or archive that contains
the definitions of the variables and functions.

(Recall that in C, a declaration merely provides information that a function or variable
exists and gives its type. For a function declaration, information about the types of its
arguments might be provided as well. The purpose of declarations is to allow the compiler

4 The GNU C Library

to correctly process references to the declared variables and functions. A definition, on the
other hand, actually allocates storage for a variable or says what a function does.)

In order to use the facilities in the GNU C library, you should be sure that your program
source files include the appropriate header files. This is so that the compiler has declarations
of these facilities available and can correctly process references to them. Once your program
has been compiled, the linker resolves these references to the actual definitions provided in
the archive file.

Header files are included into a program source file by the ‘#include’ preprocessor
directive. The C language supports two forms of this directive; the first,

#include "header"

is typically used to include a header file header that you write yourself; this would contain
definitions and declarations describing the interfaces between the different parts of your
particular application. By contrast,

#include <file.h>

is typically used to include a header file ‘file.h’ that contains definitions and declarations
for a standard library. This file would normally be installed in a standard place by your
system administrator. You should use this second form for the C library header files.

Typically, ‘#include’ directives are placed at the top of the C source file, before any
other code. If you begin your source files with some comments explaining what the code in
the file does (a good idea), put the ‘#include’ directives immediately afterwards, following
the feature test macro definition (see Section 1.3.4 [Feature Test Macros|, page 7).

For more information about the use of header files and ‘#include’ directives, see section
“Header Files” in The GNU C Preprocessor Manual.

The GNU C library provides several header files, each of which contains the type and
macro definitions and variable and function declarations for a group of related facilities.
This means that your programs may need to include several header files, depending on
exactly which facilities you are using.

Some library header files include other library header files automatically. However, as a
matter of programming style, you should not rely on this; it is better to explicitly include all
the header files required for the library facilities you are using. The GNU C library header
files have been written in such a way that it doesn’t matter if a header file is accidentally
included more than once; including a header file a second time has no effect. Likewise, if
your program needs to include multiple header files, the order in which they are included
doesn’t matter.

Compatibility Note: Inclusion of standard header files in any order and any number of
times works in any ISO C implementation. However, this has traditionally not been the
case in many older C implementations.

Strictly speaking, you don’t have to include a header file to use a function it declares;
you could declare the function explicitly yourself, according to the specifications in this
manual. But it is usually better to include the header file because it may define types and
macros that are not otherwise available and because it may define more efficient macro
replacements for some functions. It is also a sure way to have the correct declaration.

Chapter 1: Introduction)

1.3.2 Macro Definitions of Functions

If we describe something as a function in this manual, it may have a macro definition as
well. This normally has no effect on how your program runs—the macro definition does
the same thing as the function would. In particular, macro equivalents for library functions
evaluate arguments exactly once, in the same way that a function call would. The main
reason for these macro definitions is that sometimes they can produce an inline expansion
that is considerably faster than an actual function call.

Taking the address of a library function works even if it is also defined as a macro. This
is because, in this context, the name of the function isn’t followed by the left parenthesis
that is syntactically necessary to recognize a macro call.

You might occasionally want to avoid using the macro definition of a function—perhaps
to make your program easier to debug. There are two ways you can do this:
e You can avoid a macro definition in a specific use by enclosing the name of the function
in parentheses. This works because the name of the function doesn’t appear in a
syntactic context where it is recognizable as a macro call.

e You can suppress any macro definition for a whole source file by using the ‘#undef’
preprocessor directive, unless otherwise stated explicitly in the description of that fa-
cility.

For example, suppose the header file ‘stdlib.h’ declares a function named abs with
extern int abs (int);
and also provides a macro definition for abs. Then, in:
#include <stdlib.h>
int £ (int *i) { return abs (++*i); }
the reference to abs might refer to either a macro or a function. On the other hand, in each
of the following examples the reference is to a function and not a macro.

#include <stdlib.h>
int g (int #i) { return (abs) (++*i); }

#undef abs
int h (int *i) { return abs (++xi); }
Since macro definitions that double for a function behave in exactly the same way as the
actual function version, there is usually no need for any of these methods. In fact, removing
macro definitions usually just makes your program slower.

1.3.3 Reserved Names

The names of all library types, macros, variables and functions that come from the ISO C
standard are reserved unconditionally; your program may not redefine these names. All
other library names are reserved if your program explicitly includes the header file that
defines or declares them. There are several reasons for these restrictions:

e Other people reading your code could get very confused if you were using a function
named exit to do something completely different from what the standard exit function
does, for example. Preventing this situation helps to make your programs easier to
understand and contributes to modularity and maintainability.

e [t avoids the possibility of a user accidentally redefining a library function that is called
by other library functions. If redefinition were allowed, those other functions would not
work properly.

The GNU C Library

It allows the compiler to do whatever special optimizations it pleases on calls to these
functions, without the possibility that they may have been redefined by the user. Some
library facilities, such as those for dealing with variadic arguments (see Section A.2
[Variadic Functions], page 816) and non-local exits (see Chapter 23 [Non-Local Exits],
page 603), actually require a considerable amount of cooperation on the part of the C
compiler, and with respect to the implementation, it might be easier for the compiler
to treat these as built-in parts of the language.

In addition to the names documented in this manual, reserved names include all external

identifiers (global functions and variables) that begin with an underscore (‘_’) and all iden-
tifiers regardless of use that begin with either two underscores or an underscore followed by

a C

apital letter are reserved names. This is so that the library and header files can define

functions, variables, and macros for internal purposes without risk of conflict with names
in user programs.

Some additional classes of identifier names are reserved for future extensions to the C

language or the POSIX.1 environment. While using these names for your own purposes
right now might not cause a problem, they do raise the possibility of conflict with future
versions of the C or POSIX standards, so you should avoid these names.

Names beginning with a capital ‘E’ followed a digit or uppercase letter may be used for
additional error code names. See Chapter 2 [Error Reporting], page 13.

Names that begin with either ‘is’ or ‘to’ followed by a lowercase letter may be used
for additional character testing and conversion functions. See Chapter 4 [Character
Handling], page 65.

Names that begin with ‘LC_" followed by an uppercase letter may be used for additional
macros specifying locale attributes. See Chapter 7 [Locales and Internationalization],
page 151.

Names of all existing mathematics functions (see Chapter 19 [Mathematics], page 473)
suffixed with ‘£’ or ‘1’ are reserved for corresponding functions that operate on float
and long double arguments, respectively.

Names that begin with ‘SIG’ followed by an uppercase letter are reserved for additional
signal names. See Section 24.2 [Standard Signals], page 615.

Names that begin with ‘SIG_’ followed by an uppercase letter are reserved for additional
signal actions. See Section 24.3.1 [Basic Signal Handling], page 623.

Names beginning with ‘str’, ‘mem’, or ‘wcs’ followed by a lowercase letter are reserved
for additional string and array functions. See Chapter 5 [String and Array Utilities],
page 73.

Names that end with ‘_t’ are reserved for additional type names.

In addition, some individual header files reserve names beyond those that they actually

define. You only need to worry about these restrictions if your program includes that
particular header file.

The header file ‘dirent.h’ reserves names prefixed with ‘d_".
The header file ‘fcntl.h’ reserves names prefixed with ‘1_", ‘F_’, ‘0_’, and ‘S_’.
?

The header file ‘grp.h’ reserves names prefixed with ‘gr_’.

The header file ‘1imits.h’ reserves names suffixed with ‘_MAX’.

Chapter 1: Introduction 7

e The header file ‘pwd.h’ reserves names prefixed with ‘pw_’.

o The header file ‘signal.h’ reserves names prefixed with ‘sa_’ and ‘SA_’.
e The header file ‘sys/stat.h’ reserves names prefixed with ‘st_’ and ‘S_’.
e The header file ‘sys/times.h’ reserves names prefixed with ‘tms_’.

e The header file ‘termios.h’ reserves names prefixed with ‘c_’, ‘V’, ‘I’, ‘0’, and ‘TC’;
and names prefixed with ‘B’ followed by a digit.

1.3.4 Feature Test Macros

The exact set of features available when you compile a source file is controlled by which
feature test macros you define.

If you compile your programs using ‘gcc —ansi’, you get only the ISO C library features,
unless you explicitly request additional features by defining one or more of the feature
macros. See section “GNU CC Command Options” in The GNU CC Manual, for more
information about GCC options.

You should define these macros by using ‘#define’ preprocessor directives at the top of
your source code files. These directives must come before any #include of a system header
file. It is best to make them the very first thing in the file, preceded only by comments. You
could also use the ‘=D’ option to GCC, but it’s better if you make the source files indicate
their own meaning in a self-contained way.

This system exists to allow the library to conform to multiple standards. Although the
different standards are often described as supersets of each other, they are usually incom-
patible because larger standards require functions with names that smaller ones reserve to
the user program. This is not mere pedantry — it has been a problem in practice. For
instance, some non-GNU programs define functions named getline that have nothing to
do with this library’s getline. They would not be compilable if all features were enabled
indiscriminately.

This should not be used to verify that a program conforms to a limited standard. It is
insufficient for this purpose, as it will not protect you from including header files outside
the standard, or relying on semantics undefined within the standard.

_POSIX_SOURCE [Macro]
If you define this macro, then the functionality from the POSIX.1 standard (IEEE
Standard 1003.1) is available, as well as all of the ISO C facilities.

The state of _POSIX_SOURCE is irrelevant if you define the macro _POSIX_C_SOURCE
to a positive integer.

_POSIX_C_SOURCE [Macro]
Define this macro to a positive integer to control which POSIX functionality is made
available. The greater the value of this macro, the more functionality is made avail-
able.

If you define this macro to a value greater than or equal to 1, then the functionality
from the 1990 edition of the POSIX.1 standard (IEEE Standard 1003.1-1990) is made
available.
If you define this macro to a value greater than or equal to 2, then the functionality
from the 1992 edition of the POSIX.2 standard (IEEE Standard 1003.2-1992) is made
available.

8 The GNU C Library

If you define this macro to a value greater than or equal to 199309L, then the function-
ality from the 1993 edition of the POSIX.1b standard (IEEE Standard 1003.1b-1993)
is made available.

Greater values for _POSIX_C_SQURCE will enable future extensions. The POSIX stan-
dards process will define these values as necessary, and the GNU C Library should sup-
port them some time after they become standardized. The 1996 edition of POSIX.1
(ISO/IEC 9945-1: 1996) states that if you define _POSIX_C_SOURCE to a value greater
than or equal to 199506L, then the functionality from the 1996 edition is made avail-
able.

_BSD_SOURCE [Macro]
If you define this macro, functionality derived from 4.3 BSD Unix is included as well
as the ISO C, POSIX.1, and POSIX.2 material.

Some of the features derived from 4.3 BSD Unix conflict with the corresponding
features specified by the POSIX.1 standard. If this macro is defined, the 4.3 BSD
definitions take precedence over the POSIX definitions.

Due to the nature of some of the conflicts between 4.3 BSD and POSIX.1, you need
to use a special BSD compatibility library when linking programs compiled for BSD
compatibility. This is because some functions must be defined in two different ways,
one of them in the normal C library, and one of them in the compatibility library. If
your program defines _BSD_SOURCE, you must give the option ‘~1bsd-compat’ to the
compiler or linker when linking the program, to tell it to find functions in this special
compatibility library before looking for them in the normal C library.

_SVID_SOURCE [Macro]
If you define this macro, functionality derived from SVID is included as well as the
ISO C, POSIX.1, POSIX.2, and X/Open material.

_XOPEN_SOURCE [Macro]
_XOPEN_SOURCE_EXTENDED [Macro]
If you define this macro, functionality described in the X/Open Portability Guide is
included. This is a superset of the POSIX.1 and POSIX.2 functionality and in fact
_POSIX_SOURCE and _POSIX_C_SOURCE are automatically defined.
As the unification of all Unices, functionality only available in BSD and SVID is also
included.
If the macro _XOPEN_SOURCE_EXTENDED is also defined, even more functionality is
available. The extra functions will make all functions available which are necessary
for the X/Open Unix brand.

If the macro _XOPEN_SOURCE has the value 500 this includes all functionality described
so far plus some new definitions from the Single Unix Specification, version 2.

_LARGEFILE_SOURCE [Macro]
If this macro is defined some extra functions are available which rectify a few short-
comings in all previous standards. Specifically, the functions fseeko and ftello are
available. Without these functions the difference between the ISO C interface (fseek,
ftell) and the low-level POSIX interface (1seek) would lead to problems.

This macro was introduced as part of the Large File Support extension (LFS).

Chapter 1: Introduction 9

_LARGEFILE64_SOURCE [Macro]
If you define this macro an additional set of functions is made available which enables
32 bit systems to use files of sizes beyond the usual limit of 2GB. This interface is
not available if the system does not support files that large. On systems where the
natural file size limit is greater than 2GB (i.e., on 64 bit systems) the new functions
are identical to the replaced functions.

The new functionality is made available by a new set of types and functions which
replace the existing ones. The names of these new objects contain 64 to indicate the
intention, e.g., off_t vs. off64_t and fseeko vs. fseekob4.

This macro was introduced as part of the Large File Support extension (LFS). Tt is
a transition interface for the period when 64 bit offsets are not generally used (see
_FILE_OFFSET_BITS).

_FILE_OFFSET_BITS [Macro]
This macro determines which file system interface shall be used, one replacing the
other. Whereas _LARGEFILE64_SOURCE makes the 64 bit interface available as an
additional interface, _FILE_OFFSET_BITS allows the 64 bit interface to replace the
old interface.

If _FILE_OFFSET_BITS is undefined, or if it is defined to the value 32, nothing changes.
The 32 bit interface is used and types like off_t have a size of 32 bits on 32 bit
Systems.

If the macro is defined to the value 64, the large file interface replaces the old inter-
face. Ie., the functions are not made available under different names (as they are
with _LARGEFILE64_SOURCE). Instead the old function names now reference the new
functions, e.g., a call to fseeko now indeed calls fseeko64.

This macro should only be selected if the system provides mechanisms for handling
large files. On 64 bit systems this macro has no effect since the *64 functions are
identical to the normal functions.

This macro was introduced as part of the Large File Support extension (LFS).

_IS0C99_SOURCE [Macro]
Until the revised ISO C standard is widely adopted the new features are not auto-
matically enabled. The GNU libc nevertheless has a complete implementation of the
new standard and to enable the new features the macro _IS0C99_SOURCE should be
defined.

_GNU_SOURCE [Macro]
If you define this macro, everything is included: ISO C89, ISO C99, POSIX.1,
POSIX.2, BSD, SVID, X/Open, LFS, and GNU extensions. In the cases where
POSIX.1 conflicts with BSD, the POSIX definitions take precedence.

If you want to get the full effect of _GNU_SOURCE but make the BSD definitions take
precedence over the POSIX definitions, use this sequence of definitions:
#define _GNU_SOURCE

#define _BSD_SOURCE
#define _SVID_SOURCE

10 The GNU C Library

Note that if you do this, you must link your program with the BSD compatibility
library by passing the ‘-1bsd-compat’ option to the compiler or linker. Note: If you
forget to do this, you may get very strange errors at run time.

_REENTRANT [Macro]

_THREAD_SAFE [Macro]
If you define one of these macros, reentrant versions of several functions get declared.
Some of the functions are specified in POSIX.1c but many others are only available
on a few other systems or are unique to GNU libc. The problem is the delay in the
standardization of the thread safe C library interface.

Unlike on some other systems, no special version of the C library must be used for
linking. There is only one version but while compiling this it must have been specified
to compile as thread safe.

We recommend you use _GNU_SOURCE in new programs. If you don’t specify the ‘-ansi’
option to GCC and don’t define any of these macros explicitly, the effect is the same as
defining _POSIX_C_SOURCE to 2 and _POSIX_SOURCE, _SVID_SOURCE, and _BSD_SOURCE to
1.

When you define a feature test macro to request a larger class of features, it is harmless
to define in addition a feature test macro for a subset of those features. For example, if
you define _POSIX_C_SOURCE, then defining _POSIX_SOURCE as well has no effect. Likewise,
if you define _GNU_SOURCE, then defining either _POSIX_SOURCE or _POSIX_C_SOURCE or
_SVID_SOURCE as well has no effect.

Note, however, that the features of _BSD_SOURCE are not a subset of any of the other
feature test macros supported. This is because it defines BSD features that take precedence
over the POSIX features that are requested by the other macros. For this reason, defining
_BSD_SOURCE in addition to the other feature test macros does have an effect: it causes the
BSD features to take priority over the conflicting POSIX features.

1.4 Roadmap to the Manual

Here is an overview of the contents of the remaining chapters of this manual.

e Chapter 2 [Error Reporting], page 13, describes how errors detected by the library are
reported.

e Appendix A [C Language Facilities in the Library], page 815, contains information
about library support for standard parts of the C language, including things like the
sizeof operator and the symbolic constant NULL, how to write functions accepting
variable numbers of arguments, and constants describing the ranges and other proper-
ties of the numerical types. There is also a simple debugging mechanism which allows
you to put assertions in your code, and have diagnostic messages printed if the tests
fail.

e Chapter 3 [Virtual Memory Allocation And Paging], page 31, describes the GNU li-
brary’s facilities for managing and using virtual and real memory, including dynamic
allocation of virtual memory. If you do not know in advance how much memory your
program needs, you can allocate it dynamically instead, and manipulate it via pointers.

e Chapter 4 [Character Handling], page 65, contains information about character classi-
fication functions (such as isspace) and functions for performing case conversion.

Chapter 1: Introduction 11

e Chapter 5 [String and Array Utilities|, page 73, has descriptions of functions for ma-
nipulating strings (null-terminated character arrays) and general byte arrays, including
operations such as copying and comparison.

e Chapter 11 [Input/Output Overview|, page 223, gives an overall look at the input and
output facilities in the library, and contains information about basic concepts such as
file names.

e Chapter 12 [Input/Output on Streams|, page 229, describes I/O operations involving
streams (or FILE * objects). These are the normal C library functions from ‘stdio.h’.

e Chapter 13 [Low-Level Input/Output], page 299, contains information about I/0O op-
erations on file descriptors. File descriptors are a lower-level mechanism specific to the
Unix family of operating systems.

e Chapter 14 [File System Interface], page 347, has descriptions of operations on entire
files, such as functions for deleting and renaming them and for creating new directories.
This chapter also contains information about how you can access the attributes of a
file, such as its owner and file protection modes.

e Chapter 15 [Pipes and FIFOs|, page 389, contains information about simple inter-
process communication mechanisms. Pipes allow communication between two related
processes (such as between a parent and child), while FIFOs allow communication
between processes sharing a common file system on the same machine.

e Chapter 16 [Sockets], page 395, describes a more complicated interprocess communi-
cation mechanism that allows processes running on different machines to communicate
over a network. This chapter also contains information about Internet host addressing
and how to use the system network databases.

e Chapter 17 [Low-Level Terminal Interface], page 439, describes how you can change
the attributes of a terminal device. If you want to disable echo of characters typed by
the user, for example, read this chapter.

e Chapter 19 [Mathematics], page 473, contains information about the math library func-
tions. These include things like random-number generators and remainder functions on
integers as well as the usual trigonometric and exponential functions on floating-point
numbers.

e Chapter 20 [Low-Level Arithmetic Functions], page 517, describes functions for simple
arithmetic, analysis of floating-point values, and reading numbers from strings.

e Chapter 9 [Searching and Sorting], page 193, contains information about functions for
searching and sorting arrays. You can use these functions on any kind of array by
providing an appropriate comparison function.

e Chapter 10 [Pattern Matching], page 203, presents functions for matching regular ex-
pressions and shell file name patterns, and for expanding words as the shell does.

e Chapter 21 [Date and Time], page 549, describes functions for measuring both calendar
time and CPU time, as well as functions for setting alarms and timers.

e Chapter 6 [Character Set Handling], page 109, contains information about manipulating
characters and strings using character sets larger than will fit in the usual char data

type.

12 The GNU C Library

e Chapter 7 [Locales and Internationalization|, page 151, describes how selecting a par-
ticular country or language affects the behavior of the library. For example, the locale
affects collation sequences for strings and how monetary values are formatted.

e Chapter 23 [Non-Local Exits], page 603, contains descriptions of the setjmp and
longjmp functions. These functions provide a facility for goto-like jumps which can
jump from one function to another.

e Chapter 24 [Signal Handling], page 613, tells you all about signals—what they are, how
to establish a handler that is called when a particular kind of signal is delivered, and
how to prevent signals from arriving during critical sections of your program.

e Chapter 25 [The Basic Program/System Interface], page 657, tells how your programs
can access their command-line arguments and environment variables.

e Chapter 26 [Processes], page 699, contains information about how to start new processes
and run programs.

e Chapter 27 [Job Control], page 711, describes functions for manipulating process groups
and the controlling terminal. This material is probably only of interest if you are writing
a shell or other program which handles job control specially.

e Chapter 28 [System Databases and Name Service Switch], page 731, describes the ser-
vices which are available for looking up names in the system databases, how to deter-
mine which service is used for which database, and how these services are implemented
so that contributors can design their own services.

e Section 29.13 [User Database|, page 759, and Section 29.14 [Group Database], page 762,
tell you how to access the system user and group databases.

e Chapter 30 [System Management], page 769, describes functions for controlling and
getting information about the hardware and software configuration your program is
executing under.

e Chapter 31 [System Configuration Parameters], page 785, tells you how you can get
information about various operating system limits. Most of these parameters are pro-
vided for compatibility with POSIX.

e Appendix B [Summary of Library Facilities], page 831, gives a summary of all the
functions, variables, and macros in the library, with complete data types and function
prototypes, and says what standard or system each is derived from.

e Appendix D [Library Maintenance], page 943, explains how to build and install the
GNU C library on your system, how to report any bugs you might find, and how to
add new functions or port the library to a new system.

If you already know the name of the facility you are interested in, you can look it up
in Appendix B [Summary of Library Facilities], page 831. This gives you a summary of its
syntax and a pointer to where you can find a more detailed description. This appendix is
particularly useful if you just want to verify the order and type of arguments to a function,
for example. It also tells you what standard or system each function, variable, or macro is
derived from.

Chapter 2: Error Reporting 13

2 Error Reporting

Many functions in the GNU C library detect and report error conditions, and sometimes
your programs need to check for these error conditions. For example, when you open an
input file, you should verify that the file was actually opened correctly, and print an error
message or take other appropriate action if the call to the library function failed.

This chapter describes how the error reporting facility works. Your program should
include the header file ‘errno.h’ to use this facility.

2.1 Checking for Errors

Most library functions return a special value to indicate that they have failed. The special
value is typically -1, a null pointer, or a constant such as EOF that is defined for that
purpose. But this return value tells you only that an error has occurred. To find out what
kind of error it was, you need to look at the error code stored in the variable errno. This
variable is declared in the header file ‘errno.h’.

volatile int errmno [Variable]
The variable errno contains the system error number. You can change the value of
errno.

Since errno is declared volatile, it might be changed asynchronously by a signal
handler; see Section 24.4 [Defining Signal Handlers|, page 629. However, a properly
written signal handler saves and restores the value of errno, so you generally do not
need to worry about this possibility except when writing signal handlers.

The initial value of errno at program startup is zero. Many library functions are
guaranteed to set it to certain nonzero values when they encounter certain kinds of
errors. These error conditions are listed for each function. These functions do not
change errno when they succeed; thus, the value of errno after a successful call is
not necessarily zero, and you should not use errno to determine whether a call failed.
The proper way to do that is documented for each function. If the call failed, you
can examine errno.

Many library functions can set errno to a nonzero value as a result of calling other
library functions which might fail. You should assume that any library function might
alter errno when the function returns an error.

Portability Note: ISO C specifies errno as a “modifiable lvalue” rather than as a
variable, permitting it to be implemented as a macro. For example, its expansion
might involve a function call, like *_errno (). In fact, that is what it is on the GNU
system itself. The GNU library, on non-GNU systems, does whatever is right for the
particular system.

There are a few library functions, like sqrt and atan, that return a perfectly legiti-
mate value in case of an error, but also set errno. For these functions, if you want
to check to see whether an error occurred, the recommended method is to set errno
to zero before calling the function, and then check its value afterward.

All the error codes have symbolic names; they are macros defined in ‘errno.h’. The
names start with ‘E> and an upper-case letter or digit; you should consider names of this
form to be reserved names. See Section 1.3.3 [Reserved Names], page 5.

14 The GNU C Library

The error code values are all positive integers and are all distinct, with one exception:
EWOULDBLOCK and EAGAIN are the same. Since the values are distinct, you can use them
as labels in a switch statement; just don’t use both EWOULDBLOCK and EAGAIN. Your
program should not make any other assumptions about the specific values of these symbolic
constants.

The value of errno doesn’t necessarily have to correspond to any of these macros, since
some library functions might return other error codes of their own for other situations. The
only values that are guaranteed to be meaningful for a particular library function are the
ones that this manual lists for that function.

On non-GNU systems, almost any system call can return EFAULT if it is given an invalid
pointer as an argument. Since this could only happen as a result of a bug in your program,
and since it will not happen on the GNU system, we have saved space by not mentioning
EFAULT in the descriptions of individual functions.

In some Unix systems, many system calls can also return EFAULT if given as an argument a
pointer into the stack, and the kernel for some obscure reason fails in its attempt to extend
the stack. If this ever happens, you should probably try using statically or dynamically
allocated memory instead of stack memory on that system.

2.2 Error Codes

The error code macros are defined in the header file ‘errno.h’. All of them expand into
integer constant values. Some of these error codes can’t occur on the GNU system, but
they can occur using the GNU library on other systems.

int EPERM [Macro]
Operation not permitted; only the owner of the file (or other resource) or processes
with special privileges can perform the operation.

int ENOENT [Macro]
No such file or directory. This is a “file doesn’t exist” error for ordinary files that are
referenced in contexts where they are expected to already exist.

int ESRCH [Macro]
No process matches the specified process ID.

int EINTR [Macro]
Interrupted function call; an asynchronous signal occurred and prevented completion
of the call. When this happens, you should try the call again.

You can choose to have functions resume after a signal that is handled, rather than
failing with EINTR; see Section 24.5 [Primitives Interrupted by Signals|, page 639.

int EIO [Macro]
Input/output error; usually used for physical read or write errors.

int ENXIO [Macro]
No such device or address. The system tried to use the device represented by a file
you specified, and it couldn’t find the device. This can mean that the device file was
installed incorrectly, or that the physical device is missing or not correctly attached
to the computer.

Chapter 2: Error Reporting 15

int

int

int

int

int

int

int

int

int

int

int

int

E2BIG [Macro]
Argument list too long; used when the arguments passed to a new program being
executed with one of the exec functions (see Section 26.5 [Executing a File], page 702)
occupy too much memory space. This condition never arises in the GNU system.

ENOEXEC [Macro]
Invalid executable file format. This condition is detected by the exec functions; see
Section 26.5 [Executing a File], page 702.

EBADF [Macro]
Bad file descriptor; for example, I/O on a descriptor that has been closed or reading
from a descriptor open only for writing (or vice versa).

ECHILD [Macro]
There are no child processes. This error happens on operations that are supposed to
manipulate child processes, when there aren’t any processes to manipulate.

EDEADLK [Macro]
Deadlock avoided; allocating a system resource would have resulted in a deadlock
situation. The system does not guarantee that it will notice all such situations.
This error means you got lucky and the system noticed; it might just hang. See
Section 13.15 [File Locks], page 341, for an example.

ENOMEM [Macro]
No memory available. The system cannot allocate more virtual memory because its
capacity is full.

EACCES [Macro]
Permission denied; the file permissions do not allow the attempted operation.

EFAULT [Macro]
Bad address; an invalid pointer was detected. In the GNU system, this error never
happens; you get a signal instead.

ENOTBLK [Macro]
A file that isn’t a block special file was given in a situation that requires one. For
example, trying to mount an ordinary file as a file system in Unix gives this error.

EBUSY [Macro]
Resource busy; a system resource that can’t be shared is already in use. For example,
if you try to delete a file that is the root of a currently mounted filesystem, you get
this error.

EEXIST [Macro]
File exists; an existing file was specified in a context where it only makes sense to
specify a new file.

EXDEV [Macro]
An attempt to make an improper link across file systems was detected. This happens
not only when you use link (see Section 14.4 [Hard Links], page 360) but also when
you rename a file with rename (see Section 14.7 [Renaming Files], page 364).

16

int

int

int

int

int

int

int

int

int

int

int

int

The GNU C Library

ENODEV [Macro]
The wrong type of device was given to a function that expects a particular sort of
device.

ENOTDIR [Macro]
A file that isn’t a directory was specified when a directory is required.

EISDIR [Macro]
File is a directory; you cannot open a directory for writing, or create or remove hard
links to it.

EINVAL [Macro]
Invalid argument. This is used to indicate various kinds of problems with passing the
wrong argument to a library function.

EMFILE [Macro]
The current process has too many files open and can’t open any more. Duplicate
descriptors do count toward this limit.

In BSD and GNU, the number of open files is controlled by a resource limit that
can usually be increased. If you get this error, you might want to increase the
RLIMIT_NOFILE limit or make it unlimited; see Section 22.2 [Limiting Resource Us-
agel, page 585.

ENFILE [Macro]
There are too many distinct file openings in the entire system. Note that any number
of linked channels count as just one file opening; see Section 13.5.1 [Linked Channels],
page 310. This error never occurs in the GNU system.

ENOTTY [Macro]
Inappropriate I/O control operation, such as trying to set terminal modes on an
ordinary file.

ETXTBSY [Macro]
An attempt to execute a file that is currently open for writing, or write to a file that
is currently being executed. Often using a debugger to run a program is considered
having it open for writing and will cause this error. (The name stands for “text file
busy”.) This is not an error in the GNU system; the text is copied as necessary.

EFBIG [Macro]
File too big; the size of a file would be larger than allowed by the system.

ENOSPC [Macro]
No space left on device; write operation on a file failed because the disk is full.

ESPIPE [Macro]
Invalid seek operation (such as on a pipe).

EROFS [Macro]
An attempt was made to modify something on a read-only file system.

Chapter 2: Error Reporting 17

int EMLINK [Macro]
Too many links; the link count of a single file would become too large. rename can
cause this error if the file being renamed already has as many links as it can take (see
Section 14.7 [Renaming Files], page 364).

int EPIPE [Macro]
Broken pipe; there is no process reading from the other end of a pipe. Every library
function that returns this error code also generates a SIGPIPE signal; this signal
terminates the program if not handled or blocked. Thus, your program will never
actually see EPIPE unless it has handled or blocked SIGPIPE.

int EDOM [Macro]
Domain error; used by mathematical functions when an argument value does not fall
into the domain over which the function is defined.

int ERANGE [Macro]
Range error; used by mathematical functions when the result value is not repre-
sentable because of overflow or underflow.

int EAGAIN [Macro]
Resource temporarily unavailable; the call might work if you try again later. The
macro EWOULDBLOCK is another name for EAGAIN; they are always the same in the
GNU C library.

This error can happen in a few different situations:

e An operation that would block was attempted on an object that has non-blocking
mode selected. Trying the same operation again will block until some external
condition makes it possible to read, write, or connect (whatever the operation).
You can use select to find out when the operation will be possible; see Sec-
tion 13.8 [Waiting for Input or Output], page 316.

Portability Note: In many older Unix systems, this condition was indicated by
EWOULDBLOCK, which was a distinct error code different from EAGAIN. To make
your program portable, you should check for both codes and treat them the same.

e A temporary resource shortage made an operation impossible. fork can return
this error. It indicates that the shortage is expected to pass, so your program
can try the call again later and it may succeed. It is probably a good idea to
delay for a few seconds before trying it again, to allow time for other processes
to release scarce resources. Such shortages are usually fairly serious and affect
the whole system, so usually an interactive program should report the error to
the user and return to its command loop.

int EWOULDBLOCK [Macro]
In the GNU C library, this is another name for EAGAIN (above). The values are always
the same, on every operating system.

C libraries in many older Unix systems have EWOULDBLOCK as a separate error code.
int EINPROGRESS [Macro]

An operation that cannot complete immediately was initiated on an object that has
non-blocking mode selected. Some functions that must always block (such as connect;

18

int

int

int

int

int

int

int

int

int

int

int

int

The GNU C Library

see Section 16.9.1 [Making a Connection], page 419) never return EAGAIN. Instead,
they return EINPROGRESS to indicate that the operation has begun and will take some
time. Attempts to manipulate the object before the call completes return EALREADY.
You can use the select function to find out when the pending operation has com-
pleted; see Section 13.8 [Waiting for Input or Output], page 316.

EALREADY [Macro]
An operation is already in progress on an object that has non-blocking mode selected.

ENQTSOCK [Macro]
A file that isn’t a socket was specified when a socket is required.

EMSGSIZE [Macro]
The size of a message sent on a socket was larger than the supported maximum size.

EPROTOTYPE [Macro]
The socket type does not support the requested communications protocol.

ENOPROTOOPT [Macro]
You specified a socket option that doesn’t make sense for the particular protocol being
used by the socket. See Section 16.12 [Socket Options], page 435.

EPROTONOSUPPORT [Macro]
The socket domain does not support the requested communications protocol (perhaps
because the requested protocol is completely invalid). See Section 16.8.1 [Creating a
Socket], page 417.

ESOCKTNOSUPPORT [Macro]
The socket type is not supported.

EOPNOTSUPP [Macro]
The operation you requested is not supported. Some socket functions don’t make sense
for all types of sockets, and others may not be implemented for all communications
protocols. In the GNU system, this error can happen for many calls when the object
does not support the particular operation; it is a generic indication that the server
knows nothing to do for that call.

EPFNOSUPPORT [Macro]
The socket communications protocol family you requested is not supported.

EAFNOSUPPORT [Macro]
The address family specified for a socket is not supported; it is inconsistent with the
protocol being used on the socket. See Chapter 16 [Sockets], page 395.

EADDRINUSE [Macro]
The requested socket address is already in use. See Section 16.3 [Socket Addresses],
page 397.

EADDRNOTAVAIL [Macro]
The requested socket address is not available; for example, you tried to give a socket
a name that doesn’t match the local host name. See Section 16.3 [Socket Addresses],
page 397.

Chapter 2: Error Reporting 19

int

int

int

int

int

int

int

int

int

int

int

int

int

ENETDOWN [Macro]
A socket operation failed because the network was down.

ENETUNREACH [Macro]
A socket operation failed because the subnet containing the remote host was unreach-
able.

ENETRESET [Macro]
A network connection was reset because the remote host crashed.

ECONNABORTED [Macro]
A network connection was aborted locally.

ECONNRESET [Macro]
A network connection was closed for reasons outside the control of the local host,
such as by the remote machine rebooting or an unrecoverable protocol violation.

ENOBUFS [Macro]
The kernel’s buffers for I/O operations are all in use. In GNU, this error is always
synonymous with ENOMEM; you may get one or the other from network operations.

EISCONN [Macro]
You tried to connect a socket that is already connected. See Section 16.9.1 [Making
a Connection], page 419.

ENOTCONN [Macro]
The socket is not connected to anything. You get this error when you try to trans-
mit data over a socket, without first specifying a destination for the data. For a
connectionless socket (for datagram protocols, such as UDP), you get EDESTADDRREQ
instead.

EDESTADDRREQ [Macro]
No default destination address was set for the socket. You get this error when you try
to transmit data over a connectionless socket, without first specifying a destination
for the data with connect.

ESHUTDOWN [Macro]
The socket has already been shut down.

ETOOMANYREFS [Macro]
77

ETIMEDOUT [Macro]

A socket operation with a specified timeout received no response during the timeout
period.

ECONNREFUSED [Macro]
A remote host refused to allow the network connection (typically because it is not
running the requested service).

20

int

int

int

int

int

int

int

int

int

int

int

int

int

int

The GNU C Library

ELOOP [Macro]
Too many levels of symbolic links were encountered in looking up a file name. This
often indicates a cycle of symbolic links.

ENAMETOOLONG [Macro]
Filename too long (longer than PATH_MAX; see Section 31.6 [Limits on File System
Capacity], page 797) or host name too long (in gethostname or sethostname; see
Section 30.1 [Host Identification], page 769).

EHOSTDOWN [Macro]
The remote host for a requested network connection is down.

EHOSTUNREACH [Macro]
The remote host for a requested network connection is not reachable.

ENOTEMPTY [Macro]
Directory not empty, where an empty directory was expected. Typically, this error
occurs when you are trying to delete a directory.

EPROCLIM [Macro]
This means that the per-user limit on new process would be exceeded by an attempted
fork. See Section 22.2 [Limiting Resource Usage], page 585, for details on the RLIMIT_
NPROC limit.

EUSERS [Macro]
The file quota system is confused because there are too many users.

EDQUQOT [Macro]
The user’s disk quota was exceeded.

ESTALE [Macro]
Stale NFS file handle. This indicates an internal confusion in the NFS system which
is due to file system rearrangements on the server host. Repairing this condition
usually requires unmounting and remounting the NFS file system on the local host.

EREMOTE [Macro]
An attempt was made to NFS-mount a remote file system with a file name that already
specifies an NFS-mounted file. (This is an error on some operating systems, but we
expect it to work properly on the GNU system, making this error code impossible.)

EBADRPC [Macro]
777

ERPCMISMATCH [Macro]
777

EPROGUNAVATL [Macro]
777

EPROGMISMATCH [Macro]

777

Chapter 2: Error Reporting 21

int

int

int

int

int

int

int

int

int

EPROCUNAVAIL [Macro]
777
ENOLCK [Macro]

No locks available. This is used by the file locking facilities; see Section 13.15 [File
Locks], page 341. This error is never generated by the GNU system, but it can result
from an operation to an NFS server running another operating system.

EFTYPE [Macro]
Inappropriate file type or format. The file was the wrong type for the operation, or
a data file had the wrong format.

On some systems chmod returns this error if you try to set the sticky bit on a non-
directory file; see Section 14.9.7 [Assigning File Permissions|, page 376.

EAUTH [Macro]
777

ENEEDAUTH [Macro]
777

ENOSYS [Macro]

Function not implemented. This indicates that the function called is not implemented
at all, either in the C library itself or in the operating system. When you get this
error, you can be sure that this particular function will always fail with ENOSYS unless
you install a new version of the C library or the operating system.

ENQTSUP [Macro]
Not supported. A function returns this error when certain parameter values are valid,
but the functionality they request is not available. This can mean that the function
does not implement a particular command or option value or flag bit at all. For
functions that operate on some object given in a parameter, such as a file descriptor
or a port, it might instead mean that only that specific object (file descriptor, port,
etc.) is unable to support the other parameters given; different file descriptors might
support different ranges of parameter values.

If the entire function is not available at all in the implementation, it returns ENOSYS
instead.

EILSEQ [Macro]
While decoding a multibyte character the function came along an invalid or an in-
complete sequence of bytes or the given wide character is invalid.

EBACKGROUND [Macro]

In the GNU system, servers supporting the term protocol return this error for certain
operations when the caller is not in the foreground process group of the terminal.
Users do not usually see this error because functions such as read and write translate
it into a SIGTTIN or SIGTTOU signal. See Chapter 27 [Job Control], page 711, for
information on process groups and these signals.

22

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

The GNU C Library

EDIED [Macro]
In the GNU system, opening a file returns this error when the file is translated by a
program and the translator program dies while starting up, before it has connected
to the file.

ED [Macro]
The experienced user will know what is wrong.

EGREGIOUS [Macro]
You did what?

EIEIO [Macro]
Go home and have a glass of warm, dairy-fresh milk.

EGRATUITOUS [Macro]
This error code has no purpose.

EBADMSG [Macro]
EIDRM [Macro]
EMULTIHOP [Macro]
ENODATA [Macro]
ENOLINK [Macro]
ENOMSG [Macro]
ENOSR [Macro]
ENOSTR [Macro]
EOVERFLOW [Macro]
EPROTO [Macro]
ETIME [Macro]
ECANCELED [Macro]

Operation canceled; an asynchronous operation was canceled before it completed. See
Section 13.10 [Perform I/O Operations in Parallel], page 320. When you call aio_
cancel, the normal result is for the operations affected to complete with this error;
see Section 13.10.4 [Cancellation of ATO Operations], page 330.

The following error codes are defined by the Linuz/i386 kernel. They are not yet docu-
mented.

Chapter 2: Error Reporting

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int

ERESTART
ECHRNG
EL2NSYNC
EL3HLT
EL3RST
ELNRNG
EUNATCH
ENOCSI
EL2HLT
EBADE
EBADR
EXFULL
ENOANO
EBADRQC
EBADSLT
EDEADLOCK
EBFONT
ENONET
ENOPKG
EADV
ESRMNT
ECOMM
EDOTDOT
ENOTUNIQ
EBADFD
EREMCHG
ELIBACC
ELIBBAD
ELIBSCN
ELIBMAX
ELIBEXEC
ESTRPIPE
EUCLEAN

23

24

int
int
int
int
int
int
int
int
int
int
int
int
2.3
The 1

The GNU C Library

ENOTNAM [Macro]
ENAVAIL [Macro]
EISNAM [Macro]
EREMOTEIO [Macro]
ENOMEDIUM [Macro]
EMEDIUMTYPE [Macro]
ENOKEY [Macro]
EKEYEXPIRED [Macro]
EKEYREVOKED [Macro]
EKEYREJECTED [Macro]
EOWNERDEAD [Macro]
ENOTRECOVERABLE [Macro]

Error Messages

ibrary has functions and variables designed to make it easy for your program to report

informative error messages in the customary format about the failure of a library call. The
functions strerror and perror give you the standard error message for a given error code;
the variable program_invocation_short_name gives you convenient access to the name of

the p

char

char

rogram that encountered the error.

* strerror (int errnum) [Function]
The strerror function maps the error code (see Section 2.1 [Checking for Errors|,
page 13) specified by the errnum argument to a descriptive error message string. The
return value is a pointer to this string.

The value errnum normally comes from the variable errno.

You should not modify the string returned by strerror. Also, if you make subsequent
calls to strerror, the string might be overwritten. (But it’s guaranteed that no
library function ever calls strerror behind your back.)

The function strerror is declared in ‘string.h’.

* strerror_r (int errnum, char *buf, size_t n) [Function]
The strerror_r function works like strerror but instead of returning the error
message in a statically allocated buffer shared by all threads in the process, it returns
a private copy for the thread. This might be either some permanent global data or a
message string in the user supplied buffer starting at buf with the length of n bytes.

At most n characters are written (including the NUL byte) so it is up to the user to
select the buffer large enough.

This function should always be used in multi-threaded programs since there is no way
to guarantee the string returned by strerror really belongs to the last call of the
current thread.

This function strerror_r is a GNU extension and it is declared in ‘string.h’.

Chapter 2: Error Reporting 25

void perror (const char *message) [Function]
This function prints an error message to the stream stderr; see Section 12.2 [Standard
Streams|, page 229. The orientation of stderr is not changed.

If you call perror with a message that is either a null pointer or an empty string,
perror just prints the error message corresponding to errno, adding a trailing new-
line.

If you supply a non-null message argument, then perror prefixes its output with this
string. It adds a colon and a space character to separate the message from the error
string corresponding to errno.

The function perror is declared in ‘stdio.h’.

strerror and perror produce the exact same message for any given error code; the
precise text varies from system to system. On the GNU system, the messages are fairly
short; there are no multi-line messages or embedded newlines. Each error message begins
with a capital letter and does not include any terminating punctuation.

Compatibility Note: The strerror function was introduced in ISO C89. Many older C
systems do not support this function yet.

Many programs that don’t read input from the terminal are designed to exit if any
system call fails. By convention, the error message from such a program should start with
the program’s name, sans directories. You can find that name in the variable program_
invocation_short_name; the full file name is stored the variable program_invocation_
name.

char * program_invocation_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process. It is the same as argv[0]. Note that this is not necessarily a
useful file name; often it contains no directory names. See Section 25.1 [Program
Arguments|, page 657.

char * program_invocation_short_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process, with directory names removed. (That is to say, it is the same as
program_invocation_name minus everything up to the last slash, if any.)

The library initialization code sets up both of these variables before calling main.

Portability Note: These two variables are GNU extensions. If you want your program to
work with non-GNU libraries, you must save the value of argv[0] in main, and then strip
off the directory names yourself. We added these extensions to make it possible to write
self-contained error-reporting subroutines that require no explicit cooperation from main.

Here is an example showing how to handle failure to open a file correctly. The function
open_sesame tries to open the named file for reading and returns a stream if successful. The
fopen library function returns a null pointer if it couldn’t open the file for some reason. In
that situation, open_sesame constructs an appropriate error message using the strerror
function, and terminates the program. If we were going to make some other library calls
before passing the error code to strerror, we’'d have to save it in a local variable instead,
because those other library functions might overwrite errno in the meantime.

26 The GNU C Library

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

FILE =*
open_sesame (char *name)

{
FILE *stream;

errno = 0;
stream = fopen (name, "r");
if (stream == NULL)
{
fprintf (stderr, "%s: Couldn’t open file ¥%s; %s\n",
program_invocation_short_name, name, strerror (errno));
exit (EXIT_FAILURE);
}
else
return stream;

}

Using perror has the advantage that the function is portable and available on all systems
implementing ISO C. But often the text perror generates is not what is wanted and there
is no way to extend or change what perror does. The GNU coding standard, for instance,
requires error messages to be preceded by the program name and programs which read
some input files should should provide information about the input file name and the line
number in case an error is encountered while reading the file. For these occasions there are
two functions available which are widely used throughout the GNU project. These functions
are declared in ‘error.h’.

void error (int status, int errnum, const char *format, ...) [Function]
The error function can be used to report general problems during program execution.
The format argument is a format string just like those given to the printf family of
functions. The arguments required for the format can follow the format parameter.
Just like perror, error also can report an error code in textual form. But unlike
perror the error value is explicitly passed to the function in the errnum parameter.
This elimintates the problem mentioned above that the error reporting function must
be called immediately after the function causing the error since otherwise errno might
have a different value.

The error prints first the program name. If the application defined a global variable
error_print_progname and points it to a function this function will be called to print
the program name. Otherwise the string from the global variable program_name is
used. The program name is followed by a colon and a space which in turn is followed
by the output produced by the format string. If the errnum parameter is non-zero the
format string output is followed by a colon and a space, followed by the error message
for the error code errnum. In any case is the output terminated with a newline.

The output is directed to the stderr stream. If the stderr wasn’t oriented before
the call it will be narrow-oriented afterwards.

The function will return unless the status parameter has a non-zero value. In this case
the function will call exit with the status value for its parameter and therefore never

Chapter 2: Error Reporting 27

return. If error returns the global variable error_message_count is incremented by
one to keep track of the number of errors reported.

void error_at_line (int status, int errnum, const char *fname, [Function]
unsigned int 1ineno, const char *format, .. .)
The error_at_line function is very similar to the error function. The only dif-
ference are the additional parameters fname and lineno. The handling of the other
parameters is identical to that of error except that between the program name and
the string generated by the format string additional text is inserted.

Directly following the program name a colon, followed by the file name pointer to by
fname, another colon, and a value of lineno is printed.

This additional output of course is meant to be used to locate an error in an input
file (like a programming language source code file etc).

If the global variable error_one_per_line is set to a non-zero value error_at_line
will avoid printing consecutive messages for the same file anem line. Repetition which
are not directly following each other are not caught.

Just like error this function only returned if status is zero. Otherwise exit is called
with the non-zero value. If error returns the global variable error_message_count
is incremented by one to keep track of the number of errors reported.

As mentioned above the error and error_at_line functions can be customized by
defining a variable named error_print_progname.

void (* error_print_progname) (void) [Variable]
If the error_print_progname variable is defined to a non-zero value the function
pointed to is called by error or error_at_line. It is expected to print the program
name or do something similarly useful.

The function is expected to be print to the stderr stream and must be able to handle
whatever orientation the stream has.

The variable is global and shared by all threads.

unsigned int error_message_count [Variable]
The error_message_count variable is incremented whenever one of the functions
error or error_at_line returns. The variable is global and shared by all threads.

int error_one_per_line [Variable]
The error_one_per_line variable influences only error_at_line. Normally the
error_at_line function creates output for every invocation. If error_one_per_
line is set to a non-zero value error_at_line keeps track of the last file name and
line number for which an error was reported and avoid directly following messages for
the same file and line. This variable is global and shared by all threads.

A program which read some input file and reports errors in it could look like this:
{
char *line = NULL;
size_t len = 0;
unsigned int lineno = 0;

28 The GNU C Library

error_message_count = 0;
while (! feof_unlocked (fp))

{
ssize_t n = getline (&line, &len, fp);
if (n <= 0)
/* End of file or error. */
break;
++lineno;

/* Process the line. */

if (Detect error in line)
error_at_line (0, errval, filename, lineno,
"some error text %s", some_variable);

}

if (error_message_count != 0)
error (EXIT_FAILURE, O, "/u errors found", error_message_count);
}

error and error_at_line are clearly the functions of choice and enable the programmer
to write applications which follow the GNU coding standard. The GNU libc additionally
contains functions which are used in BSD for the same purpose. These functions are declared
in ‘err.h’. It is generally advised to not use these functions. They are included only for
compatibility.

void warn (const char *format, ...) [Function]
The warn function is roughly equivalent to a call like

error (0, errno, format, the parameters)

except that the global variables error respects and modifies are not used.

void vwarn (const char *format, va_list) [Function]
The vwarn function is just like warn except that the parameters for the handling of
the format string format are passed in as an value of type va_list.

void warnx (const char *format, ...) [Function]
The warnx function is roughly equivalent to a call like

error (0, 0, format, the parameters)

except that the global variables error respects and modifies are not used. The dif-
ference to warn is that no error number string is printed.

void vwarnx (const char *format, va_list) [Function]
The vwarnx function is just like warnx except that the parameters for the handling
of the format string format are passed in as an value of type va_list.

void err (int status, const char *format, ...) [Function]
The err function is roughly equivalent to a call like

error (status, errno, format, the parameters)

except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero.

Chapter 2: Error Reporting 29

void verr (int status, const char *format, va_list) [Function]
The verr function is just like err except that the parameters for the handling of the
format string format are passed in as an value of type va_list.

void errx (int status, const char *format, ...) [Function]
The errx function is roughly equivalent to a call like

error (status, 0, format, the parameters)

except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero. The difference to err is that no error
number string is printed.

void verrx (int status, const char *format, va_list) [Function]
The verrx function is just like errx except that the parameters for the handling of
the format string format are passed in as an value of type va_list.

30

The GNU C Library

Chapter 3: Virtual Memory Allocation And Paging 31

3 Virtual Memory Allocation And Paging

This chapter describes how processes manage and use memory in a system that uses the
GNU C library.

The GNU C Library has several functions for dynamically allocating virtual memory in
various ways. They vary in generality and in efficiency. The library also provides functions
for controlling paging and allocation of real memory.

Memory mapped I/O is not discussed in this chapter. See Section 13.7 [Memory-mapped
1/0], page 312.

3.1 Process Memory Concepts

One of the most basic resources a process has available to it is memory. There are a lot of
different ways systems organize memory, but in a typical one, each process has one linear
virtual address space, with addresses running from zero to some huge maximum. It need
not be contiguous; i.e. not all of these addresses actually can be used to store data.

The virtual memory is divided into pages (4 kilobytes is typical). Backing each page
of virtual memory is a page of real memory (called a frame) or some secondary storage,
usually disk space. The disk space might be swap space or just some ordinary disk file.
Actually, a page of all zeroes sometimes has nothing at all backing it — there’s just a flag
saying it is all zeroes.

The same frame of real memory or backing store can back multiple virtual pages be-
longing to multiple processes. This is normally the case, for example, with virtual memory
occupied by GNU C library code. The same real memory frame containing the printf
function backs a virtual memory page in each of the existing processes that has a printf
call in its program.

In order for a program to access any part of a virtual page, the page must at that moment
be backed by (“connected t0”) a real frame. But because there is usually a lot more virtual
memory than real memory, the pages must move back and forth between real memory and
backing store regularly, coming into real memory when a process needs to access them and
then retreating to backing store when not needed anymore. This movement is called paging.

When a program attempts to access a page which is not at that moment backed by
real memory, this is known as a page fault. When a page fault occurs, the kernel suspends
the process, places the page into a real page frame (this is called “paging in” or “faulting
in”), then resumes the process so that from the process’ point of view, the page was in
real memory all along. In fact, to the process, all pages always seem to be in real memory.
Except for one thing: the elapsed execution time of an instruction that would normally be
a few nanoseconds is suddenly much, much, longer (because the kernel normally has to do
I/O to complete the page-in). For programs sensitive to that, the functions described in
Section 3.4 [Locking Pages], page 61 can control it.

Within each virtual address space, a process has to keep track of what is at which
addresses, and that process is called memory allocation. Allocation usually brings to mind
meting out scarce resources, but in the case of virtual memory, that’s not a major goal,
because there is generally much more of it than anyone needs. Memory allocation within a
process is mainly just a matter of making sure that the same byte of memory isn’t used to
store two different things.

32 The GNU C Library

Processes allocate memory in two major ways: by exec and programmatically. Actually,
forking is a third way, but it’s not very interesting. See Section 26.4 [Creating a Process],
page 700.

Exec is the operation of creating a virtual address space for a process, loading its basic
program into it, and executing the program. It is done by the “exec” family of functions
(e.g. execl). The operation takes a program file (an executable), it allocates space to
load all the data in the executable, loads it, and transfers control to it. That data is most
notably the instructions of the program (the text), but also literals and constants in the
program and even some variables: C variables with the static storage class (see Section 3.2.1
[Memory Allocation in C Programs], page 33).

Once that program begins to execute, it uses programmatic allocation to gain additional
memory. In a C program with the GNU C library, there are two kinds of programmatic
allocation: automatic and dynamic. See Section 3.2.1 [Memory Allocation in C Programs],
page 33.

Memory-mapped I/0 is another form of dynamic virtual memory allocation. Mapping
memory to a file means declaring that the contents of certain range of a process’ addresses
shall be identical to the contents of a specified regular file. The system makes the virtual
memory initially contain the contents of the file, and if you modify the memory, the system
writes the same modification to the file. Note that due to the magic of virtual memory and
page faults, there is no reason for the system to do I/O to read the file, or allocate real
memory for its contents, until the program accesses the virtual memory. See Section 13.7
[Memory-mapped 1/0], page 312.

Just as it programmatically allocates memory, the program can programmatically deal-
locate (free) it. You can’t free the memory that was allocated by exec. When the program
exits or execs, you might say that all its memory gets freed, but since in both cases the ad-
dress space ceases to exist, the point is really moot. See Section 25.6 [Program Termination],
page 695.

A process’ virtual address space is divided into segments. A segment is a contiguous
range of virtual addresses. Three important segments are:

The text segment contains a program’s instructions and literals and static constants.
It is allocated by exec and stays the same size for the life of the virtual address space.

e The data segment is working storage for the program. It can be preallocated and
preloaded by exec and the process can extend or shrink it by calling functions as
described in See Section 3.3 [Resizing the Data Segment|, page 60. Its lower end is
fixed.

e The stack segment contains a program stack. It grows as the stack grows, but doesn’t
shrink when the stack shrinks.

3.2 Allocating Storage For Program Data

This section covers how ordinary programs manage storage for their data, including the
famous malloc function and some fancier facilities special the GNU C library and GNU
Compiler.

Chapter 3: Virtual Memory Allocation And Paging 33

3.2.1 Memory Allocation in C Programs

The C language supports two kinds of memory allocation through the variables in C pro-
grams:

e Static allocation is what happens when you declare a static or global variable. Each
static or global variable defines one block of space, of a fixed size. The space is allocated
once, when your program is started (part of the exec operation), and is never freed.

e Automatic allocation happens when you declare an automatic variable, such as a func-
tion argument or a local variable. The space for an automatic variable is allocated
when the compound statement containing the declaration is entered, and is freed when
that compound statement is exited.

In GNU C, the size of the automatic storage can be an expression that varies. In other
C implementations, it must be a constant.

A third important kind of memory allocation, dynamic allocation, is not supported by
C variables but is available via GNU C library functions.

3.2.1.1 Dynamic Memory Allocation

Dynamic memory allocation is a technique in which programs determine as they are running
where to store some information. You need dynamic allocation when the amount of memory
you need, or how long you continue to need it, depends on factors that are not known before
the program runs.

For example, you may need a block to store a line read from an input file; since there is
no limit to how long a line can be, you must allocate the memory dynamically and make it
dynamically larger as you read more of the line.

Or, you may need a block for each record or each definition in the input data; since
you can’t know in advance how many there will be, you must allocate a new block for each
record or definition as you read it.

When you use dynamic allocation, the allocation of a block of memory is an action that
the program requests explicitly. You call a function or macro when you want to allocate
space, and specify the size with an argument. If you want to free the space, you do so by
calling another function or macro. You can do these things whenever you want, as often as
you want.

Dynamic allocation is not supported by C variables; there is no storage class “dynamic”,
and there can never be a C variable whose value is stored in dynamically allocated space.
The only way to get dynamically allocated memory is via a system call (which is generally
via a GNU C library function call), and the only way to refer to dynamically allocated
space is through a pointer. Because it is less convenient, and because the actual process of
dynamic allocation requires more computation time, programmers generally use dynamic
allocation only when neither static nor automatic allocation will serve.

For example, if you want to allocate dynamically some space to hold a struct foobar,
you cannot declare a variable of type struct foobar whose contents are the dynamically
allocated space. But you can declare a variable of pointer type struct foobar * and assign
it the address of the space. Then you can use the operators ‘*’ and ‘-> on this pointer
variable to refer to the contents of the space:

{

34 The GNU C Library

struct foobar *ptr
= (struct foobar *) malloc (sizeof (struct foobar));
ptr->name = x;
ptr->next = current_foobar;
current_foobar = ptr;

}

3.2.2 Unconstrained Allocation

The most general dynamic allocation facility is malloc. It allows you to allocate blocks of
memory of any size at any time, make them bigger or smaller at any time, and free the
blocks individually at any time (or never).

3.2.2.1 Basic Memory Allocation

To allocate a block of memory, callmalloc. The prototype for this function is in ‘stdlib.h’.

void * malloc (size_t size) [Function]
This function returns a pointer to a newly allocated block size bytes long, or a null
pointer if the block could not be allocated.

The contents of the block are undefined; you must initialize it yourself (or use calloc
instead; see Section 3.2.2.5 [Allocating Cleared Space|, page 37). Normally you would cast
the value as a pointer to the kind of object that you want to store in the block. Here
we show an example of doing so, and of initializing the space with zeros using the library
function memset (see Section 5.4 [Copying and Concatenation], page 77):

struct foo *ptr;

ptr = (struct foo *) malloc (sizeof (struct foo));
if (ptr == 0) abort ();
memset (ptr, O, sizeof (struct foo));

You can store the result of malloc into any pointer variable without a cast, because
ISO C automatically converts the type void * to another type of pointer when necessary.
But the cast is necessary in contexts other than assignment operators or if you might want
your code to run in traditional C.

Remember that when allocating space for a string, the argument to malloc must be one
plus the length of the string. This is because a string is terminated with a null character
that doesn’t count in the “length” of the string but does need space. For example:

char *ptr;

ptr = (char *) malloc (length + 1);

See Section 5.1 [Representation of Strings|, page 73, for more information about this.

3.2.2.2 Examples of malloc

If no more space is available, malloc returns a null pointer. You should check the value of
every call to malloc. It is useful to write a subroutine that calls malloc and reports an
error if the value is a null pointer, returning only if the value is nonzero. This function is
conventionally called xmalloc. Here it is:

void *
xmalloc (size_t size)

Chapter 3: Virtual Memory Allocation And Paging 35

{
register void *value = malloc (size);
if (value == 0)
fatal ("virtual memory exhausted");
return value;

}
Here is a real example of using malloc (by way of xmalloc). The function savestring
will copy a sequence of characters into a newly allocated null-terminated string:

char *
savestring (const char *ptr, size_t len)

{

register char *value = (char *) xmalloc (len + 1);
value[len] = ’\0’;
return (char *) memcpy (value, ptr, len);

}

The block that malloc gives you is guaranteed to be aligned so that it can hold any type
of data. In the GNU system, the address is always a multiple of eight on most systems,
and a multiple of 16 on 64-bit systems. Only rarely is any higher boundary (such as a
page boundary) necessary; for those cases, use memalign, posix_memalign or valloc (see
Section 3.2.2.7 [Allocating Aligned Memory Blocks], page 37).

Note that the memory located after the end of the block is likely to be in use for something
else; perhaps a block already allocated by another call to malloc. If you attempt to treat
the block as longer than you asked for it to be, you are liable to destroy the data that
malloc uses to keep track of its blocks, or you may destroy the contents of another block.
If you have already allocated a block and discover you want it to be bigger, use realloc
(see Section 3.2.2.4 [Changing the Size of a Block], page 36).

3.2.2.3 Freeing Memory Allocated with malloc

When you no longer need a block that you got with malloc, use the function free to make
the block available to be allocated again. The prototype for this function is in ‘stdlib.h’.

void free (void *ptr) [Function]
The free function deallocates the block of memory pointed at by ptr.

void cfree (void *ptr) [Function]
This function does the same thing as free. It’s provided for backward compatibility
with SunOS; you should use free instead.

Freeing a block alters the contents of the block. Do not expect to find any data (such as
a pointer to the next block in a chain of blocks) in the block after freeing it. Copy whatever
you need out of the block before freeing it! Here is an example of the proper way to free all
the blocks in a chain, and the strings that they point to:

struct chain
struct chain *next;
char *name;

}

void
free_chain (struct chain *chain)

{

36 The GNU C Library

while (chain != 0)
{
struct chain *next = chain->next;
free (chain->name);
free (chain);
chain = next;

}

Occasionally, free can actually return memory to the operating system and make the
process smaller. Usually, all it can do is allow a later call to malloc to reuse the space. In
the meantime, the space remains in your program as part of a free-list used internally by
malloc.

There is no point in freeing blocks at the end of a program, because all of the program’s
space is given back to the system when the process terminates.

3.2.2.4 Changing the Size of a Block

Often you do not know for certain how big a block you will ultimately need at the time you
must begin to use the block. For example, the block might be a buffer that you use to hold
a line being read from a file; no matter how long you make the buffer initially, you may
encounter a line that is longer.

You can make the block longer by calling realloc. This function is declared in
‘stdlib.h’.

void * realloc (void *ptr, size_t newsize) [Function]
The realloc function changes the size of the block whose address is ptr to be newsize.

Since the space after the end of the block may be in use, realloc may find it necessary
to copy the block to a new address where more free space is available. The value of
realloc is the new address of the block. If the block needs to be moved, realloc
copies the old contents.

If you pass a null pointer for ptr, realloc behaves just like ‘malloc (newsize)’. This
can be convenient, but beware that older implementations (before ISO C) may not
support this behavior, and will probably crash when realloc is passed a null pointer.

Like malloc, realloc may return a null pointer if no memory space is available to make
the block bigger. When this happens, the original block is untouched; it has not been
modified or relocated.

In most cases it makes no difference what happens to the original block when realloc
fails, because the application program cannot continue when it is out of memory, and the
only thing to do is to give a fatal error message. Often it is convenient to write and use a
subroutine, conventionally called xrealloc, that takes care of the error message as xmalloc
does for malloc:

void *
xrealloc (void *ptr, size_t size)
{
register void *value = realloc (ptr, size);
if (value == 0)
fatal ("Virtual memory exhausted");
return value;

}

Chapter 3: Virtual Memory Allocation And Paging 37

You can also use realloc to make a block smaller. The reason you would do this is to
avoid tying up a lot of memory space when only a little is needed. In several allocation
implementations, making a block smaller sometimes necessitates copying it, so it can fail if
no other space is available.

If the new size you specify is the same as the old size, realloc is guaranteed to change
nothing and return the same address that you gave.

3.2.2.5 Allocating Cleared Space

The function calloc allocates memory and clears it to zero. It is declared in ‘stdlib.h’.

void * calloc (size_t count, size_t eltsize) [Function]
This function allocates a block long enough to contain a vector of count elements,
each of size eltsize. Its contents are cleared to zero before calloc returns.

You could define calloc as follows:

void *
calloc (size_t count, size_t eltsize)
{

size_t size count * eltsize;

void *value = malloc (size);

if (value !'= 0)

memset (value, 0, size);
return value;

}
But in general, it is not guaranteed that calloc calls malloc internally. Therefore, if an
application provides its own malloc/realloc/free outside the C library, it should always
define calloc, too.

3.2.2.6 Efficiency Considerations for malloc

As opposed to other versions, the malloc in the GNU C Library does not round up block
sizes to powers of two, neither for large nor for small sizes. Neighboring chunks can be
coalesced on a free no matter what their size is. This makes the implementation suitable
for all kinds of allocation patterns without generally incurring high memory waste through
fragmentation.

Very large blocks (much larger than a page) are allocated with mmap (anonymous or via
/dev/zero) by this implementation. This has the great advantage that these chunks are
returned to the system immediately when they are freed. Therefore, it cannot happen that
a large chunk becomes “locked” in between smaller ones and even after calling free wastes
memory. The size threshold for mmap to be used can be adjusted with mallopt. The use of
mmap can also be disabled completely.

3.2.2.7 Allocating Aligned Memory Blocks

The address of a block returned by malloc or realloc in the GNU system is always a
multiple of eight (or sixteen on 64-bit systems). If you need a block whose address is a
multiple of a higher power of two than that, use memalign, posix_memalign, or valloc.
memalign is declared in ‘malloc.h’ and posix_memalign is declared in ‘stdlib.h’.

With the GNU library, you can use free to free the blocks that memalign, posix_
memalign, and valloc return. That does not work in BSD, however—BSD does not provide
any way to free such blocks.

38 The GNU C Library

void * memalign (size_t boundary, size_t size) [Function]
The memalign function allocates a block of size bytes whose address is a multiple of
boundary. The boundary must be a power of two! The function memalign works by
allocating a somewhat larger block, and then returning an address within the block
that is on the specified boundary.

int posix_memalign (void **memptr, size_t alignment, size_t size) [Function]
The posix_memalign function is similar to the memalign function in that it returns
a buffer of size bytes aligned to a multiple of alignment. But it adds one requirement
to the parameter alignment: the value must be a power of two multiple of sizeof
(void *).

If the function succeeds in allocation memory a pointer to the allocated memory is
returned in *memptr and the return value is zero. Otherwise the function returns an
error value indicating the problem.

This function was introduced in POSIX 1003.1d.

void * valloc (size_t size) [Function]

Using valloc is like using memalign and passing the page size as the value of the
second argument. It is implemented like this:

void *

valloc (size_t size)

{

return memalign (getpagesize (), size);

}
Section 22.4.2 [How to get information about the memory subsystem?], page 600 for
more information about the memory subsystem.

3.2.2.8 Malloc Tunable Parameters

You can adjust some parameters for dynamic memory allocation with the mallopt function.
This function is the general SVID/XPG interface, defined in ‘malloc.h’.

int mallopt (int param, int value) [Function]
When calling mallopt, the param argument specifies the parameter to be set, and
value the new value to be set. Possible choices for param, as defined in ‘malloc.h’,
are:

M_TRIM_THRESHOLD
This is the minimum size (in bytes) of the top-most, releasable chunk
that will cause sbrk to be called with a negative argument in order to
return memory to the system.

M_TOP_PAD
This parameter determines the amount of extra memory to obtain from
the system when a call to sbrk is required. It also specifies the number of
bytes to retain when shrinking the heap by calling sbrk with a negative
argument. This provides the necessary hysteresis in heap size such that
excessive amounts of system calls can be avoided.

Chapter 3: Virtual Memory Allocation And Paging 39

M_MMAP_THRESHOLD
All chunks larger than this value are allocated outside the normal heap,
using the mmap system call. This way it is guaranteed that the memory for
these chunks can be returned to the system on free. Note that requests
smaller than this threshold might still be allocated via mmap.

M_MMAP_MAX
The maximum number of chunks to allocate with mmap. Setting this to
zero disables all use of mmap.

3.2.2.9 Heap Consistency Checking

You can ask malloc to check the consistency of dynamic memory by using the mcheck
function. This function is a GNU extension, declared in ‘mcheck.h’.

int mcheck (void (*abortfn) (enum mcheck_status status)) [Function]

enum

Calling mcheck tells malloc to perform occasional consistency checks. These will
catch things such as writing past the end of a block that was allocated with malloc.

The abortfn argument is the function to call when an inconsistency is found. If you
supply a null pointer, then mcheck uses a default function which prints a message
and calls abort (see Section 25.6.4 [Aborting a Program]|, page 697). The function
you supply is called with one argument, which says what sort of inconsistency was
detected; its type is described below.

It is too late to begin allocation checking once you have allocated anything with
malloc. So mcheck does nothing in that case. The function returns -1 if you call it
too late, and 0 otherwise (when it is successful).

The easiest way to arrange to call mcheck early enough is to use the option ‘-1mcheck’
when you link your program; then you don’t need to modify your program source at
all. Alternatively you might use a debugger to insert a call to mcheck whenever the
program is started, for example these gdb commands will automatically call mcheck
whenever the program starts:

(gdb) break main

Breakpoint 1, main (argc=2, argv=0xbffff964) at whatever.c:10

(gdb) command 1

Type commands for when breakpoint 1 is hit, one per line.

End with a line saying just "end".

>call mcheck(0)

>continue

>end

(gdb) ...

This will however only work if no initialization function of any object involved calls
any of the malloc functions since mcheck must be called before the first such function.

mcheck_status mprobe (void *pointer) [Function]
The mprobe function lets you explicitly check for inconsistencies in a particular allo-
cated block. You must have already called mcheck at the beginning of the program,
to do its occasional checks; calling mprobe requests an additional consistency check
to be done at the time of the call.

40 The GNU C Library

The argument pointer must be a pointer returned by malloc or realloc. mprobe
returns a value that says what inconsistency, if any, was found. The values are
described below.

enum mcheck_status [Data Type]
This enumerated type describes what kind of inconsistency was detected in an allo-
cated block, if any. Here are the possible values:

MCHECK_DISABLED
mcheck was not called before the first allocation. No consistency checking
can be done.

MCHECK_OK
No inconsistency detected.

MCHECK_HEAD
The data immediately before the block was modified. This commonly
happens when an array index or pointer is decremented too far.

MCHECK_TAIL
The data immediately after the block was modified. This commonly
happens when an array index or pointer is incremented too far.

MCHECK _FREE
The block was already freed.

Another possibility to check for and guard against bugs in the use of malloc, realloc
and free is to set the environment variable MALLOC_CHECK_. When MALLOC_CHECK_ is set, a
special (less efficient) implementation is used which is designed to be tolerant against simple
errors, such as double calls of free with the same argument, or overruns of a single byte
(off-by-one bugs). Not all such errors can be protected against, however, and memory leaks
can result. If MALLOC_CHECK_ is set to 0, any detected heap corruption is silently ignored;
if set to 1, a diagnostic is printed on stderr; if set to 2, abort is called immediately. This
can be useful because otherwise a crash may happen much later, and the true cause for the
problem is then very hard to track down.

There is one problem with MALLOC_CHECK_: in SUID or SGID binaries it could possibly
be exploited since diverging from the normal programs behavior it now writes something to
the standard error descriptor. Therefore the use of MALLOC_CHECK _ is disabled by default for
SUID and SGID binaries. It can be enabled again by the system administrator by adding
a file ‘/etc/suid-debug’ (the content is not important it could be empty).

So, what’s the difference between using MALLOC_CHECK_ and linking with ‘-1mcheck’?
MALLOC_CHECK_ is orthogonal with respect to ‘-lmcheck’. ‘-lmcheck’ has been added for
backward compatibility. Both MALLOC_CHECK_ and ‘-lmcheck’ should uncover the same
bugs - but using MALLOC_CHECK_ you don’t need to recompile your application.

3.2.2.10 Memory Allocation Hooks

The GNU C library lets you modify the behavior of malloc, realloc, and free by specifying
appropriate hook functions. You can use these hooks to help you debug programs that use
dynamic memory allocation, for example.

The hook variables are declared in ‘malloc.h’.

Chapter 3: Virtual Memory Allocation And Paging 41

__malloc_hook [Variable]
The value of this variable is a pointer to the function that malloc uses whenever it
is called. You should define this function to look like malloc; that is, like:

void *function (size_t size, const void *caller)

The value of caller is the return address found on the stack when the malloc function
was called. This value allows you to trace the memory consumption of the program.

__realloc_hook [Variable]
The value of this variable is a pointer to function that realloc uses whenever it is
called. You should define this function to look like realloc; that is, like:

void *function (void *ptr, size_t size, const void *caller)

The value of caller is the return address found on the stack when the realloc function
was called. This value allows you to trace the memory consumption of the program.

__free_hook [Variable]
The value of this variable is a pointer to function that free uses whenever it is called.
You should define this function to look like free; that is, like:

void function (void *ptr, const void *caller)

The value of caller is the return address found on the stack when the free function
was called. This value allows you to trace the memory consumption of the program.

__memalign_hook [Variable]
The value of this variable is a pointer to function that memalign uses whenever it is
called. You should define this function to look like memalign; that is, like:

void *function (size_t alignment, size_t size, const void *caller)

The value of caller is the return address found on the stack when the memalign
function was called. This value allows you to trace the memory consumption of the
program.

You must make sure that the function you install as a hook for one of these functions
does not call that function recursively without restoring the old value of the hook first!
Otherwise, your program will get stuck in an infinite recursion. Before calling the function
recursively, one should make sure to restore all the hooks to their previous value. When
coming back from the recursive call, all the hooks should be resaved since a hook might
modify itself.

__malloc_initialize_hook [Variable]
The value of this variable is a pointer to a function that is called once when the malloc
implementation is initialized. This is a weak variable, so it can be overridden in the
application with a definition like the following:

void (*__malloc_initialize_hook) (void) = my_init_hook;

An issue to look out for is the time at which the malloc hook functions can be safely
installed. If the hook functions call the malloc-related functions recursively, it is necessary
that malloc has already properly initialized itself at the time when __malloc_hook etc. is
assigned to. On the other hand, if the hook functions provide a complete malloc implemen-
tation of their own, it is vital that the hooks are assigned to before the very first malloc call

42 The GNU C Library

has completed, because otherwise a chunk obtained from the ordinary, un-hooked malloc
may later be handed to __free_hook, for example.

In both cases, the problem can be solved by setting up the hooks from within a user-
defined function pointed to by __malloc_initialize_hook—then the hooks will be set up
safely at the right time.

Here is an example showing how to use __malloc_hook and __free_hook properly. It
installs a function that prints out information every time malloc or free is called. We just
assume here that realloc and memalign are not used in our program.
free_hook */

/% Prototypes for __malloc_hook

#include <malloc.h>

/* Prototypes for our hooks. */

static void my_init_hook (void);

static void *my_malloc_hook (size_t, const void *);
static void my_free_hook (void*, const void *);

/* Override initializing hook from the C library. */
void (*__malloc_initialize_hook) (void) = my_init_hook;

static void

my_init_hook (void)

{
old_malloc_hook = __malloc_hook;
old_free_hook = __free_hook;
__malloc_hook = my_malloc_hook;
__free_hook = my_free_hook;

static void *
my_malloc_hook (size_t size, const void *caller)
{
void *result;
/* Restore all old hooks */
__malloc_hook = old_malloc_hook;
__free_hook = old_free_hook;
/* Call recursively */
result = malloc (size);
/* Save underlying hooks */
old_malloc_hook = __malloc_hook;
old_free_hook = __free_hook;
/* printf might call malloc, so protect it too. */
printf ("malloc (%u) returns %p\n", (unsigned int) size, result);
/* Restore our own hooks */
__malloc_hook = my_malloc_hook;
__free_hook = my_free_hook;
return result;

}

static void
my_free_hook (void *ptr, const void *caller)
{
/* Restore all old hooks */
__malloc_hook = old_malloc_hook;
__free_hook = old_free_hook;
/* Call recursively */
free (ptr);

Chapter 3: Virtual Memory Allocation And Paging 43

/* Save underlying hooks */
old_malloc_hook = __malloc_hook;
old_free_hook = __free_hook;

/* printf might call free, so protect it too. */
printf ("freed pointer %p\n", ptr);

/* Restore our own hooks */

__malloc_hook = my_malloc_hook;
__free_hook = my_free_hook;

}

main ()

{

}

The mcheck function (see Section 3.2.2.9 [Heap Consistency Checking], page 39) works
by installing such hooks.

3.2.2.11 Statistics for Memory Allocation with malloc

You can get information about dynamic memory allocation by calling the mallinfo func-
tion. This function and its associated data type are declared in ‘malloc.h’; they are an
extension of the standard SVID/XPG version.

struct mallinfo [Data Type]
This structure type is used to return information about the dynamic memory alloca-
tor. It contains the following members:

int arena This is the total size of memory allocated with sbrk by malloc, in bytes.

int ordblks
This is the number of chunks not in use. (The memory allocator internally
gets chunks of memory from the operating system, and then carves them
up to satisfy individual malloc requests; see Section 3.2.2.6 [Efficiency
Considerations for malloc], page 37.)

int smblks
This field is unused.

int hblks This is the total number of chunks allocated with mmap.

int hblkhd
This is the total size of memory allocated with mmap, in bytes.

int usmblks
This field is unused.

int fsmblks
This field is unused.

int uordblks
This is the total size of memory occupied by chunks handed out by
malloc.

int fordblks
This is the total size of memory occupied by free (not in use) chunks.

44 The GNU C Library

int keepcost
This is the size of the top-most releasable chunk that normally borders
the end of the heap (i.e. the high end of the virtual address space’s data
segment).

struct mallinfo mallinfo (void) [Function]
This function returns information about the current dynamic memory usage in a
structure of type struct mallinfo.

3.2.2.12 Summary of malloc-Related Functions
Here is a summary of the functions that work with malloc:

void *malloc (size_t size)
Allocate a block of size bytes. See Section 3.2.2.1 [Basic Memory Allocation],
page 34.

void free (void *addr)
Free a block previously allocated by malloc. See Section 3.2.2.3 [Freeing Mem-
ory Allocated with malloc], page 35.

void *realloc (void *addr, size_t size)
Make a block previously allocated by malloc larger or smaller, possibly by
copying it to a new location. See Section 3.2.2.4 [Changing the Size of a Block],
page 36.

void *calloc (size_t count, size_t eltsize)
Allocate a block of count * eltsize bytes using malloc, and set its contents to
zero. See Section 3.2.2.5 [Allocating Cleared Space], page 37.

void *valloc (size_t size)
Allocate a block of size bytes, starting on a page boundary. See Section 3.2.2.7
[Allocating Aligned Memory Blocks], page 37.

void *memalign (size_t size, size_t boundary)
Allocate a block of size bytes, starting on an address that is a multiple of
boundary. See Section 3.2.2.7 [Allocating Aligned Memory Blocks], page 37.

int mallopt (int param, int value)
Adjust a tunable parameter. See Section 3.2.2.8 [Malloc Tunable Parameters],
page 38.

int mcheck (void (*abortfn) (void))
Tell malloc to perform occasional consistency checks on dynamically allocated
memory, and to call abortfn when an inconsistency is found. See Section 3.2.2.9
[Heap Consistency Checking], page 39.

void *(*__malloc_hook) (size_t size, const void *caller)
A pointer to a function that malloc uses whenever it is called.

void *(*__realloc_hook) (void *ptr, size_t size, const void *caller)

A pointer to a function that realloc uses whenever it is called.

void (*__free_hook) (void *ptr, const void *caller)
A pointer to a function that free uses whenever it is called.

Chapter 3: Virtual Memory Allocation And Paging 45

void (*__memalign_hook) (size_t size, size_t alignment, const void *caller)
A pointer to a function that memalign uses whenever it is called.

struct mallinfo mallinfo (void)
Return information about the current dynamic memory usage. See
Section 3.2.2.11 [Statistics for Memory Allocation with malloc], page 43.

3.2.3 Allocation Debugging

A complicated task when programming with languages which do not use garbage collected
dynamic memory allocation is to find memory leaks. Long running programs must assure
that dynamically allocated objects are freed at the end of their lifetime. If this does not
happen the system runs out of memory, sooner or later.

The malloc implementation in the GNU C library provides some simple means to detect
such leaks and obtain some information to find the location. To do this the application must
be started in a special mode which is enabled by an environment variable. There are no
speed penalties for the program if the debugging mode is not enabled.

3.2.3.1 How to install the tracing functionality

void mtrace (void) [Function]
When the mtrace function is called it looks for an environment variable named
MALLOC_TRACE. This variable is supposed to contain a valid file name. The user
must have write access. If the file already exists it is truncated. If the environment
variable is not set or it does not name a valid file which can be opened for writing
nothing is done. The behavior of malloc etc. is not changed. For obvious reasons
this also happens if the application is installed with the SUID or SGID bit set.

If the named file is successfully opened, mtrace installs special handlers for the func-
tions malloc, realloc, and free (see Section 3.2.2.10 [Memory Allocation Hooks],
page 40). From then on, all uses of these functions are traced and protocolled into
the file. There is now of course a speed penalty for all calls to the traced functions so
tracing should not be enabled during normal use.

This function is a GNU extension and generally not available on other systems. The
prototype can be found in ‘mcheck.h’.

void muntrace (void) [Function]
The muntrace function can be called after mtrace was used to enable tracing the
malloc calls. If no (successful) call of mtrace was made muntrace does nothing.

Otherwise it deinstalls the handlers for malloc, realloc, and free and then closes
the protocol file. No calls are protocolled anymore and the program runs again at full
speed.

This function is a GNU extension and generally not available on other systems. The
prototype can be found in ‘mcheck.h’.

3.2.3.2 Example program excerpts

Even though the tracing functionality does not influence the runtime behavior of the pro-
gram it is not a good idea to call mtrace in all programs. Just imagine that you debug
a program using mtrace and all other programs used in the debugging session also trace

46 The GNU C Library

their malloc calls. The output file would be the same for all programs and thus is unusable.
Therefore one should call mtrace only if compiled for debugging. A program could therefore
start like this:

#include <mcheck.h>

int
main (int argc, char *argvl[])
{
#ifdef DEBUGGING
mtrace ();
#endif
}

This is all what is needed if you want to trace the calls during the whole runtime of the
program. Alternatively you can stop the tracing at any time with a call to muntrace. It
is even possible to restart the tracing again with a new call to mtrace. But this can cause
unreliable results since there may be calls of the functions which are not called. Please
note that not only the application uses the traced functions, also libraries (including the C
library itself) use these functions.

This last point is also why it is no good idea to call muntrace before the program
terminated. The libraries are informed about the termination of the program only after the
program returns from main or calls exit and so cannot free the memory they use before
this time.

So the best thing one can do is to call mtrace as the very first function in the program
and never call muntrace. So the program traces almost all uses of the malloc functions
(except those calls which are executed by constructors of the program or used libraries).

3.2.3.3 Some more or less clever ideas

You know the situation. The program is prepared for debugging and in all debugging
sessions it runs well. But once it is started without debugging the error shows up. A typical
example is a memory leak that becomes visible only when we turn off the debugging. If you
foresee such situations you can still win. Simply use something equivalent to the following
little program:

#include <mcheck.h>
#include <signal.h>

static void
enable (int sig)
{
mtrace ();
signal (SIGUSR1, enable);
}

static void
disable (int sig)
{

Chapter 3: Virtual Memory Allocation And Paging 47

muntrace ();
signal (SIGUSR2, disable);
}

int
main (int argc, char *argv[])

{

signal (SIGUSR1, enable);
signal (SIGUSR2, disable);

}

Le., the user can start the memory debugger any time s/he wants if the program was
started with MALLOC_TRACE set in the environment. The output will of course not show the
allocations which happened before the first signal but if there is a memory leak this will
show up nevertheless.

3.2.3.4 Interpreting the traces

If you take a look at the output it will look similar to this:

= Start
[0x8048209] - 0x8064cc8
[0x8048209] - 0x8064ce0
[0x8048209] - 0x8064cf8

[0x80481eb] + 0x8064c48 0x14

[0x80481eb] + 0x8064c60 0x14

[0x80481eb] + 0x8064c78 0x14

[0x80481eb] + 0x8064c90 0x14
= End

What this all means is not really important since the trace file is not meant to be read
by a human. Therefore no attention is given to readability. Instead there is a program
which comes with the GNU C library which interprets the traces and outputs a summary
in an user-friendly way. The program is called mtrace (it is in fact a Perl script) and it
takes one or two arguments. In any case the name of the file with the trace output must
be specified. If an optional argument precedes the name of the trace file this must be the
name of the program which generated the trace.

drepper$ mtrace tst-mtrace log
No memory leaks.

In this case the program tst-mtrace was run and it produced a trace file ‘log’. The
message printed by mtrace shows there are no problems with the code, all allocated memory
was freed afterwards.

If we call mtrace on the example trace given above we would get a different outout:

drepper$ mtrace errlog
- 0x08064cc8 Free 2 was never alloc’d 0x8048209

48 The GNU C Library

- 0x08064ce0 Free 3 was never alloc’d 0x8048209
- 0x08064cf8 Free 4 was never alloc’d 0x8048209

Memory not freed:

Address Size Caller
0x08064c48 0x14 at 0x80481eb
0x08064c60 0x14 at 0x80481eb
0x08064c78 0x14 at 0x80481eb
0x08064c90 0x14 at 0x80481eb

We have called mtrace with only one argument and so the script has no chance to find
out what is meant with the addresses given in the trace. We can do better:
drepper$ mtrace tst errlog
- 0x08064cc8 Free 2 was never alloc’d /home/drepper/tst.c:39
- 0x08064ce0 Free 3 was never alloc’d /home/drepper/tst.c:39
- 0x08064cf8 Free 4 was never alloc’d /home/drepper/tst.c:39

Memory not freed:

Address Size Caller
0x08064c48 0x14 at /home/drepper/tst.c:33
0x08064c60 0x14 at /home/drepper/tst.c:33
0x08064c78 0x14 at /home/drepper/tst.c:33
0x08064c90 0x14 at /home/drepper/tst.c:33

Suddenly the output makes much more sense and the user can see immediately where
the function calls causing the trouble can be found.

Interpreting this output is not complicated. There are at most two different situations
being detected. First, free was called for pointers which were never returned by one of the
allocation functions. This is usually a very bad problem and what this looks like is shown
in the first three lines of the output. Situations like this are quite rare and if they appear
they show up very drastically: the program normally crashes.

The other situation which is much harder to detect are memory leaks. As you can see in
the output the mtrace function collects all this information and so can say that the program
calls an allocation function from line 33 in the source file ‘/home/drepper/tst-mtrace.c’
four times without freeing this memory before the program terminates. Whether this is a
real problem remains to be investigated.

3.2.4 Obstacks

An obstack is a pool of memory containing a stack of objects. You can create any number of
separate obstacks, and then allocate objects in specified obstacks. Within each obstack, the
last object allocated must always be the first one freed, but distinct obstacks are independent
of each other.

Aside from this one constraint of order of freeing, obstacks are totally general: an obstack
can contain any number of objects of any size. They are implemented with macros, so
allocation is usually very fast as long as the objects are usually small. And the only space
overhead per object is the padding needed to start each object on a suitable boundary.

Chapter 3: Virtual Memory Allocation And Paging 49

3.2.4.1 Creating Obstacks

The utilities for manipulating obstacks are declared in the header file ‘obstack.h’.

struct obstack [Data Type]
An obstack is represented by a data structure of type struct obstack. This structure
has a small fixed size; it records the status of the obstack and how to find the space in
which objects are allocated. It does not contain any of the objects themselves. You
should not try to access the contents of the structure directly; use only the functions
described in this chapter.

You can declare variables of type struct obstack and use them as obstacks, or you can
allocate obstacks dynamically like any other kind of object. Dynamic allocation of obstacks
allows your program to have a variable number of different stacks. (You can even allocate
an obstack structure in another obstack, but this is rarely useful.)

All the functions that work with obstacks require you to specify which obstack to use.
You do this with a pointer of type struct obstack *. In the following, we often say “an
obstack” when strictly speaking the object at hand is such a pointer.

The objects in the obstack are packed into large blocks called chunks. The struct
obstack structure points to a chain of the chunks currently in use.

The obstack library obtains a new chunk whenever you allocate an object that won’t
fit in the previous chunk. Since the obstack library manages chunks automatically, you
don’t need to pay much attention to them, but you do need to supply a function which the
obstack library should use to get a chunk. Usually you supply a function which uses malloc
directly or indirectly. You must also supply a function to free a chunk. These matters are
described in the following section.

3.2.4.2 Preparing for Using Obstacks

Each source file in which you plan to use the obstack functions must include the header file
‘obstack.h’, like this:

#include <obstack.h>

Also, if the source file uses the macro obstack_init, it must declare or define two
functions or macros that will be called by the obstack library. One, obstack_chunk_alloc,
is used to allocate the chunks of memory into which objects are packed. The other, obstack_
chunk_free, is used to return chunks when the objects in them are freed. These macros
should appear before any use of obstacks in the source file.

Usually these are defined to use malloc via the intermediary xmalloc (see Section 3.2.2
[Unconstrained Allocation], page 34). This is done with the following pair of macro defini-
tions:

#define obstack_chunk_alloc xmalloc

#define obstack_chunk_free free
Though the memory you get using obstacks really comes from malloc, using obstacks is
faster because malloc is called less often, for larger blocks of memory. See Section 3.2.4.10
[Obstack Chunks], page 56, for full details.

At run time, before the program can use a struct obstack object as an obstack, it must
initialize the obstack by calling obstack_init.

50 The GNU C Library

int obstack_init (struct obstack *obstack-ptr) [Function]
Initialize obstack obstack-ptr for allocation of objects. This function calls the ob-
stack’s obstack_chunk_alloc function. If allocation of memory fails, the function
pointed to by obstack_alloc_failed_handler is called. The obstack_init func-
tion always returns 1 (Compatibility notice: Former versions of obstack returned 0 if
allocation failed).

Here are two examples of how to allocate the space for an obstack and initialize it. First,
an obstack that is a static variable:

static struct obstack myobstack;

obstack_init (&myobstack) ;

Second, an obstack that is itself dynamically allocated:

struct obstack *myobstack_ptr
= (struct obstack *) xmalloc (sizeof (struct obstack));

obstack_init (myobstack_ptr);

obstack_alloc_failed_handler [Variable]
The value of this variable is a pointer to a function that obstack uses when obstack_
chunk_alloc fails to allocate memory. The default action is to print a message and
abort. You should supply a function that either calls exit (see Section 25.6 [Program
Termination], page 695) or longjmp (see Chapter 23 [Non-Local Exits], page 603) and
doesn’t return.
void my_obstack_alloc_failed (void)

obstack_alloc_failed_handler = &my_obstack_alloc_failed;

3.2.4.3 Allocation in an Obstack

The most direct way to allocate an object in an obstack is with obstack_alloc, which is
invoked almost like malloc.

void * obstack_alloc (struct obstack *obstack-ptr, int size) [Function]
This allocates an uninitialized block of size bytes in an obstack and returns its address.
Here obstack-ptr specifies which obstack to allocate the block in; it is the address of
the struct obstack object which represents the obstack. Each obstack function or
macro requires you to specify an obstack-ptr as the first argument.

This function calls the obstack’s obstack_chunk_alloc function if it needs to allocate

a new chunk of memory; it calls obstack_alloc_failed_handler if allocation of
memory by obstack_chunk_alloc failed.

For example, here is a function that allocates a copy of a string str in a specific obstack,
which is in the variable string_obstack:

struct obstack string_obstack;

char *
copystring (char *string)

size_t len = strlen (string) + 1;
char *s = (char *) obstack_alloc (&string_obstack, len);

Chapter 3: Virtual Memory Allocation And Paging 51

memcpy (s, string, len);
return s;

}

To allocate a block with specified contents, use the function obstack_copy, declared like
this:

void * obstack_copy (struct obstack *obstack-ptr, void *address, [Function]
int size)
This allocates a block and initializes it by copying size bytes of data starting at ad-
dress. It calls obstack_alloc_failed_handler if allocation of memory by obstack_
chunk_alloc failed.

void * obstack_copyO (struct obstack *obstack-ptr, void *address, [Function]
int size)
Like obstack_copy, but appends an extra byte containing a null character. This
extra byte is not counted in the argument size.

The obstack_copy0 function is convenient for copying a sequence of characters into an
obstack as a null-terminated string. Here is an example of its use:

char *
obstack_savestring (char *addr, int size)
{
return obstack_copyO (&myobstack, addr, size);
}

Contrast this with the previous example of savestring using malloc (see Section 3.2.2.1
[Basic Memory Allocation], page 34).

3.2.4.4 Freeing Objects in an Obstack

To free an object allocated in an obstack, use the function obstack_free. Since the obstack
is a stack of objects, freeing one object automatically frees all other objects allocated more
recently in the same obstack.

void obstack_free (struct obstack *obstack-ptr, void *object) [Function]
If object is a null pointer, everything allocated in the obstack is freed. Otherwise,
object must be the address of an object allocated in the obstack. Then object is freed,
along with everything allocated in obstack since object.

Note that if object is a null pointer, the result is an uninitialized obstack. To free all
memory in an obstack but leave it valid for further allocation, call obstack_free with the
address of the first object allocated on the obstack:

obstack_free (obstack_ptr, first_object_allocated_ptr);

Recall that the objects in an obstack are grouped into chunks. When all the objects in
a chunk become free, the obstack library automatically frees the chunk (see Section 3.2.4.2
[Preparing for Using Obstacks|, page 49). Then other obstacks, or non-obstack allocation,
can reuse the space of the chunk.

52 The GNU C Library

3.2.4.5 Obstack Functions and Macros

The interfaces for using obstacks may be defined either as functions or as macros, depending
on the compiler. The obstack facility works with all C compilers, including both ISO C and

traditional C, but there are precautions you must take if you plan to use compilers other
than GNU C.

If you are using an old-fashioned non-ISO C compiler, all the obstack “functions” are
actually defined only as macros. You can call these macros like functions, but you cannot
use them in any other way (for example, you cannot take their address).

Calling the macros requires a special precaution: namely, the first operand (the obstack
pointer) may not contain any side effects, because it may be computed more than once. For
example, if you write this:

obstack_alloc (get_obstack (), 4);

you will find that get_obstack may be called several times. If you use *obstack_list_
ptr++ as the obstack pointer argument, you will get very strange results since the incre-
mentation may occur several times.

In ISO C, each function has both a macro definition and a function definition. The
function definition is used if you take the address of the function without calling it. An
ordinary call uses the macro definition by default, but you can request the function definition
instead by writing the function name in parentheses, as shown here:

char *x;
void *(xfuncp) ();
/* Use the macro. */
x = (char *) obstack_alloc (obptr, size);
/% Call the function. */
x = (char *) (obstack_alloc) (obptr, size);
/* Take the address of the function. */
funcp = obstack_alloc;
This is the same situation that exists in ISO C for the standard library functions. See

Section 1.3.2 [Macro Definitions of Functions], page 5.

Warning: When you do use the macros, you must observe the precaution of avoiding
side effects in the first operand, even in ISO C.

If you use the GNU C compiler, this precaution is not necessary, because various language
extensions in GNU C permit defining the macros so as to compute each argument only once.

3.2.4.6 Growing Objects

Because memory in obstack chunks is used sequentially, it is possible to build up an object
step by step, adding one or more bytes at a time to the end of the object. With this
technique, you do not need to know how much data you will put in the object until you
come to the end of it. We call this the technique of growing objects. The special functions
for adding data to the growing object are described in this section.

You don’t need to do anything special when you start to grow an object. Using one of
the functions to add data to the object automatically starts it. However, it is necessary to
say explicitly when the object is finished. This is done with the function obstack_finish.

The actual address of the object thus built up is not known until the object is finished.
Until then, it always remains possible that you will add so much data that the object must
be copied into a new chunk.

Chapter 3: Virtual Memory Allocation And Paging 53

While the obstack is in use for a growing object, you cannot use it for ordinary allocation
of another object. If you try to do so, the space already added to the growing object will
become part of the other object.

void obstack_blank (struct obstack *obstack-ptr, int size) [Function]
The most basic function for adding to a growing object is obstack_blank, which adds
space without initializing it.

void obstack_grow (struct obstack *obstack-ptr, void *data, int [Function]
size)
To add a block of initialized space, use obstack_grow, which is the growing-object
analogue of obstack_copy. It adds size bytes of data to the growing object, copying
the contents from data.

void obstack_grow0 (struct obstack *obstack-ptr, void *data, int [Function]
size)
This is the growing-object analogue of obstack_copy0. It adds size bytes copied from
data, followed by an additional null character.

void obstack_lgrow (struct obstack *obstack-ptr, char c) [Function]
To add one character at a time, use the function obstack_1lgrow. It adds a single
byte containing ¢ to the growing object.

void obstack_ptr_grow (struct obstack *obstack-ptr, void *data) [Function]
Adding the value of a pointer one can use the function obstack_ptr_grow. It adds
sizeof (void *) bytes containing the value of data.

void obstack_int_grow (struct obstack *obstack-ptr, int data) [Function]
A single value of type int can be added by using the obstack_int_grow function. It
adds sizeof (int) bytes to the growing object and initializes them with the value
of data.

void * obstack_finish (struct obstack *obstack-ptr) [Function]
When you are finished growing the object, use the function obstack_finish to close
it off and return its final address.

Once you have finished the object, the obstack is available for ordinary allocation or
for growing another object.

This function can return a null pointer under the same conditions as obstack_alloc
(see Section 3.2.4.3 [Allocation in an Obstack], page 50).

When you build an object by growing it, you will probably need to know afterward
how long it became. You need not keep track of this as you grow the object, because you
can find out the length from the obstack just before finishing the object with the function
obstack_object_size, declared as follows:

int obstack_object_size (struct obstack *obstack-ptr) [Function]
This function returns the current size of the growing object, in bytes. Remember to
call this function before finishing the object. After it is finished, obstack_object_
size will return zero.

54 The GNU C Library

If you have started growing an object and wish to cancel it, you should finish it and then
free it, like this:

obstack_free (obstack_ptr, obstack_finish (obstack_ptr));
This has no effect if no object was growing.

You can use obstack_blank with a negative size argument to make the current object
smaller. Just don’t try to shrink it beyond zero length—there’s no telling what will happen
if you do that.

3.2.4.7 Extra Fast Growing Objects

The usual functions for growing objects incur overhead for checking whether there is room
for the new growth in the current chunk. If you are frequently constructing objects in small
steps of growth, this overhead can be significant.

You can reduce the overhead by using special “fast growth” functions that grow the
object without checking. In order to have a robust program, you must do the checking
yourself. If you do this checking in the simplest way each time you are about to add data to
the object, you have not saved anything, because that is what the ordinary growth functions
do. But if you can arrange to check less often, or check more efficiently, then you make the
program faster.

The function obstack_room returns the amount of room available in the current chunk.
It is declared as follows:

int obstack_room (struct obstack *obstack-ptr) [Function]
This returns the number of bytes that can be added safely to the current growing
object (or to an object about to be started) in obstack obstack using the fast growth
functions.

While you know there is room, you can use these fast growth functions for adding data
to a growing object:

void obstack_lgrow_fast (struct obstack *obstack-ptr, char c) [Function]
The function obstack_lgrow_fast adds one byte containing the character ¢ to the
growing object in obstack obstack-ptr.

void obstack_ptr_grow_fast (struct obstack *obstack-ptr, void [Function]
*data)
The function obstack_ptr_grow_fast adds sizeof (void *) bytes containing the
value of data to the growing object in obstack obstack-ptr.

void obstack_int_grow_fast (struct obstack *obstack-ptr, int [Function]
data)
The function obstack_int_grow_fast adds sizeof (int) bytes containing the value
of data to the growing object in obstack obstack-ptr.

void obstack_blank_fast (struct obstack *obstack-ptr, int size) [Function]
The function obstack_blank_fast adds size bytes to the growing object in obstack
obstack-ptr without initializing them.

Chapter 3: Virtual Memory Allocation And Paging 55

When you check for space using obstack_room and there is not enough room for what
you want to add, the fast growth functions are not safe. In this case, simply use the
corresponding ordinary growth function instead. Very soon this will copy the object to a
new chunk; then there will be lots of room available again.

So, each time you use an ordinary growth function, check afterward for sufficient space
using obstack_room. Once the object is copied to a new chunk, there will be plenty of
space again, so the program will start using the fast growth functions again.

Here is an example:

void
add_string (struct obstack *obstack, const char *ptr, int len)
{
while (len > 0)
{
int room = obstack_room (obstack);
if (room == 0)
{
/* Not enough room. Add one character slowly,
which may copy to a new chunk and make room. */
obstack_lgrow (obstack, *ptr++);
len--;
}
else
{
if (room > len)
room = len;
/* Add fast as much as we have room for. */
len -= room;
while (room-- > 0)
obstack_lgrow_fast (obstack, *ptr++);
}
}
}

3.2.4.8 Status of an Obstack

Here are functions that provide information on the current status of allocation in an obstack.
You can use them to learn about an object while still growing it.

void * obstack_base (struct obstack *obstack-ptr) [Function]
This function returns the tentative address of the beginning of the currently growing
object in obstack-ptr. If you finish the object immediately, it will have that address.
If you make it larger first, it may outgrow the current chunk—then its address will
change!

If no object is growing, this value says where the next object you allocate will start
(once again assuming it fits in the current chunk).

void * obstack_next_free (struct obstack *obstack-ptr) [Function]
This function returns the address of the first free byte in the current chunk of obstack
obstack-ptr. This is the end of the currently growing object. If no object is growing,
obstack_next_free returns the same value as obstack_base.

o6 The GNU C Library

int obstack_object_size (struct obstack *obstack-ptr) [Function]
This function returns the size in bytes of the currently growing object. This is equiv-
alent to

obstack_next_free (obstack-ptr) - obstack_base (obstack-ptr)

3.2.4.9 Alignment of Data in Obstacks

FEach obstack has an alignment boundary; each object allocated in the obstack automatically
starts on an address that is a multiple of the specified boundary. By default, this boundary
is aligned so that the object can hold any type of data.

To access an obstack’s alignment boundary, use the macro obstack_alignment_mask,
whose function prototype looks like this:

int obstack_alignment_mask (struct obstack *obstack-ptr) [Macro]
The value is a bit mask; a bit that is 1 indicates that the corresponding bit in the
address of an object should be 0. The magk value should be one less than a power of
2: the effect is that all object addresses are multiples of that power of 2. The default
value of the mask is a value that allows aligned objects to hold any type of data: for
example, if its value is 3, any type of data can be stored at locations whose addresses
are multiples of 4. A mask value of 0 means an object can start on any multiple of 1
(that is, no alignment is required).

The expansion of the macro obstack_alignment_mask is an lvalue, so you can alter
the mask by assignment. For example, this statement:

obstack_alignment_mask (obstack_ptr) = 0;

has the effect of turning off alignment processing in the specified obstack.

Note that a change in alignment mask does not take effect until after the next time an
object is allocated or finished in the obstack. If you are not growing an object, you can
make the new alignment mask take effect immediately by calling obstack_finish. This
will finish a zero-length object and then do proper alignment for the next object.

3.2.4.10 Obstack Chunks

Obstacks work by allocating space for themselves in large chunks, and then parceling out
space in the chunks to satisfy your requests. Chunks are normally 4096 bytes long unless
you specify a different chunk size. The chunk size includes 8 bytes of overhead that are
not actually used for storing objects. Regardless of the specified size, longer chunks will be
allocated when necessary for long objects.

The obstack library allocates chunks by calling the function obstack_chunk_alloc,
which you must define. When a chunk is no longer needed because you have freed all the
objects in it, the obstack library frees the chunk by calling obstack_chunk_free, which
you must also define.

These two must be defined (as macros) or declared (as functions) in each source file that
uses obstack_init (see Section 3.2.4.1 [Creating Obstacks], page 49). Most often they are
defined as macros like this:

#define obstack_chunk_alloc malloc
#define obstack_chunk_free free

Chapter 3: Virtual Memory Allocation And Paging 57

Note that these are simple macros (no arguments). Macro definitions with arguments
will not work! It is necessary that obstack_chunk_alloc or obstack_chunk_free, alone,
expand into a function name if it is not itself a function name.

If you allocate chunks with malloc, the chunk size should be a power of 2. The default
chunk size, 4096, was chosen because it is long enough to satisfy many typical requests on
the obstack yet short enough not to waste too much memory in the portion of the last chunk
not yet used.

int obstack_chunk_size (struct obstack *obstack-ptr) [Macro]
This returns the chunk size of the given obstack.

Since this macro expands to an lvalue, you can specify a new chunk size by assigning
it a new value. Doing so does not affect the chunks already allocated, but will change the
size of chunks allocated for that particular obstack in the future. It is unlikely to be useful
to make the chunk size smaller, but making it larger might improve efficiency if you are
allocating many objects whose size is comparable to the chunk size. Here is how to do so
cleanly:

if (obstack_chunk_size (obstack_ptr) < new-chunk-size)
obstack_chunk_size (obstack_ptr) = new-chunk-size;

3.2.4.11 Summary of Obstack Functions

Here is a summary of all the functions associated with obstacks. Each takes the address of
an obstack (struct obstack *) as its first argument.

void obstack_init (struct obstack *obstack-ptr)
Initialize use of an obstack. See Section 3.2.4.1 [Creating Obstacks], page 49.

void *obstack_alloc (struct obstack *obstack-ptr, int size)
Allocate an object of size uninitialized bytes. See Section 3.2.4.3 [Allocation in
an Obstack], page 50.

void *obstack_copy (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size bytes, with contents copied from address. See Sec-
tion 3.2.4.3 [Allocation in an Obstack], page 50.

void *obstack_copy0 (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size+l bytes, with size of them copied from address,
followed by a null character at the end. See Section 3.2.4.3 [Allocation in an
Obstack], page 50.

void obstack_free (struct obstack *obstack-ptr, void *object)
Free object (and everything allocated in the specified obstack more recently
than object). See Section 3.2.4.4 [Freeing Objects in an Obstack], page 51.

void obstack_blank (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object. See Section 3.2.4.6 [Growing
Objects|, page 52.

void obstack_grow (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object. See Section 3.2.4.6
[Growing Objects], page 52.

o8 The GNU C Library

void obstack_growO (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object, and then add another
byte containing a null character. See Section 3.2.4.6 [Growing Objects|, page 52.

void obstack_lgrow (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object. See Section 3.2.4.6
[Growing Objects], page 52.

void *obstack_finish (struct obstack *obstack-ptr)
Finalize the object that is growing and return its permanent address. See
Section 3.2.4.6 [Growing Objects], page 52.

int obstack_object_size (struct obstack *obstack-ptr)
Get the current size of the currently growing object. See Section 3.2.4.6 [Grow-
ing Objects], page 52.

void obstack_blank_fast (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object without checking that there is
enough room. See Section 3.2.4.7 [Extra Fast Growing Objects|, page 54.

void obstack_lgrow_fast (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object without checking
that there is enough room. See Section 3.2.4.7 [Extra Fast Growing Objects],
page 54.

int obstack_room (struct obstack *obstack-ptr)
Get the amount of room now available for growing the current object. See
Section 3.2.4.7 [Extra Fast Growing Objects], page 54.

int obstack_alignment_mask (struct obstack *obstack-ptr)
The mask used for aligning the beginning of an object. This is an lvalue. See
Section 3.2.4.9 [Alignment of Data in Obstacks], page 56.

int obstack_chunk_size (struct obstack *obstack-ptr)
The size for allocating chunks. This is an lvalue. See Section 3.2.4.10 [Obstack
Chunks], page 56.

void *obstack_base (struct obstack *obstack-ptr)
Tentative starting address of the currently growing object. See Section 3.2.4.8
[Status of an Obstack], page 55.

void *obstack_next_free (struct obstack *obstack-ptr)
Address just after the end of the currently growing object. See Section 3.2.4.8
[Status of an Obstack]|, page 55.

3.2.5 Automatic Storage with Variable Size

The function alloca supports a kind of half-dynamic allocation in which blocks are allocated
dynamically but freed automatically.

Allocating a block with alloca is an explicit action; you can allocate as many blocks as
you wish, and compute the size at run time. But all the blocks are freed when you exit the
function that alloca was called from, just as if they were automatic variables declared in
that function. There is no way to free the space explicitly.

The prototype for alloca is in ‘stdlib.h’. This function is a BSD extension.

Chapter 3: Virtual Memory Allocation And Paging 59

void * alloca (size_t size); [Function]
The return value of alloca is the address of a block of size bytes of memory, allocated
in the stack frame of the calling function.

Do not use alloca inside the arguments of a function call—you will get unpredictable
results, because the stack space for the alloca would appear on the stack in the middle
of the space for the function arguments. An example of what to avoid is foo (x, alloca
4, y).

3.2.5.1 alloca Example

As an example of the use of alloca, here is a function that opens a file name made from
concatenating two argument strings, and returns a file descriptor or minus one signifying
failure:
int
open2 (char *strl, char *str2, int flags, int mode)
{
char *name = (char *) alloca (strlen (strl) + strlen (str2) + 1);
stpcpy (stpcpy (name, strl), str2);
return open (name, flags, mode);

}
Here is how you would get the same results with malloc and free:

int

open2 (char *strl, char *str2, int flags, int mode)

{
char *name = (char *) malloc (strlemn (strl) + strlen (str2) + 1);
int desc;
if (name == 0)

fatal ("virtual memory exceeded");
stpcpy (stpcpy (name, strl), str2);
desc = open (name, flags, mode);
free (name);
return desc;
}
As you can see, it is simpler with alloca. But alloca has other, more important

advantages, and some disadvantages.

3.2.5.2 Advantages of alloca

Here are the reasons why alloca may be preferable to malloc:

e Using alloca wastes very little space and is very fast. (It is open-coded by the GNU
C compiler.)

e Since alloca does not have separate pools for different sizes of block, space used
for any size block can be reused for any other size. alloca does not cause memory
fragmentation.

e Nonlocal exits done with longjmp (see Chapter 23 [Non-Local Exits], page 603) au-
tomatically free the space allocated with alloca when they exit through the function
that called alloca. This is the most important reason to use alloca.

To illustrate this, suppose you have a function open_or_report_error which returns
a descriptor, like open, if it succeeds, but does not return to its caller if it fails. If
the file cannot be opened, it prints an error message and jumps out to the command

60 The GNU C Library

level of your program using longjmp. Let’s change open2 (see Section 3.2.5.1 [alloca
Example], page 59) to use this subroutine:
int
open2 (char *strl, char *str2, int flags, int mode)
{
char *name = (char *) alloca (strlen (strl) + strlen (str2) + 1);
stpcpy (stpcpy (name, strl), str2);
return open_or_report_error (name, flags, mode) ;
}
Because of the way alloca works, the memory it allocates is freed even when an error
occurs, with no special effort required.

By contrast, the previous definition of open2 (which uses malloc and free) would
develop a memory leak if it were changed in this way. Even if you are willing to make
more changes to fix it, there is no easy way to do so.

3.2.5.3 Disadvantages of alloca

These are the disadvantages of alloca in comparison with malloc:

e If you try to allocate more memory than the machine can provide, you don’t get a
clean error message. Instead you get a fatal signal like the one you would get from
an infinite recursion; probably a segmentation violation (see Section 24.2.1 [Program
Error Signals|, page 615).

e Some non-GNU systems fail to support alloca, so it is less portable. However, a slower
emulation of alloca written in C is available for use on systems with this deficiency.

3.2.5.4 GNU C Variable-Size Arrays

In GNU C, you can replace most uses of alloca with an array of variable size. Here is how
open2 would look then:

int open2 (char *strl, char *str2, int flags, int mode)
{

char name[strlen (strl) + strlem (str2) + 1];

stpcpy (stpcpy (name, strl), str2);

return open (name, flags, mode);

}
But alloca is not always equivalent to a variable-sized array, for several reasons:

e A variable size array’s space is freed at the end of the scope of the name of the array.
The space allocated with alloca remains until the end of the function.

e It is possible to use alloca within a loop, allocating an additional block on each
iteration. This is impossible with variable-sized arrays.

Note: If you mix use of alloca and variable-sized arrays within one function, exiting
a scope in which a variable-sized array was declared frees all blocks allocated with alloca
during the execution of that scope.

3.3 Resizing the Data Segment

The symbols in this section are declared in ‘unistd.h’.

You will not normally use the functions in this section, because the functions described
in Section 3.2 [Allocating Storage For Program Data], page 32 are easier to use. Those are

Chapter 3: Virtual Memory Allocation And Paging 61

interfaces to a GNU C Library memory allocator that uses the functions below itself. The
functions below are simple interfaces to system calls.

int brk (void *addr) [Function]
brk sets the high end of the calling process’ data segment to addr.

The address of the end of a segment is defined to be the address of the last byte in
the segment plus 1.

The function has no effect if addr is lower than the low end of the data segment.
(This is considered success, by the way).

The function fails if it would cause the data segment to overlap another segment or
exceed the process’ data storage limit (see Section 22.2 [Limiting Resource Usage],
page 585).

The function is named for a common historical case where data storage and the stack
are in the same segment. Data storage allocation grows upward from the bottom of
the segment while the stack grows downward toward it from the top of the segment
and the curtain between them is called the break.

The return value is zero on success. On failure, the return value is -1 and errno is
set accordingly. The following errno values are specific to this function:

ENOMEM The request would cause the data segment to overlap another segment or
exceed the process’ data storage limit.

void *sbrk (ptrdiff_t delta) [Function]
This function is the same as brk except that you specify the new end of the data
segment as an offset delta from the current end and on success the return value is the
address of the resulting end of the data segment instead of zero.

This means you can use ‘sbrk(0)’ to find out what the current end of the data
segment is.

3.4 Locking Pages

You can tell the system to associate a particular virtual memory page with a real page
frame and keep it that way — i.e. cause the page to be paged in if it isn’t already and
mark it so it will never be paged out and consequently will never cause a page fault. This
is called locking a page.

The functions in this chapter lock and unlock the calling process’ pages.

3.4.1 Why Lock Pages

Because page faults cause paged out pages to be paged in transparently, a process rarely
needs to be concerned about locking pages. However, there are two reasons people some-
times are:

e Speed. A page fault is transparent only insofar as the process is not sensitive to how
long it takes to do a simple memory access. Time-critical processes, especially realtime
processes, may not be able to wait or may not be able to tolerate variance in execution
speed.

62 The GNU C Library

A process that needs to lock pages for this reason probably also needs priority among
other processes for use of the CPU. See Section 22.3 [Process CPU Priority And
Scheduling], page 589.

In some cases, the programmer knows better than the system’s demand paging allocator
which pages should remain in real memory to optimize system performance. In this
case, locking pages can help.

e Privacy. If you keep secrets in virtual memory and that virtual memory gets paged
out, that increases the chance that the secrets will get out. If a password gets written
out to disk swap space, for example, it might still be there long after virtual and real
memory have been wiped clean.

Be aware that when you lock a page, that’s one fewer page frame that can be used to
back other virtual memory (by the same or other processes), which can mean more page
faults, which means the system runs more slowly. In fact, if you lock enough memory, some
programs may not be able to run at all for lack of real memory.

3.4.2 Locked Memory Details

A memory lock is associated with a virtual page, not a real frame. The paging rule is: If a
frame backs at least one locked page, don’t page it out.

Memory locks do not stack. I.e. you can’t lock a particular page twice so that it has to
be unlocked twice before it is truly unlocked. It is either locked or it isn’t.

A memory lock persists until the process that owns the memory explicitly unlocks it.
(But process termination and exec cause the virtual memory to cease to exist, which you
might say means it isn’t locked any more).

Memory locks are not inherited by child processes. (But note that on a modern Unix
system, immediately after a fork, the parent’s and the child’s virtual address space are
backed by the same real page frames, so the child enjoys the parent’s locks). See Section 26.4
[Creating a Process], page 700.

Because of its ability to impact other processes, only the superuser can lock a page. Any
process can unlock its own page.

The system sets limits on the amount of memory a process can have locked and the
amount of real memory it can have dedicated to it. See Section 22.2 [Limiting Resource
Usage], page 585.

In Linux, locked pages aren’t as locked as you might think. Two virtual pages that are
not shared memory can nonetheless be backed by the same real frame. The kernel does this
in the name of efficiency when it knows both virtual pages contain identical data, and does
it even if one or both of the virtual pages are locked.

But when a process modifies one of those pages, the kernel must get it a separate frame
and fill it with the page’s data. This is known as a copy-on-write page fault. Tt takes a
small amount of time and in a pathological case, getting that frame may require I/0.

To make sure this doesn’t happen to your program, don’t just lock the pages. Write
to them as well, unless you know you won’t write to them ever. And to make sure you
have pre-allocated frames for your stack, enter a scope that declares a C automatic variable
larger than the maximum stack size you will need, set it to something, then return from its
scope.

Chapter 3: Virtual Memory Allocation And Paging 63

3.4.3 Functions To Lock And Unlock Pages

The symbols in this section are declared in ‘sys/mman.h’. These functions are defined by
POSIX.1b, but their availability depends on your kernel. If your kernel doesn’t allow these
functions, they exist but always fail. They are available with a Linux kernel.

Portability Note: POSIX.1b requires that when the mlock and munlock functions are
available, the file ‘unistd.h’ define the macro _POSIX_MEMLOCK_RANGE and the file limits.h
define the macro PAGESIZE to be the size of a memory page in bytes. It requires that when
the mlockall and munlockall functions are available, the ‘unistd.h’ file define the macro
_POSIX_MEMLOCK. The GNU C library conforms to this requirement.

int mlock (const void *addr, size_t len) [Function]
mlock locks a range of the calling process’ virtual pages.
The range of memory starts at address addr and is len bytes long. Actually, since you
must lock whole pages, it is the range of pages that include any part of the specified
range.
When the function returns successfully, each of those pages is backed by (connected
to) a real frame (is resident) and is marked to stay that way. This means the function
may cause page-ins and have to wait for them.

When the function fails, it does not affect the lock status of any pages.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is set
accordingly. errno values specific to this function are:

ENOMEM
e At least some of the specified address range does not exist in the
calling process’ virtual address space.
e The locking would cause the process to exceed its locked page limit.
EPERM The calling process is not superuser.

EINVAL len is not positive.
ENOSYS The kernel does not provide mlock capability.

You can lock all a process’ memory with mlockall. You unlock memory with munlock
or munlockall.

To avoid all page faults in a C program, you have to use mlockall, because some of
the memory a program uses is hidden from the C code, e.g. the stack and automatic
variables, and you wouldn’t know what address to tell mlock.

int munlock (const void *addr, size_t len) [Function]
munlock unlocks a range of the calling process’ virtual pages.

munlock is the inverse of mlock and functions completely analogously to mlock, except
that there is no EPERM failure.

int mlockall (int flags) [Function]
mlockall locks all the pages in a process’ virtual memory address space, and/or any
that are added to it in the future. This includes the pages of the code, data and
stack segment, as well as shared libraries, user space kernel data, shared memory, and
memory mapped files.

64

The GNU C Library

flags is a string of single bit flags represented by the following macros. They tell
mlockall which of its functions you want. All other bits must be zero.

MCL_CURRENT
Lock all pages which currently exist in the calling process’ virtual address
space.

MCL_FUTURE
Set a mode such that any pages added to the process’ virtual address
space in the future will be locked from birth. This mode does not affect
future address spaces owned by the same process so exec, which replaces
a process’ address space, wipes out MCL_FUTURE. See Section 26.5 [Exe-
cuting a File], page 702.

When the function returns successfully, and you specified MCL_CURRENT, all of the
process’ pages are backed by (connected to) real frames (they are resident) and are
marked to stay that way. This means the function may cause page-ins and have to
wait for them.

When the process is in MCL_FUTURE mode because it successfully executed this func-
tion and specified MCL_CURRENT, any system call by the process that requires space
be added to its virtual address space fails with errno = ENOMEM if locking the addi-
tional space would cause the process to exceed its locked page limit. In the case that
the address space addition that can’t be accommodated is stack expansion, the stack
expansion fails and the kernel sends a SIGSEGV signal to the process.

When the function fails, it does not affect the lock status of any pages or the future
locking mode.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is set
accordingly. errno values specific to this function are:

ENOMEM

e At least some of the specified address range does not exist in the
calling process’ virtual address space.

e The locking would cause the process to exceed its locked page limit.
EPERM The calling process is not superuser.
EINVAL Undefined bits in flags are not zero.
ENOSYS The kernel does not provide mlockall capability.

You can lock just specific pages with mlock. You unlock pages with munlockall and
munlock.

int munlockall (void) [Function]

munlockall unlocks every page in the calling process’ virtual address space and turn
off MCL_FUTURE future locking mode.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is
set accordingly. The only way this function can fail is for generic reasons that all
functions and system calls can fail, so there are no specific errno values.

Chapter 4: Character Handling 65

4 Character Handling

Programs that work with characters and strings often need to classify a character—is it
alphabetic, is it a digit, is it whitespace, and so on—and perform case conversion operations
on characters. The functions in the header file ‘ctype.h’ are provided for this purpose.

Since the choice of locale and character set can alter the classifications of particular
character codes, all of these functions are affected by the current locale. (More precisely,
they are affected by the locale currently selected for character classification—the LC_CTYPE
category; see Section 7.3 [Categories of Activities that Locales Affect], page 152.)

The ISO C standard specifies two different sets of functions. The one set works on char
type characters, the other one on wchar_t wide characters (see Section 6.1 [Introduction to
Extended Characters|, page 109).

4.1 Classification of Characters

This section explains the library functions for classifying characters. For example, isalpha
is the function to test for an alphabetic character. It takes one argument, the character to
test, and returns a nonzero integer if the character is alphabetic, and zero otherwise. You
would use it like this:
if (isalpha (c))
printf ("The character ‘Jc’ is alphabetic.\n", c);

Each of the functions in this section tests for membership in a particular class of char-
acters; each has a name starting with ‘is’. Each of them takes one argument, which is
a character to test, and returns an int which is treated as a boolean value. The charac-
ter argument is passed as an int, and it may be the constant value EOF instead of a real
character.

The attributes of any given character can vary between locales. See Chapter 7 [Locales
and Internationalization], page 151, for more information on locales.

These functions are declared in the header file ‘ctype.h’.

int islower (int c) [Function]
Returns true if ¢ is a lower-case letter. The letter need not be from the Latin alphabet,
any alphabet representable is valid.

int isupper (int c) [Function]
Returns true if ¢ is an upper-case letter. The letter need not be from the Latin
alphabet, any alphabet representable is valid.

int isalpha (int c) [Function]
Returns true if ¢ is an alphabetic character (a letter). If islower or isupper is true
of a character, then isalpha is also true.

In some locales, there may be additional characters for which isalpha is true—letters
which are neither upper case nor lower case. But in the standard "C" locale, there
are no such additional characters.

int isdigit (int c) [Function]
Returns true if ¢ is a decimal digit (‘0" through ‘9’).

66

int

int

int

int

int

int

int

int

int

The GNU C Library

isalnum (int c) [Function]
Returns true if ¢ is an alphanumeric character (a letter or number); in other words,
if either isalpha or isdigit is true of a character, then isalnum is also true.

isxdigit (int c) [Function]
Returns true if ¢ is a hexadecimal digit. Hexadecimal digits include the normal
decimal digits ‘0’ through ‘9’ and the letters ‘A’ through ‘F’ and ‘a’ through ‘f’.

ispunct (int c) [Function]
Returns true if ¢ is a punctuation character. This means any printing character that
is not alphanumeric or a space character.

isspace (int ¢) [Function]
Returns true if ¢ is a whitespace character. In the standard "C" locale, isspace
returns true for only the standard whitespace characters:

’ space
P\f? formfeed
’\n’ newline
\r’ carriage return
\t’ horizontal tab
\v’ vertical tab
isblank (int c) [Function]

Returns true if ¢ is a blank character; that is, a space or a tab. This function was
originally a GNU extension, but was added in ISO C99.

isgraph (int c) [Function]
Returns true if ¢ is a graphic character; that is, a character that has a glyph associated
with it. The whitespace characters are not considered graphic.

isprint (int c) [Function]
Returns true if ¢ is a printing character. Printing characters include all the graphic
characters, plus the space (‘ ’) character.

iscntrl (int c) [Function]
Returns true if ¢ is a control character (that is, a character that is not a printing
character).

isascii (int c) [Function]
Returns true if ¢ is a 7-bit unsigned char value that fits into the US/UK ASCII
character set. This function is a BSD extension and is also an SVID extension.

Chapter 4: Character Handling 67

4.2 Case Conversion

This section explains the library functions for performing conversions such as case mappings
on characters. For example, toupper converts any character to upper case if possible. If
the character can’t be converted, toupper returns it unchanged.

These functions take one argument of type int, which is the character to convert, and
return the converted character as an int. If the conversion is not applicable to the argument
given, the argument is returned unchanged.

Compatibility Note: In pre-ISO C dialects, instead of returning the argument
unchanged, these functions may fail when the argument is not suitable for the conversion.
Thus for portability, you may need to write islower(c) 7 toupper(c) : c rather than
just toupper(c).

These functions are declared in the header file ‘ctype.h’.

int tolower (int c) [Function]
If ¢ is an upper-case letter, tolower returns the corresponding lower-case letter. If ¢
is not an upper-case letter, ¢ is returned unchanged.

int toupper (int c) [Function]
If ¢ is a lower-case letter, toupper returns the corresponding upper-case letter. Oth-
erwise ¢ is returned unchanged.

int toascii (int c) [Function]
This function converts ¢ to a 7-bit unsigned char value that fits into the US/UK
ASCII character set, by clearing the high-order bits. This function is a BSD extension
and is also an SVID extension.

int _tolower (int c) [Function]
This is identical to tolower, and is provided for compatibility with the SVID. See
Section 1.2.4 [SVID (The System V Interface Description)], page 3.

int _toupper (int c) [Function]
This is identical to toupper, and is provided for compatibility with the SVID.

4.3 Character class determination for wide characters

Amendment 1 to ISO C90 defines functions to classify wide characters. Although the orig-
inal ISO C90 standard already defined the type wchar_t, no functions operating on them
were defined.

The general design of the classification functions for wide characters is more general.
It allows extensions to the set of available classifications, beyond those which are always
available. The POSIX standard specifies how extensions can be made, and this is already
implemented in the GNU C library implementation of the localedef program.

The character class functions are normally implemented with bitsets, with a bitset per
character. For a given character, the appropriate bitset is read from a table and a test is
performed as to whether a certain bit is set. Which bit is tested for is determined by the
class.

For the wide character classification functions this is made visible. There is a type
classification type defined, a function to retrieve this value for a given class, and a function

68 The GNU C Library

to test whether a given character is in this class, using the classification value. On top of
this the normal character classification functions as used for char objects can be defined.

wctype_t [Data type]
The wctype_t can hold a value which represents a character class. The only defined
way to generate such a value is by using the wctype function.

This type is defined in ‘wctype.h’.

wctype_t wctype (const char *property) [Function]
The wctype returns a value representing a class of wide characters which is identified
by the string property. Beside some standard properties each locale can define its
own ones. In case no property with the given name is known for the current locale
selected for the LC_CTYPE category, the function returns zero.

The properties known in every locale are:

"alnum" "alpha" "cntrl" "digit"
llgraphll "lOWer" Ilprlnt n Ilpunct n
llspacell Ilupperll "Xdigit"

This function is declared in ‘wctype.h’.

To test the membership of a character to one of the non-standard classes the ISO C
standard defines a completely new function.

int iswctype (wint_t wc, wetype_t desc) [Function]
This function returns a nonzero value if wc is in the character class specified by desc.
desc must previously be returned by a successful call to wctype.

This function is declared in ‘wctype.h’.

To make it easier to use the commonly-used classification functions, they are defined in
the C library. There is no need to use wctype if the property string is one of the known
character classes. In some situations it is desirable to construct the property strings, and
then it is important that wetype can also handle the standard classes.

int iswalnum (wint_t wc) [Function]
This function returns a nonzero value if wc is an alphanumeric character (a letter or
number); in other words, if either iswalpha or iswdigit is true of a character, then
iswalnum is also true.
This function can be implemented using

iswctype (wc, wctype ("alnum"))

It is declared in ‘wctype.h’.

int iswalpha (wint_t wc) [Function]
Returns true if we is an alphabetic character (a letter). If iswlower or iswupper is
true of a character, then iswalpha is also true.
In some locales, there may be additional characters for which iswalpha is true—
letters which are neither upper case nor lower case. But in the standard "C" locale,
there are no such additional characters.

This function can be implemented using

Chapter 4: Character Handling 69

iswctype (wc, wctype ("alpha"))
It is declared in ‘wctype.h’.

int iswecntrl (wint_t wc) [Function]
Returns true if we is a control character (that is, a character that is not a printing
character).

This function can be implemented using
iswctype (wc, wctype ("cntrl"))

It is declared in ‘wctype.h’.

int iswdigit (wint_t wc) [Function]
Returns true if we is a digit (e.g., ‘0’ through ‘9’). Please note that this function
does not only return a nonzero value for decimal digits, but for all kinds of digits.
A consequence is that code like the following will not work unconditionally for wide

characters:
n = 0;
while (iswdigit (*wc))
{
n *= 10;
n += *xwc++ - L’0’;
}

This function can be implemented using
iswctype (wc, wctype ("digit"))

It is declared in ‘wctype.h’.

int iswgraph (wint_t wc) [Function]
Returns true if we is a graphic character; that is, a character that has a glyph asso-
ciated with it. The whitespace characters are not considered graphic.
This function can be implemented using
iswctype (wc, wctype ("graph"))

It is declared in ‘wctype.h’.

int iswlower (wint_t wc) [Function]
Returns true if we is a lower-case letter. The letter need not be from the Latin
alphabet, any alphabet representable is valid.
This function can be implemented using

iswctype (wc, wctype ("lower"))

It is declared in ‘wctype.h’.

int iswprint (wint_t wc) [Function]
Returns true if wc is a printing character. Printing characters include all the graphic
characters, plus the space (‘ ’) character.
This function can be implemented using
iswctype (wc, wctype ("print"))

It is declared in ‘wctype.h’.

70 The GNU C Library

int iswpunct (wint_t wc) [Function]
Returns true if we is a punctuation character. This means any printing character
that is not alphanumeric or a space character.
This function can be implemented using

iswctype (wc, wctype ("punct"))
It is declared in ‘wctype.h’.
int iswspace (wint_t wc) [Function]

Returns true if wc is a whitespace character. In the standard "C" locale, iswspace
returns true for only the standard whitespace characters:

L’ space

L’\f’ formfeed

L’\n’ newline

L’\r’ carriage return
L°\t’ horizontal tab
L>\v’ vertical tab

This function can be implemented using

iswctype (wc, wctype ("space"))

It is declared in ‘wctype.h’.

int iswupper (wint_t wc) [Function]
Returns true if we is an upper-case letter. The letter need not be from the Latin
alphabet, any alphabet representable is valid.

This function can be implemented using
iswctype (wc, wctype ("upper"))

It is declared in ‘wctype.h’.

int iswxdigit (wint_t wc) [Function]
Returns true if we is a hexadecimal digit. Hexadecimal digits include the normal
decimal digits ‘0’ through ‘9’ and the letters ‘A’ through ‘F’ and ‘a’ through ‘f’.
This function can be implemented using
iswctype (wc, wctype ("xdigit"))

It is declared in ‘wctype.h’.

The GNU C library also provides a function which is not defined in the ISO C standard
but which is available as a version for single byte characters as well.

int iswblank (wint_t wc) [Function]
Returns true if we is a blank character; that is, a space or a tab. This function was
originally a GNU extension, but was added in ISO C99. It is declared in ‘wchar.h’.

Chapter 4: Character Handling 71

4.4 Notes on using the wide character classes

The first note is probably not astonishing but still occasionally a cause of problems. The
iswXXX functions can be implemented using macros and in fact, the GNU C library does
this. They are still available as real functions but when the ‘wctype.h’ header is included
the macros will be used. This is the same as the char type versions of these functions.

The second note covers something new. It can be best illustrated by a (real-world)
example. The first piece of code is an excerpt from the original code. It is truncated a bit
but the intention should be clear.

int
is_in_class (int c, comnst char *class)
{

if (strcmp (class, "alnum") == 0)

return isalnum (c);

if (strcmp (class, "alpha'") == 0)
return isalpha (c);
if (strcmp (class, "cntrl") == 0)

return iscntrl (c);
return O;
}
Now, with the wctype and iswctype you can avoid the if cascades, but rewriting the
code as follows is wrong:
int
is_in_class (int c, const char *class)
{
wctype_t desc = wctype (class);

return desc 7 iswctype ((wint_t) c, desc) : O;

}

The problem is that it is not guaranteed that the wide character representation of a
single-byte character can be found using casting. In fact, usually this fails miserably. The
correct solution to this problem is to write the code as follows:

int
is_in_class (int c, const char *class)
{

wctype_t desc = wctype (class);
return desc 7 iswctype (btowc (c), desc) : 0;

}

See Section 6.3.3 [Converting Single Characters], page 115, for more information on
btowc. Note that this change probably does not improve the performance of the program
a lot since the wctype function still has to make the string comparisons. It gets really
interesting if the is_in_class function is called more than once for the same class name.
In this case the variable desc could be computed once and reused for all the calls. Therefore
the above form of the function is probably not the final one.

4.5 Mapping of wide characters.

The classification functions are also generalized by the ISO C standard. Instead of just
allowing the two standard mappings, a locale can contain others. Again, the localedef
program already supports generating such locale data files.

72 The GNU C Library

wctrans_t [Data Type]
This data type is defined as a scalar type which can hold a value representing the
locale-dependent character mapping. There is no way to construct such a value apart
from using the return value of the wctrans function.

This type is defined in ‘wctype.h’.

wctrans_t wctrans (const char *property) [Function]
The wetrans function has to be used to find out whether a named mapping is defined
in the current locale selected for the LC_CTYPE category. If the returned value is non-
zero, you can use it afterwards in calls to towctrans. If the return value is zero no
such mapping is known in the current locale.

Beside locale-specific mappings there are two mappings which are guaranteed to be
available in every locale:
"tolower" "toupper"

These functions are declared in ‘wctype.h’.

wint_t towctrans (wint_t wc, wctrans_t desc) [Function]
towctrans maps the input character wc according to the rules of the mapping for
which desc is a descriptor, and returns the value it finds. desc must be obtained by
a successful call to wctrans.

This function is declared in ‘wctype.h’.

For the generally available mappings, the ISO C standard defines convenient shortcuts
so that it is not necessary to call wetrans for them.

wint_t towlower (wint_-t wc) [Function]
If we is an upper-case letter, towlower returns the corresponding lower-case letter.
If we is not an upper-case letter, wc is returned unchanged.
towlower can be implemented using

towctrans (wc, wctrans ("tolower"))

This function is declared in ‘wctype.h’.

wint_t towupper (wint_t wc) [Function]
If we is a lower-case letter, towupper returns the corresponding upper-case letter.
Otherwise wc is returned unchanged.

towupper can be implemented using

towctrans (wc, wctrans ("toupper"))

This function is declared in ‘wctype.h’.

The same warnings given in the last section for the use of the wide character classification
functions apply here. It is not possible to simply cast a char type value to a wint_t and
use it as an argument to towctrans calls.

Chapter 5: String and Array Utilities 73

5 String and Array Utilities

Operations on strings (or arrays of characters) are an important part of many programs.
The GNU C library provides an extensive set of string utility functions, including functions
for copying, concatenating, comparing, and searching strings. Many of these functions can
also operate on arbitrary regions of storage; for example, the memcpy function can be used
to copy the contents of any kind of array.

It’s fairly common for beginning C programmers to “reinvent the wheel” by duplicating
this functionality in their own code, but it pays to become familiar with the library functions
and to make use of them, since this offers benefits in maintenance, efficiency, and portability.

For instance, you could easily compare one string to another in two lines of C code, but
if you use the built-in strcmp function, you're less likely to make a mistake. And, since
these library functions are typically highly optimized, your program may run faster too.

5.1 Representation of Strings

This section is a quick summary of string concepts for beginning C programmers. It de-
scribes how character strings are represented in C and some common pitfalls. If you are
already familiar with this material, you can skip this section.

A string is an array of char objects. But string-valued variables are usually declared
to be pointers of type char *. Such variables do not include space for the text of a string;
that has to be stored somewhere else—in an array variable, a string constant, or dynami-
cally allocated memory (see Section 3.2 [Allocating Storage For Program Data], page 32).
It’s up to you to store the address of the chosen memory space into the pointer variable.
Alternatively you can store a null pointer in the pointer variable. The null pointer does not
point anywhere, so attempting to reference the string it points to gets an error.

“string” normally refers to multibyte character strings as opposed to wide character
strings. Wide character strings are arrays of type wchar_t and as for multibyte character
strings usually pointers of type wchar_t * are used.

By convention, a null character, >\0’, marks the end of a multibyte character string and
the null wide character, L°\0’, marks the end of a wide character string. For example, in
testing to see whether the char * variable p points to a null character marking the end of
a string, you can write !*p or *p == *\0’.

A null character is quite different conceptually from a null pointer, although both are
represented by the integer 0.

String literals appear in C program source as strings of characters between double-
quote characters (‘"’) where the initial double-quote character is immediately preceded by
a capital ‘L’ (ell) character (as in L"foo"). In ISO C, string literals can also be formed
by string concatenation: "a" "b" is the same as "ab". For wide character strings one can
either use L"a" L"b" or L"a" "b". Modification of string literals is not allowed by the GNU
C compiler, because literals are placed in read-only storage.

Character arrays that are declared const cannot be modified either. It’s generally good
style to declare non-modifiable string pointers to be of type const char *, since this often
allows the C compiler to detect accidental modifications as well as providing some amount
of documentation about what your program intends to do with the string.

74 The GNU C Library

The amount of memory allocated for the character array may extend past the null
character that normally marks the end of the string. In this document, the term allocated
size is always used to refer to the total amount of memory allocated for the string, while the
term length refers to the number of characters up to (but not including) the terminating
null character.

A notorious source of program bugs is trying to put more characters in a string than
fit in its allocated size. When writing code that extends strings or moves characters into a
pre-allocated array, you should be very careful to keep track of the length of the text and
make explicit checks for overflowing the array. Many of the library functions do not do this
for you! Remember also that you need to allocate an extra byte to hold the null character
that marks the end of the string.

Originally strings were sequences of bytes where each byte represents a single character.
This is still true today if the strings are encoded using a single-byte character encoding.
Things are different if the strings are encoded using a multibyte encoding (for more informa-
tion on encodings see Section 6.1 [Introduction to Extended Characters], page 109). There
is no difference in the programming interface for these two kind of strings; the programmer
has to be aware of this and interpret the byte sequences accordingly.

But since there is no separate interface taking care of these differences the byte-based
string functions are sometimes hard to use. Since the count parameters of these functions
specify bytes a call to strncpy could cut a multibyte character in the middle and put an
incomplete (and therefore unusable) byte sequence in the target buffer.

To avoid these problems later versions of the ISO C standard introduce a second set of
functions which are operating on wide characters (see Section 6.1 [Introduction to Extended
Characters], page 109). These functions don’t have the problems the single-byte versions
have since every wide character is a legal, interpretable value. This does not mean that
cutting wide character strings at arbitrary points is without problems. It normally is for
alphabet-based languages (except for non-normalized text) but languages based on syllables
still have the problem that more than one wide character is necessary to complete a logical
unit. This is a higher level problem which the C library functions are not designed to solve.
But it is at least good that no invalid byte sequences can be created. Also, the higher level
functions can also much easier operate on wide character than on multibyte characters so
that a general advise is to use wide characters internally whenever text is more than simply
copied.

The remaining of this chapter will discuss the functions for handling wide character
strings in parallel with the discussion of the multibyte character strings since there is almost
always an exact equivalent available.

5.2 String and Array Conventions

This chapter describes both functions that work on arbitrary arrays or blocks of memory,
and functions that are specific to null-terminated arrays of characters and wide characters.

Functions that operate on arbitrary blocks of memory have names beginning with ‘mem’
and ‘wmem’ (such as memcpy and wmemcpy) and invariably take an argument which specifies
the size (in bytes and wide characters respectively) of the block of memory to operate on.
The array arguments and return values for these functions have type void * or wchar_t.
As a matter of style, the elements of the arrays used with the ‘mem’ functions are referred to

Chapter 5: String and Array Utilities 75

as “bytes”. You can pass any kind of pointer to these functions, and the sizeof operator
is useful in computing the value for the size argument. Parameters to the ‘wmem’ functions
must be of type wchar_t *. These functions are not really usable with anything but arrays
of this type.

In contrast, functions that operate specifically on strings and wide character strings have
names beginning with ‘str’ and ‘wcs’ respectively (such as strcpy and wescpy) and look
for a null character to terminate the string instead of requiring an explicit size argument to
be passed. (Some of these functions accept a specified maximum length, but they also check
for premature termination with a null character.) The array arguments and return values
for these functions have type char * and wchar_t * respectively, and the array elements
are referred to as “characters” and “wide characters”.

In many cases, there are both ‘mem’ and ‘str’/‘wcs’ versions of a function. The one
that is more appropriate to use depends on the exact situation. When your program is
manipulating arbitrary arrays or blocks of storage, then you should always use the ‘mem’
functions. On the other hand, when you are manipulating null-terminated strings it is
usually more convenient to use the ‘str’/‘wcs’ functions, unless you already know the
length of the string in advance. The ‘wmem’ functions should be used for wide character
arrays with known size.

Some of the memory and string functions take single characters as arguments. Since
a value of type char is automatically promoted into an value of type int when used as a
parameter, the functions are declared with int as the type of the parameter in question.
In case of the wide character function the situation is similarly: the parameter type for a
single wide character is wint_t and not wchar_t. This would for many implementations
not be necessary since the wchar_t is large enough to not be automatically promoted, but
since the ISO C standard does not require such a choice of types the wint_t type is used.

5.3 String Length

You can get the length of a string using the strlen function. This function is declared in
the header file ‘string.h’.

size_t strlen (const char *s) [Function]
The strlen function returns the length of the null-terminated string s in bytes. (In
other words, it returns the offset of the terminating null character within the array.)
For example,

strlen ("hello, world")
= 12

When applied to a character array, the strlen function returns the length of the string
stored there, not its allocated size. You can get the allocated size of the character
array that holds a string using the sizeof operator:

char string[32] = "hello, world";
sizeof (string)

= 32
strlen (string)

= 12

But beware, this will not work unless string is the character array itself, not a pointer
to it. For example:

76 The GNU C Library

char string[32] = "hello, world";
char *ptr = string;
sizeof (string)
= 32
sizeof (ptr)
= 4 /* (on a machine with 4 byte pointers) */
This is an easy mistake to make when you are working with functions that take string
arguments; those arguments are always pointers, not arrays.

It must also be noted that for multibyte encoded strings the return value does not
have to correspond to the number of characters in the string. To get this value the
string can be converted to wide characters and wcslen can be used or something like
the following code can be used:

/* The input is in string.
The length is expected in n. */
{
mbstate_t t;
char *scopy = string;
/* In initial state. */
memset (&t, ’\0’, sizeof (t));
/* Determine number of characters. */
n = mbsrtowcs (NULL, &scopy, strlen (scopy), &t);
}
This is cumbersome to do so if the number of characters (as opposed to bytes) is

needed often it is better to work with wide characters.
The wide character equivalent is declared in ‘wchar.h’.

size_t wcslen (const wchar_t *ws) [Function]
The weslen function is the wide character equivalent to strlen. The return value is
the number of wide characters in the wide character string pointed to by ws (this is
also the offset of the terminating null wide character of ws).

Since there are no multi wide character sequences making up one character the return
value is not only the offset in the array, it is also the number of wide characters.

This function was introduced in Amendment 1 to ISO C90.

size_t strnlen (const char *s, size_-t maxlen) [Function]
The strnlen function returns the length of the string s in bytes if this length is
smaller than maxlen bytes. Otherwise it returns maxlen. Therefore this function is
equivalent to (strlen (s) <n ? strlen (s) : maxlen) but it is more efficient and
works even if the string s is not null-terminated.

char string[32] = "hello, world";
strnlen (string, 32)

= 12
strnlen (string, 5)

= 5

This function is a GNU extension and is declared in ‘string.h’.

size_t wcsnlen (const wchar-t *ws, size_t maxlen) [Function]
wcsnlen is the wide character equivalent to strnlen. The maxlen parameter specifies
the maximum number of wide characters.

This function is a GNU extension and is declared in ‘wchar.h’.

Chapter 5: String and Array Utilities 7

5.4 Copying and Concatenation

You can use the functions described in this section to copy the contents of strings and
arrays, or to append the contents of one string to another. The ‘str’ and ‘mem’ functions
are declared in the header file ‘string.h’ while the ‘wstr’ and ‘wmem’ functions are declared
in the file ‘wchar.h’.

A helpful way to remember the ordering of the arguments to the functions in this section
is that it corresponds to an assignment expression, with the destination array specified to
the left of the source array. All of these functions return the address of the destination
array.

Most of these functions do not work properly if the source and destination arrays overlap.
For example, if the beginning of the destination array overlaps the end of the source array,
the original contents of that part of the source array may get overwritten before it is copied.
Even worse, in the case of the string functions, the null character marking the end of the
string may be lost, and the copy function might get stuck in a loop trashing all the memory
allocated to your program.

All functions that have problems copying between overlapping arrays are explicitly iden-
tified in this manual. In addition to functions in this section, there are a few others like
sprintf (see Section 12.12.7 [Formatted Output Functions], page 256) and scanf (see
Section 12.14.8 [Formatted Input Functions], page 276).

void * memcpy (void *restrict to, const void *restrict from, size_-t size) [Function]
The memcpy function copies size bytes from the object beginning at from into the
object beginning at to. The behavior of this function is undefined if the two arrays
to and from overlap; use memmove instead if overlapping is possible.

The value returned by memcpy is the value of to.

Here is an example of how you might use memcpy to copy the contents of an array:

struct foo *oldarray, *newarray;
int arraysize;

memcpy (new, old, arraysize * sizeof (struct foo));

wchar_t * wmemcpy (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom, size_t size)
The wmemcpy function copies size wide characters from the object beginning at wfrom
into the object beginning at wto. The behavior of this function is undefined if the
two arrays wto and wirom overlap; use wmemmove instead if overlapping is possible.

The following is a possible implementation of wmemcpy but there are more optimiza-
tions possible.
wchar_t *
wmemcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)
{

return (wchar_t *) memcpy (wto, wfrom, size * sizeof (wchar_t));

}
The value returned by wmemcpy is the value of wto.
This function was introduced in Amendment 1 to ISO C90.

78 The GNU C Library

void * mempcpy (void *restrict to, const void *restrict from, size_t [Function]
size)
The mempcpy function is nearly identical to the memcpy function. It copies size bytes
from the object beginning at from into the object pointed to by to. But instead of
returning the value of to it returns a pointer to the byte following the last written byte
in the object beginning at to. L.e., the value is ((void *) ((char *) to + size)).

This function is useful in situations where a number of objects shall be copied to
consecutive memory positions.

void *
combine (void *o0l, size_t s1, void *02, size_t s2)
{
void *result = malloc (sl + s2);
if (result !'= NULL)
mempcpy (mempcpy (result, ol, s1), o2, s2);
return result;

}
This function is a GNU extension.

wchar_t * wmempcpy (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom, size_t size)
The wmempcpy function is nearly identical to the wmemcpy function. It copies size
wide characters from the object beginning at wfrom into the object pointed to by
wto. But instead of returning the value of wto it returns a pointer to the wide
character following the last written wide character in the object beginning at wto.
Le., the value is wto + size.

This function is useful in situations where a number of objects shall be copied to
consecutive memory positions.

The following is a possible implementation of wmemcpy but there are more optimiza-
tions possible.

wchar_t *
wmempcpy (wchar_t #*restrict wto, const wchar_t *restrict wfrom,
size_t size)
{
return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));

}

This function is a GNU extension.

void * memmove (void *to, const void *from, size_t size) [Function]
memmove copies the size bytes at from into the size bytes at to, even if those two
blocks of space overlap. In the case of overlap, memmove is careful to copy the original
values of the bytes in the block at from, including those bytes which also belong to
the block at to.

The value returned by memmove is the value of to.

wchar_t * wmemmove (wchar *wto, const wchar_t *wfrom, size_t size) [Function]
wmemmove copies the size wide characters at wfrom into the size wide characters at
wto, even if those two blocks of space overlap. In the case of overlap, memmove is
careful to copy the original values of the wide characters in the block at wifrom,
including those wide characters which also belong to the block at wto.

Chapter 5: String and Array Utilities 79

The following is a possible implementation of wmemcpy but there are more optimiza-
tions possible.
wchar_t *
wmempcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)
{

return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));

}
The value returned by wmemmove is the value of wto.
This function is a GNU extension.

void * memccpy (void *restrict to, const void *restrict from, int c, size_.t [Function]
size)

This function copies no more than size bytes from from to to, stopping if a byte

matching ¢ is found. The return value is a pointer into to one byte past where ¢ was

copied, or a null pointer if no byte matching ¢ appeared in the first size bytes of from.

void * memset (void *block, int c, size_t size) [Function]
This function copies the value of ¢ (converted to an unsigned char) into each of the
first size bytes of the object beginning at block. It returns the value of block.

wchar_t * wmemset (wchar_t *block, wchar_t wc, size_t size) [Function]
This function copies the value of wc into each of the first size wide characters of the
object beginning at block. It returns the value of block.

char * strcpy (char *restrict to, const char *restrict from) [Function]
This copies characters from the string from (up to and including the terminating null
character) into the string to. Like memcpy, this function has undefined results if the
strings overlap. The return value is the value of to.

wchar_t * wcscpy (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom)
This copies wide characters from the string wfrom (up to and including the terminat-
ing null wide character) into the string wto. Like wmemcpy, this function has undefined
results if the strings overlap. The return value is the value of wto.

char * strncpy (char *restrict to, const char *restrict from, size_t [Function]
size)
This function is similar to strcpy but always copies exactly size characters into to.
If the length of from is more than size, then strncpy copies just the first size charac-
ters. Note that in this case there is no null terminator written into to.

If the length of from is less than size, then strncpy copies all of from, followed by
enough null characters to add up to size characters in all. This behavior is rarely
useful, but it is specified by the ISO C standard.

The behavior of strncpy is undefined if the strings overlap.

Using strncpy as opposed to strcpy is a way to avoid bugs relating to writing past
the end of the allocated space for to. However, it can also make your program much
slower in one common case: copying a string which is probably small into a potentially
large buffer. In this case, size may be large, and when it is, strncpy will waste a
considerable amount of time copying null characters.

80

The GNU C Library

wchar_t * wcsncpy (wchar_t *restrict wto, const wchar_t *restrict [Function]

char

wfrom, size_t size)
This function is similar to wcscpy but always copies exactly size wide characters into
wto.

If the length of wfrom is more than size, then wcsncpy copies just the first size wide
characters. Note that in this case there is no null terminator written into wto.

If the length of wfrom is less than size, then wcsncpy copies all of wirom, followed by
enough null wide characters to add up to size wide characters in all. This behavior
is rarely useful, but it is specified by the ISO C standard.

The behavior of wesncpy is undefined if the strings overlap.

Using wesncpy as opposed to wescpy is a way to avoid bugs relating to writing past
the end of the allocated space for wto. However, it can also make your program
much slower in one common case: copying a string which is probably small into a
potentially large buffer. In this case, size may be large, and when it is, wcsncpy will
waste a considerable amount of time copying null wide characters.

* strdup (const char *s) [Function]
This function copies the null-terminated string s into a newly allocated string. The
string is allocated using malloc; see Section 3.2.2 [Unconstrained Allocation], page 34.
If malloc cannot allocate space for the new string, strdup returns a null pointer.
Otherwise it returns a pointer to the new string.

wchar_t * wcsdup (const wchar_t *ws) [Function]

char

char

This function copies the null-terminated wide character string ws into a newly allo-
cated string. The string is allocated using malloc; see Section 3.2.2 [Unconstrained
Allocation], page 34. If malloc cannot allocate space for the new string, wcsdup
returns a null pointer. Otherwise it returns a pointer to the new wide character
string.

This function is a GNU extension.

*x strndup (const char *s, size_t size) [Function]
This function is similar to strdup but always copies at most size characters into the
newly allocated string.

If the length of s is more than size, then strndup copies just the first size characters
and adds a closing null terminator. Otherwise all characters are copied and the string
is terminated.

This function is different to strncpy in that it always terminates the destination
string.

strndup is a GNU extension.

* stpcpy (char *restrict to, const char *restrict from) [Function]
This function is like strcpy, except that it returns a pointer to the end of the string
to (that is, the address of the terminating null character to + strlen (from)) rather
than the beginning.

For example, this program uses stpcpy to concatenate ‘foo’ and ‘bar’ to produce
‘foobar’, which it then prints.

Chapter 5: String and Array Utilities 81

#include <string.h>
#include <stdio.h>

int

main (void)

{
char buffer[10];
char *to = buffer;
to = stpcpy (to, "foo");
to = stpcpy (to, "bar");
puts (buffer);
return O;

}

This function is not part of the ISO or POSIX standards, and is not customary on
Unix systems, but we did not invent it either. Perhaps it comes from MS-DOG.

Its behavior is undefined if the strings overlap. The function is declared in ‘string.h’.

wchar_t * wcpcpy (wchar_t *restrict wto, const wchar_t *restrict [Function]

char

wfrom)
This function is like wescpy, except that it returns a pointer to the end of the string
wto (that is, the address of the terminating null character wto + strlen (wfrom))
rather than the beginning.

This function is not part of ISO or POSIX but was found useful while developing the
GNU C Library itself.

The behavior of wepepy is undefined if the strings overlap.

wepepy is a GNU extension and is declared in ‘wchar.h’.

*x stpncpy (char *restrict to, const char *restrict from, size_t [Function]
size)

This function is similar to stpcpy but copies always exactly size characters into to.

If the length of from is more then size, then stpncpy copies just the first size characters

and returns a pointer to the character directly following the one which was copied

last. Note that in this case there is no null terminator written into to.

If the length of from is less than size, then stpncpy copies all of from, followed by

enough null characters to add up to size characters in all. This behavior is rarely

useful, but it is implemented to be useful in contexts where this behavior of the

strncpy is used. stpncpy returns a pointer to the first written null character.

This function is not part of ISO or POSIX but was found useful while developing the

GNU C Library itself.

Its behavior is undefined if the strings overlap. The function is declared in ‘string.h’.

wchar_t * wcpncpy (wchar_t *restrict wto, const wchar_t *restrict [Function]

wfrom, size_t size)
This function is similar to wepcpy but copies always exactly wsize characters into
wto.

If the length of wfrom is more then size, then wcpncpy copies just the first size wide
characters and returns a pointer to the wide character directly following the last non-
null wide character which was copied last. Note that in this case there is no null
terminator written into wto.

82

char

char

The GNU C Library

If the length of wfrom is less than size, then wcpncpy copies all of wfrom, followed
by enough null characters to add up to size characters in all. This behavior is rarely
useful, but it is implemented to be useful in contexts where this behavior of the
wcsnepy is used. wepnepy returns a pointer to the first written null character.

This function is not part of ISO or POSIX but was found useful while developing the
GNU C Library itself.

Its behavior is undefined if the strings overlap.

wepnepy is a GNU extension and is declared in ‘wchar.h’.

* strdupa (const char *s) [Macro]
This macro is similar to strdup but allocates the new string using alloca instead
of malloc (see Section 3.2.5 [Automatic Storage with Variable Size], page 58). This
means of course the returned string has the same limitations as any block of memory
allocated using alloca.

For obvious reasons strdupa is implemented only as a macro; you cannot get the
address of this function. Despite this limitation it is a useful function. The following
code shows a situation where using malloc would be a lot more expensive.

#include <paths.h>
#include <string.h>
#include <stdio.h>

const char path[] = _PATH_STDPATH;

int

main (void)

{
char *wr_path = strdupa (path);
char *cp = strtok (wr_path, ":");

while (cp != NULL)
{
puts (cp);
cp = strtok (NULL, ":");
}
return O;
}
Please note that calling strtok using path directly is invalid. It is also not allowed
to call strdupa in the argument list of strtok since strdupa uses alloca (see Sec-
tion 3.2.5 [Automatic Storage with Variable Size|, page 58) can interfere with the
parameter passing.

This function is only available if GNU CC is used.

*x strndupa (const char *s, size_t size) [Macro]
This function is similar to strndup but like strdupa it allocates the new string using
alloca see Section 3.2.5 [Automatic Storage with Variable Size], page 58. The same
advantages and limitations of strdupa are valid for strndupa, too.

This function is implemented only as a macro, just like strdupa. Just as strdupa
this macro also must not be used inside the parameter list in a function call.

strndupa is only available if GNU CC is used.

Chapter 5: String and Array Utilities 83

char * strcat (char *restrict to, const char *restrict from) [Function]
The strcat function is similar to strcpy, except that the characters from from are
concatenated or appended to the end of to, instead of overwriting it. That is, the
first character from from overwrites the null character marking the end of to.

An equivalent definition for strcat would be:

char *
strcat (char *restrict to, comnst char *restrict from)

{
strcpy (to + strlen (to), from);
return to;

}
This function has undefined results if the strings overlap.

wchar_t * wcscat (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom)
The wcscat function is similar to wcscpy, except that the characters from wfrom are
concatenated or appended to the end of wto, instead of overwriting it. That is, the
first character from wifrom overwrites the null character marking the end of wto.

An equivalent definition for wescat would be:

wchar_t *
wcscat (wchar_t *wto, const wchar_t *wfrom)
{
wescpy (wto + weslen (wto), wfrom);
return wto;

}
This function has undefined results if the strings overlap.

Programmers using the strcat or wcscat function (or the following strncat or wecsncar
functions for that matter) can easily be recognized as lazy and reckless. In almost all
situations the lengths of the participating strings are known (it better should be since how
can one otherwise ensure the allocated size of the buffer is sufficient?) Or at least, one could
know them if one keeps track of the results of the various function calls. But then it is very
inefficient to use strcat/wcscat. A lot of time is wasted finding the end of the destination
string so that the actual copying can start. This is a common example:

/* This function concatenates arbitrarily many strings. The last
parameter must be NULL. */
char *
concat (const char *str, ...)
{
va_list ap, ap2;
size_t total = 1;
const char *s;
char *result;

va_start (ap, str);

/* Actually va_copy, but this is the name more gcc versions
understand. */

__va_copy (ap2, ap);

/* Determine how much space we need. */
for (s = str; s != NULL; s = va_arg (ap, const char x))
total += strlen (s);

84 The GNU C Library

va_end (ap);

result = (char *) malloc (total);
if (result !'= NULL)
{
result[0] = ’\0’;

/* Copy the strings. */
for (s = str; s != NULL; s = va_arg (ap2, const char *))
strcat (result, s);

}
va_end (ap2);

return result;

}

This looks quite simple, especially the second loop where the strings are actually copied.
But these innocent lines hide a major performance penalty. Just imagine that ten strings
of 100 bytes each have to be concatenated. For the second string we search the already
stored 100 bytes for the end of the string so that we can append the next string. For all
strings in total the comparisons necessary to find the end of the intermediate results sums
up to 5500! If we combine the copying with the search for the allocation we can write this
function more efficient:

char *
concat (const char *str, ...)
{
va_list ap;
size_t allocated = 100;
char *result = (char *) malloc (allocated);

if (result != NULL)
{
char *newp;
char *wp;

va_start (ap, str);

wp = result;
for (s = str; s != NULL; s = va_arg (ap, const char *))
{

size_t len = strlen (s);

/* Resize the allocated memory if necessary. */
if (wp + len + 1 > result + allocated)
{
allocated = (allocated + len) * 2;
newp = (char *) realloc (result, allocated);
if (newp == NULL)
{
free (result);
return NULL;
}
wp = newp + (wp - result);
result = newp;

Chapter 5: String and Array Utilities 85

wp = mempcpy (wp, s, len);
}

/* Terminate the result string. */
*yp++ = \0’;

/* Resize memory to the optimal size. */
newp = realloc (result, wp - result);
if (newp != NULL)

result = newp;

va_end (ap);

}

return result;
}

With a bit more knowledge about the input strings one could fine-tune the memory
allocation. The difference we are pointing to here is that we don’t use strcat anymore.
We always keep track of the length of the current intermediate result so we can safe us the
search for the end of the string and use mempcpy. Please note that we also don’t use stpcpy
which might seem more natural since we handle with strings. But this is not necessary since
we already know the length of the string and therefore can use the faster memory copying
function. The example would work for wide characters the same way.

Whenever a programmer feels the need to use strcat she or he should think twice
and look through the program whether the code cannot be rewritten to take advantage of
already calculated results. Again: it is almost always unnecessary to use strcat.

char * strncat (char *restrict to, const char *restrict from, size_t [Function]
size)
This function is like strcat except that not more than size characters from from are
appended to the end of to. A single null character is also always appended to to, so
the total allocated size of to must be at least size + 1 bytes longer than its initial
length.

The strncat function could be implemented like this:

char *
strncat (char *to, const char *from, size_t size)

{
to[strlen (to) + size] = ’\0’;
strncpy (to + strlen (to), from, size);
return to;

}

The behavior of strncat is undefined if the strings overlap.

wchar_t * wcsncat (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom, size_t size)
This function is like wcscat except that not more than size characters from from are
appended to the end of to. A single null character is also always appended to to, so
the total allocated size of to must be at least size + 1 bytes longer than its initial
length.

The wesncat function could be implemented like this:

86 The GNU C Library

wchar_t #*
wcsncat (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)
{
wto[wcslen (to) + size] = L’\0’;
wesnepy (wto + weslen (wto), wfrom, size);
return wto;

}

The behavior of wesncat is undefined if the strings overlap.

Here is an example showing the use of strncpy and strncat (the wide character version
is equivalent). Notice how, in the call to strncat, the size parameter is computed to avoid
overflowing the character array buffer.

#include <string.h>
#include <stdio.h>

#define SIZE 10

static char buffer[SIZE];
main ()

{

strncpy (buffer, "hello", SIZE);
puts (buffer);

strncat (buffer, ", world", SIZE - strlen (buffer) - 1);
puts (buffer);
}
The output produced by this program looks like:
hello
hello, wo
void bcopy (const void *from, void *to, size_t size) [Function]

This is a partially obsolete alternative for memmove, derived from BSD. Note that it
is not quite equivalent to memmove, because the arguments are not in the same order
and there is no return value.

void bzero (void *block, size_t size) [Function]
This is a partially obsolete alternative for memset, derived from BSD. Note that it is
not as general as memset, because the only value it can store is zero.

5.5 String/Array Comparison

You can use the functions in this section to perform comparisons on the contents of strings
and arrays. As well as checking for equality, these functions can also be used as the ordering
functions for sorting operations. See Chapter 9 [Searching and Sorting], page 193, for an
example of this.

Unlike most comparison operations in C, the string comparison functions return a
nonzero value if the strings are not equivalent rather than if they are. The sign of the
value indicates the relative ordering of the first characters in the strings that are not equiv-
alent: a negative value indicates that the first string is “less” than the second, while a
positive value indicates that the first string is “greater”.

Chapter 5: String and Array Utilities 87

The most common use of these functions is to check only for equality. This is canonically
done with an expression like ‘! strcmp (s1, s2)’.

All of these functions are declared in the header file ‘string.h’.

int memcmp (const void *al, const void *a2, size_t size) [Function]
The function memcmp compares the size bytes of memory beginning at al against
the size bytes of memory beginning at a2. The value returned has the same sign as
the difference between the first differing pair of bytes (interpreted as unsigned char
objects, then promoted to int).

If the contents of the two blocks are equal, memcmp returns O.

int wmemcmp (const wchar_t *al, const wchar_t *a2, size_t size) [Function]
The function wmemcmp compares the size wide characters beginning at al against the
size wide characters beginning at a2. The value returned is smaller than or larger
than zero depending on whether the first differing wide character is al is smaller or
larger than the corresponding character in aZ2.

If the contents of the two blocks are equal, wmemcmp returns O.

On arbitrary arrays, the memcmp function is mostly useful for testing equality. It usually
isn’t meaningful to do byte-wise ordering comparisons on arrays of things other than bytes.
For example, a byte-wise comparison on the bytes that make up floating-point numbers isn’t
likely to tell you anything about the relationship between the values of the floating-point
numbers.

wmemcmp is really only useful to compare arrays of type wchar_t since the function looks
at sizeof (wchar_t) bytes at a time and this number of bytes is system dependent.

You should also be careful about using memcmp to compare objects that can contain
“holes”, such as the padding inserted into structure objects to enforce alignment require-
ments, extra space at the end of unions, and extra characters at the ends of strings whose
length is less than their allocated size. The contents of these “holes” are indeterminate and
may cause strange behavior when performing byte-wise comparisons. For more predictable
results, perform an explicit component-wise comparison.

For example, given a structure type definition like:

struct foo
{
unsigned char tag;
union

{
double f;
long i;
char *p;
} value;
};
you are better off writing a specialized comparison function to compare struct foo objects
instead of comparing them with memcmp.

int strcmp (const char *s1, const char *s2) [Function]
The strcmp function compares the string s1 against s2, returning a value that has the
same sign as the difference between the first differing pair of characters (interpreted
as unsigned char objects, then promoted to int).

88

int

int

int

int

int

int

The GNU C Library

If the two strings are equal, strcmp returns O.

A consequence of the ordering used by strcmp is that if sI is an initial substring of
s2, then sl is considered to be “less than” s2.

strcmp does not take sorting conventions of the language the strings are written in
into account. To get that one has to use strcoll.

wescemp (const wehar_t *ws1, const wchar_t *ws2) [Function]
The wecscmp function compares the wide character string wsl against ws2. The value
returned is smaller than or larger than zero depending on whether the first differing
wide character is wsl is smaller or larger than the corresponding character in ws2.

If the two strings are equal, wecscmp returns O.

A consequence of the ordering used by wescmp is that if wsl is an initial substring of
ws2, then wsl is considered to be “less than” ws2.

wcscmp does not take sorting conventions of the language the strings are written in
into account. To get that one has to use wcscoll.

strcasecmp (const char *s1, const char *s2) [Function]
This function is like strcmp, except that differences in case are ignored. How up-
percase and lowercase characters are related is determined by the currently selected
locale. In the standard "C" locale the characters A and 4 do not match but in a locale
which regards these characters as parts of the alphabet they do match.

strcasecmp is derived from BSD.

wcscasecmp (const wchar_t *ws1, const wchar. T *ws2) [Function]
This function is like wcscmp, except that differences in case are ignored. How up-
percase and lowercase characters are related is determined by the currently selected
locale. In the standard "C" locale the characters A and 4 do not match but in a locale
which regards these characters as parts of the alphabet they do match.

wcscasecmp is a GNU extension.

strncmp (const char *s1, const char *s2, size_t size) [Function]
This function is the similar to strcmp, except that no more than size wide characters
are compared. In other words, if the two strings are the same in their first size wide
characters, the return value is zero.

wesnemp (const wehar_t *ws1, const wchar_t *ws2, size_t size) [Function]
This function is the similar to wcscmp, except that no more than size wide characters
are compared. In other words, if the two strings are the same in their first size wide
characters, the return value is zero.

strncasecmp (const char *s1, const char *s2, size_t n) [Function]
This function is like strncmp, except that differences in case are ignored. Like
strcasecmp, it is locale dependent how uppercase and lowercase characters are re-
lated.

strncasecmp is a GNU extension.

Chapter 5: String and Array Utilities 89

int wcsncasecmp (const wchar_t *ws1, const wchar_t *s2, size_t n) [Function]
This function is like wecsncmp, except that differences in case are ignored. Like
wcscasecmp, it is locale dependent how uppercase and lowercase characters are re-
lated.

wcsncasecmp is a GNU extension.

Here are some examples showing the use of strcmp and strncmp (equivalent examples
can be constructed for the wide character functions). These examples assume the use of
the ASCII character set. (If some other character set—say, EBCDIC—is used instead, then
the glyphs are associated with different numeric codes, and the return values and ordering
may differ.)

strcmp ("hello", "hello")

=0 /* These two strings are the same. */
stremp ("hello", "Hello")

= 32 /* Comparisons are case-sensitive. */
strcmp ("hello", "world")

= -15 /* The character h’ comes before *w’. */
strcmp ("hello", "hello, world")

= -44 /* Comparing a null character against a comma. */
strncmp ("hello", "hello, world", 5)

= 0 /* The initial 5 characters are the same. */
strncmp ("hello, world", "hello, stupid world!!!", 5)

= 0 /* The initial 5 characters are the same. */

int strverscmp (const char *s1, const char *s2) [Function]
The strverscmp function compares the string sl against s2, considering them as
holding indices/version numbers. Return value follows the same conventions as found
in the strverscmp function. In fact, if sI and s2 contain no digits, strverscmp
behaves like strcmp.

Basically, we compare strings normally (character by character), until we find a digit
in each string - then we enter a special comparison mode, where each sequence of
digits is taken as a whole. If we reach the end of these two parts without noticing
a difference, we return to the standard comparison mode. There are two types of
numeric parts: "integral" and "fractional" (those begin with a ’0’). The types of the
numeric parts affect the way we sort them:

e integral/integral: we compare values as you would expect.

e fractional/integral: the fractional part is less than the integral one. Again, no
surprise.

e fractional/fractional: the things become a bit more complex. If the common
prefix contains only leading zeroes, the longest part is less than the other one;
else the comparison behaves normally.

strverscmp ("no digit", "no digit")

= 0 /* same behavior as stremp. */
strverscmp ("item#99", "item#100")

= <0 /* same prefix, but 99 < 100. */
strverscmp ("alphal', "alphaOO1")

= >0 /* fractional part inferior to integral one. */
strverscmp ("partl_£012", "partl_f01")

= >0 /* two fractional parts. */
strverscmp ("foo0.009", "foo.0")

90 The GNU C Library

= <0 /#* idem, but with leading zeroes only. */

This function is especially useful when dealing with filename sorting, because file-
names frequently hold indices/version numbers.

strverscmp is a GNU extension.

int becmp (const void *al, const void *a2, size_t size) [Function]
This is an obsolete alias for memcmp, derived from BSD.

5.6 Collation Functions

In some locales, the conventions for lexicographic ordering differ from the strict numeric
ordering of character codes. For example, in Spanish most glyphs with diacritical marks
such as accents are not considered distinct letters for the purposes of collation. On the
other hand, the two-character sequence ‘11’ is treated as a single letter that is collated
immediately after ‘1.

You can use the functions strcoll and strxfrm (declared in the headers file ‘string.h’)
and wecscoll and wesxfrm (declared in the headers file ‘wchar’) to compare strings using a
collation ordering appropriate for the current locale. The locale used by these functions in
particular can be specified by setting the locale for the LC_COLLATE category; see Chapter 7
[Locales and Internationalization], page 151.

In the standard C locale, the collation sequence for strcoll is the same as that for
strcmp. Similarly, wescoll and wescmp are the same in this situation.

Effectively, the way these functions work is by applying a mapping to transform the
characters in a string to a byte sequence that represents the string’s position in the collating
sequence of the current locale. Comparing two such byte sequences in a simple fashion is
equivalent to comparing the strings with the locale’s collating sequence.

The functions strcoll and wcscoll perform this translation implicitly, in order to do
one comparison. By contrast, strxfrm and wcsxfrm perform the mapping explicitly. If
you are making multiple comparisons using the same string or set of strings, it is likely
to be more efficient to use strxfrm or wesxfrm to transform all the strings just once, and
subsequently compare the transformed strings with strcmp or wescmp.

int strcoll (const char *s1, const char *s2) [Function]
The strcoll function is similar to strcmp but uses the collating sequence of the
current locale for collation (the LC_COLLATE locale).

int wcscoll (const wchar_t *ws1, const wchar_t *ws2) [Function]
The wcscoll function is similar to wescmp but uses the collating sequence of the
current locale for collation (the LC_COLLATE locale).

Here is an example of sorting an array of strings, using strcoll to compare them. The
actual sort algorithm is not written here; it comes from gsort (see Section 9.3 [Array Sort
Function], page 194). The job of the code shown here is to say how to compare the strings
while sorting them. (Later on in this section, we will show a way to do this more efficiently
using strxfrm.)

/* This is the comparison function used with gqsort. */

int

Chapter 5: String and Array Utilities 91

compare_elements (char **pl, char #**p2)
{

return strcoll (*pl, *p2);
}

/* This is the entry point—the function to sort
strings using the locale’s collating sequence. */

void
sort_strings (char **array, int nstrings)
{
/* Sort temp_array by comparing the strings. */
gsort (array, nstrings,
sizeof (char *), compare_elements);

}

size_t strxfrm (char *restrict to, const char *restrict from, size_t [Function]
size)
The function strxfrm transforms the string from using the collation transformation
determined by the locale currently selected for collation, and stores the transformed
string in the array to. Up to size characters (including a terminating null character)
are stored.

The behavior is undefined if the strings to and from overlap; see Section 5.4 [Copying
and Concatenation], page 77.

The return value is the length of the entire transformed string. This value is not
affected by the value of size, but if it is greater or equal than size, it means that the
transformed string did not entirely fit in the array to. In this case, only as much
of the string as actually fits was stored. To get the whole transformed string, call
strxfrm again with a bigger output array.

The transformed string may be longer than the original string, and it may also be
shorter.

If size is zero, no characters are stored in to. In this case, strxfrm simply returns
the number of characters that would be the length of the transformed string. This
is useful for determining what size the allocated array should be. It does not matter
what to is if size is zero; to may even be a null pointer.

size_t wecsxfrm (wchar_t *restrict wto, const wchar_t *wfrom, size_t [Function]
size)
The function wecsxfrm transforms wide character string wfrom using the collation
transformation determined by the locale currently selected for collation, and stores
the transformed string in the array wto. Up to size wide characters (including a
terminating null character) are stored.

The behavior is undefined if the strings wto and wfrom overlap; see Section 5.4
[Copying and Concatenation], page 77.

The return value is the length of the entire transformed wide character string. This
value is not affected by the value of size, but if it is greater or equal than size, it means
that the transformed wide character string did not entirely fit in the array wto. In
this case, only as much of the wide character string as actually fits was stored. To get

92 The GNU C Library

the whole transformed wide character string, call wesxfrm again with a bigger output
array.

The transformed wide character string may be longer than the original wide character
string, and it may also be shorter.

If size is zero, no characters are stored in to. In this case, wesxfrm simply returns
the number of wide characters that would be the length of the transformed wide
character string. This is useful for determining what size the allocated array should
be (remember to multiply with sizeof (wchar_t)). It does not matter what wto is
if size is zero; wto may even be a null pointer.

Here is an example of how you can use strxfrm when you plan to do many comparisons.
It does the same thing as the previous example, but much faster, because it has to transform
each string only once, no matter how many times it is compared with other strings. Even
the time needed to allocate and free storage is much less than the time we save, when there
are many strings.

struct sorter { char *input; char *transformed; };

/* This is the comparison function used with gsort
to sort an array of struct sorter. */

int
compare_elements (struct sorter *pl, struct sorter *p2)
{
return strcmp (pl->transformed, p2->transformed);
}

/* This is the entry point—the function to sort
strings using the locale’s collating sequence. */

void
sort_strings_fast (char **array, int nstrings)
{

struct sorter temp_array[nstrings];

int i;

/* Set up temp_array. Each element contains
one input string and its transformed string. */
for (i = 0; i < nstrings; i++)
{
size_t length = strlen (array[i]) * 2;
char *transformed;
size_t transformed_length;

temp_array[i].input = arrayl[i];

/* First try a buffer perhaps big enough. */
transformed = (char *) xmalloc (length);

/* Transform array[il. =/
transformed_length = strxfrm (transformed, array[i], length);

/* If the buffer was not large enough, resize it
and try again. */
if (transformed_length >= length)
{

Chapter 5: String and Array Utilities 93

/* Allocate the needed space. +1 for terminating
NUL character. */
transformed = (char *) xrealloc (transformed,
transformed_length + 1);

/* The return value is not interesting because we know
how long the transformed string is. */
(void) strxfrm (transformed, arrayl[i],
transformed_length + 1);
}

temp_array[i] .transformed = transformed;

}

/* Sort temp_array by comparing transformed strings. */
gsort (temp_array, sizeof (struct sorter),
nstrings . compare_elements) 5

/* Put the elements back in the permanent array
in their sorted order. */
for (i = 0; i < nstrings; i++)
array[i] = temp_array[i].input;

/* Free the strings we allocated. */
for (i = 0; i < nstrings; i++)
free (temp_array[i].transformed);

}

The interesting part of this code for the wide character version would look like this:

void
sort_strings_fast (wchar_t **array, int nstrings)

{

/* Transform array[i]. =/
transformed_length = wcsxfrm (transformed, array[i], length);

/* If the buffer was not large enough, resize it
and try again. */
if (transformed_length >= length)
{
/* Allocate the needed space. +1 for terminating
NUL character. */
transformed = (wchar_t *) xrealloc (transformed,
(transformed_length + 1)
* sizeof (wchar_t));

/* The return value is not interesting because we know
how long the transformed string is. */
(void) wcsxfrm (transformed, arrayl[i],
transformed_length + 1);

Note the additional multiplication with sizeof (wchar_t) in the realloc call.

Compatibility Note: The string collation functions are a new feature of ISO C90. Older
C dialects have no equivalent feature. The wide character versions were introduced in
Amendment 1 to ISO C90.

94 The GNU C Library

5.7 Search Functions

This section describes library functions which perform various kinds of searching operations
on strings and arrays. These functions are declared in the header file ‘string.h’.

void * memchr (const void *block, int c, size_t size) [Function]
This function finds the first occurrence of the byte ¢ (converted to an unsigned char)
in the initial size bytes of the object beginning at block. The return value is a pointer
to the located byte, or a null pointer if no match was found.

wchar_t * wmemchr (const wchar_t *block, wchar_t wc, size_t size) [Function]
This function finds the first occurrence of the wide character wc in the initial size
wide characters of the object beginning at block. The return value is a pointer to the
located wide character, or a null pointer if no match was found.

void * rawmemchr (const void *block, int c) [Function]
Often the memchr function is used with the knowledge that the byte ¢ is available in
the memory block specified by the parameters. But this means that the size parameter
is not really needed and that the tests performed with it at runtime (to check whether
the end of the block is reached) are not needed.

The rawmemchr function exists for just this situation which is surprisingly frequent.
The interface is similar to memchr except that the size parameter is missing. The
function will look beyond the end of the block pointed to by block in case the pro-
grammer made an error in assuming that the byte c is present in the block. In this
case the result is unspecified. Otherwise the return value is a pointer to the located
byte.

This function is of special interest when looking for the end of a string. Since all
strings are terminated by a null byte a call like

rawmemchr (str, ’\0’)

will never go beyond the end of the string.
This function is a GNU extension.

void * memrchr (const void *block, int c, size_t size) [Function]
The function memrchr is like memchr, except that it searches backwards from the end
of the block defined by block and size (instead of forwards from the front).

This function is a GNU extension.

char * strchr (const char *string, int c) [Function]
The strchr function finds the first occurrence of the character ¢ (converted to a
char) in the null-terminated string beginning at string. The return value is a pointer
to the located character, or a null pointer if no match was found.
For example,
strchr ("hello, world", ’1’)
= "llo, world"
strchr ("hello, world", ’7’)
= NULL
The terminating null character is considered to be part of the string, so you can use
this function get a pointer to the end of a string by specifying a null character as the
value of the ¢ argument. It would be better (but less portable) to use strchrnul in
this case, though.

Chapter 5: String and Array Utilities 95

wchar_t * wcschr (const wchar_t *wstring, int wc) [Function]
The weschr function finds the first occurrence of the wide character we in the null-
terminated wide character string beginning at wstring. The return value is a pointer
to the located wide character, or a null pointer if no match was found.

The terminating null character is considered to be part of the wide character string,
so you can use this function get a pointer to the end of a wide character string by
specifying a null wude character as the value of the wc argument. It would be better
(but less portable) to use wecschrnul in this case, though.

char * strchrnul (const char *string, int c) [Function]
strchrnul is the same as strchr except that if it does not find the character, it
returns a pointer to string’s terminating null character rather than a null pointer.

This function is a GNU extension.

wchar_t * wcschrnul (const wchar_t *wstring, wchar_t wc) [Function]
wcschrnul is the same as weschr except that if it does not find the wide character,
it returns a pointer to wide character string’s terminating null wide character rather
than a null pointer.

This function is a GNU extension.

One useful, but unusual, use of the strchr function is when one wants to have a pointer
pointing to the NUL byte terminating a string. This is often written in this way:

s += strlen (s);

This is almost optimal but the addition operation duplicated a bit of the work already done
in the strlen function. A better solution is this:
s = strchr (s, ’\0’);

There is no restriction on the second parameter of strchr so it could very well also be
the NUL character. Those readers thinking very hard about this might now point out that
the strchr function is more expensive than the strlen function since we have two abort
criteria. This is right. But in the GNU C library the implementation of strchr is optimized
in a special way so that strchr actually is faster.

char * strrchr (const char *string, int c) [Function]
The function strrchr is like strchr, except that it searches backwards from the end
of the string string (instead of forwards from the front).
For example,

strrchr ("hello, world", ’17)
2 n ldll

wchar_t * wcsrchr (const wchar_t *wstring, wchar_t c) [Function]
The function wesrchr is like weschr, except that it searches backwards from the end
of the string wstring (instead of forwards from the front).

char * strstr (const char *haystack, const char *needle) [Function]
This is like strchr, except that it searches haystack for a substring needle rather
than just a single character. It returns a pointer into the string haystack that is the
first character of the substring, or a null pointer if no match was found. If needle is
an empty string, the function returns haystack.
For example,

96 The GNU C Library

strstr ("hello, world", "1")
= "llo, world"

strstr ("hello, world", "wo")
= "world"

wchar_t * wcsstr (const wchar_t *haystack, const wchar_t *needle) [Function]
This is like weschr, except that it searches haystack for a substring needle rather
than just a single wide character. It returns a pointer into the string haystack that
is the first wide character of the substring, or a null pointer if no match was found.
If needle is an empty string, the function returns haystack.

wchar_t * wcswcs (const wechar_t *haystack, const wchar_t *needle) [Function]

wcswes is an deprecated alias for wesstr. This is the name originally used in the
X/Open Portability Guide before the Amendment 1 to ISO C90 was published.

char * strcasestr (const char *haystack, const char *needle) [Function]
This is like strstr, except that it ignores case in searching for the substring. Like
strcasecmp, it is locale dependent how uppercase and lowercase characters are re-
lated.
For example,

strcasestr ("hello, world", "L")
= "llo, world"

strcasestr ("hello, World", "wo")
= "World"
void * memmem (const void *haystack, size_t haystack-1len, [Function]

const void *needle, size_t needle-len)
This is like strstr, but needle and haystack are byte arrays rather than
null-terminated strings. needle-len is the length of needle and haystack-len is the
length of haystack.

This function is a GNU extension.

size_t strspn (const char *string, const char *skipset) [Function]
The strspn (“string span”) function returns the length of the initial substring of
string that consists entirely of characters that are members of the set specified by the
string skipset. The order of the characters in skipset is not important.
For example,

strspn ("hello, world", "abcdefghijklmnopqrstuvwxyz")
= 5

Note that “character” is here used in the sense of byte. In a string using a multibyte
character encoding (abstract) character consisting of more than one byte are not
treated as an entity. Fach byte is treated separately. The function is not locale-
dependent.

size_t wcsspn (const wchar_t *wstring, const wchar_t *skipset) [Function]
The wesspn (“wide character string span”) function returns the length of the initial
substring of wstring that consists entirely of wide characters that are members of the
set specified by the string skipset. The order of the wide characters in skipset is not
important.

Chapter 5: String and Array Utilities 97

size_t strcspn (const char *string, const char *stopset) [Function]

The strcspn (“string complement span”) function returns the length of the initial
substring of string that consists entirely of characters that are not members of the
set specified by the string stopset. (In other words, it returns the offset of the first
character in string that is a member of the set stopset.)
For example,
strespn ("hello, world", " \t\m,.;!?")

= 5
Note that “character” is here used in the sense of byte. In a string using a multibyte
character encoding (abstract) character consisting of more than one byte are not
treated as an entity. Each byte is treated separately. The function is not locale-
dependent.

size_t wcscspn (const wchar_t *wstring, const wchar_t *stopset) [Function]

char

The wcscspn (“wide character string complement span”) function returns the length
of the initial substring of wstring that consists entirely of wide characters that are
not members of the set specified by the string stopset. (In other words, it returns the
offset of the first character in string that is a member of the set stopset.)

* strpbrk (const char *string, const char *stopset) [Function]
The strpbrk (“string pointer break”) function is related to strcspn, except that it
returns a pointer to the first character in string that is a member of the set stopset
instead of the length of the initial substring. It returns a null pointer if no such
character from stopset is found.

For example,
strpbrk ("hello, world", " \t\m,.;!?")
= ", world"
Note that “character” is here used in the sense of byte. In a string using a multibyte
character encoding (abstract) character consisting of more than one byte are not
treated as an entity. Fach byte is treated separately. The function is not locale-
dependent.

wchar_t * wcspbrk (const wchar_t *wstring, const wchar_t *stopset) [Function]

The wcspbrk (“wide character string pointer break”) function is related to wcscspn,
except that it returns a pointer to the first wide character in wstring that is a member
of the set stopset instead of the length of the initial substring. It returns a null pointer
if no such character from stopset is found.

5.7.1 Compatibility String Search Functions

char

char

* index (const char *string, int c) [Function]
index is another name for strchr; they are exactly the same. New code should always
use strchr since this name is defined in ISO C while index is a BSD invention which
never was available on System V derived systems.

* rindex (const char *string, int c) [Function]
rindex is another name for strrchr; they are exactly the same. New code should
always use strrchr since this name is defined in ISO C while rindex is a BSD
invention which never was available on System V derived systems.

98 The GNU C Library

5.8 Finding Tokens in a String

It’s fairly common for programs to have a need to do some simple kinds of lexical analysis
and parsing, such as splitting a command string up into tokens. You can do this with the
strtok function, declared in the header file ‘string.h’.

char * strtok (char *restrict newstring, const char *restrict [Function]
delimiters)
A string can be split into tokens by making a series of calls to the function strtok.

The string to be split up is passed as the newstring argument on the first call only.
The strtok function uses this to set up some internal state information. Subsequent
calls to get additional tokens from the same string are indicated by passing a null
pointer as the newstring argument. Calling strtok with another non-null newstring
argument reinitializes the state information. It is guaranteed that no other library
function ever calls strtok behind your back (which would mess up this internal state
information).

The delimiters argument is a string that specifies a set of delimiters that may surround
the token being extracted. All the initial characters that are members of this set are
discarded. The first character that is not a member of this set of delimiters marks
the beginning of the next token. The end of the token is found by looking for the
next character that is a member of the delimiter set. This character in the original
string newstring is overwritten by a null character, and the pointer to the beginning
of the token in newstring is returned.

On the next call to strtok, the searching begins at the next character beyond the one
that marked the end of the previous token. Note that the set of delimiters delimiters
do not have to be the same on every call in a series of calls to strtok.

If the end of the string newstring is reached, or if the remainder of string consists
only of delimiter characters, strtok returns a null pointer.

Note that “character” is here used in the sense of byte. In a string using a multibyte
character encoding (abstract) character consisting of more than one byte are not
treated as an entity. Each byte is treated separately. The function is not locale-
dependent.

Note that “character” is here used in the sense of byte. In a string using a multibyte
character encoding (abstract) character consisting of more than one byte are not
treated as an entity. Fach byte is treated separately. The function is not locale-
dependent.

wchar_t * wcstok (wchar-t *newstring, const char *delimiters) [Function]
A string can be split into tokens by making a series of calls to the function wcstok.

The string to be split up is passed as the newstring argument on the first call only.
The westok function uses this to set up some internal state information. Subsequent
calls to get additional tokens from the same wide character string are indicated by
passing a null pointer as the newstring argument. Calling wecstok with another non-
null newstring argument reinitializes the state information. It is guaranteed that no
other library function ever calls westok behind your back (which would mess up this
internal state information).

Chapter 5: String and Array Utilities 99

The delimiters argument is a wide character string that specifies a set of delimiters
that may surround the token being extracted. All the initial wide characters that are
members of this set are discarded. The first wide character that is not a member of
this set of delimiters marks the beginning of the next token. The end of the token is
found by looking for the next wide character that is a member of the delimiter set.
This wide character in the original wide character string newstring is overwritten by
a null wide character, and the pointer to the beginning of the token in newstring is
returned.

On the next call to westok, the searching begins at the next wide character beyond
the one that marked the end of the previous token. Note that the set of delimiters
delimiters do not have to be the same on every call in a series of calls to wcstok.

If the end of the wide character string newstring is reached, or if the remainder of
string consists only of delimiter wide characters, wcstok returns a null pointer.

Note that “character” is here used in the sense of byte. In a string using a multibyte
character encoding (abstract) character consisting of more than one byte are not
treated as an entity. Fach byte is treated separately. The function is not locale-
dependent.

Warning: Since strtok and wcstok alter the string they is parsing, you should always
copy the string to a temporary buffer before parsing it with strtok/wcstok (see Section 5.4
[Copying and Concatenation], page 77). If you allow strtok or westok to modify a string
that came from another part of your program, you are asking for trouble; that string might
be used for other purposes after strtok or wecstok has modified it, and it would not have
the expected value.

The string that you are operating on might even be a constant. Then when strtok
or wcstok tries to modify it, your program will get a fatal signal for writing in read-only
memory. See Section 24.2.1 [Program Error Signals], page 615. Even if the operation of
strtok or westok would not require a modification of the string (e.g., if there is exactly
one token) the string can (and in the GNU libc case will) be modified.

This is a special case of a general principle: if a part of a program does not have as its
purpose the modification of a certain data structure, then it is error-prone to modify the
data structure temporarily.

The functions strtok and wcstok are not reentrant. See Section 24.4.6 [Signal Handling
and Nonreentrant Functions], page 635, for a discussion of where and why reentrancy is
important.

Here is a simple example showing the use of strtok.

#include <string.h>
#include <stddef.h>

const char string[] = "words separated by spaces -- and, punctuation!";
const char delimiters[] =" .,;:!-";
char *token, *cp;

cp = strdupa (string); /* Make writable copy. */

100

The GNU C Library

token = strtok (cp, delimiters); /* token => "words" */
token = strtok (NULL, delimiters); /* token => "separated" */
token = strtok (NULL, delimiters); /* token => "by" */

token = strtok (NULL, delimiters); /* token => "spaces" */
token = strtok (NULL, delimiters); /* token => "and" */

token = strtok (NULL, delimiters); /* token => "punctuation" */
token = strtok (NULL, delimiters); /* token => NULL */

The GNU C library contains two more functions for tokenizing a string which overcome
the limitation of non-reentrancy. They are only available for multibyte character strings.

char

char

* strtok_r (char *newstring, const char *delimiters, char [Function]
**save_ptr)

Just like strtok, this function splits the string into several tokens which can be
accessed by successive calls to strtok_r. The difference is that the information about
the next token is stored in the space pointed to by the third argument, save_ptr, which
is a pointer to a string pointer. Calling strtok_r with a null pointer for newstring
and leaving save_ptr between the calls unchanged does the job without hindering
reentrancy.

This function is defined in POSIX.1 and can be found on many systems which support
multi-threading.

*x strsep (char **string_ptr, const char *delimiter) [Function]
This function has a similar functionality as strtok_r with the newstring argument
replaced by the save_ptr argument. The initialization of the moving pointer has to be
done by the user. Successive calls to strsep move the pointer along the tokens sep-
arated by delimiter, returning the address of the next token and updating string_ptr
to point to the beginning of the next token.

One difference between strsep and strtok_r is that if the input string contains more
than one character from delimiter in a row strsep returns an empty string for each
pair of characters from delimiter. This means that a program normally should test
for strsep returning an empty string before processing it.

This function was introduced in 4.3BSD and therefore is widely available.

Here is how the above example looks like when strsep is used.

#include <string.h>
#include <stddef.h>

const char string[] = "words separated by spaces -- and, punctuation!";
const char delimiters[] =" .,;:!-";

char *running;

char *token;

running = strdupa (string);

token = strsep (&running, delimiters); /* token => "words" */
token = strsep (&running, delimiters); /* token => "separated" */
token = strsep (&running, delimiters); /* token => "by" */

token = strsep (&running, delimiters); /* token => "spaces" */

token = strsep (&running, delimiters); /* token => "" x/

Chapter 5: String and Array Utilities 101

char

char

token = strsep (&running, delimiters); /* token => "" x/

token = strsep (&running, delimiters); /* token => "" x/

token = strsep (&running, delimiters); /* token => "and" */

token = strsep (&running, delimiters); /* token => "" x/

token = strsep (&running, delimiters); /* token => "punctuation'" */

token = strsep (&running, delimiters); /* token => "" x/

token = strsep (&running, delimiters); /* token => NULL */

* basename (const char *filename) [Function]

The GNU version of the basename function returns the last component of the path in
filename. This function is the preferred usage, since it does not modify the argument,
filename, and respects trailing slashes. The prototype for basename can be found in
‘string.h’. Note, this function is overriden by the XPG version, if ‘libgen.h’ is
included.

Example of using GNU basename:
#include <string.h>
int
main (int argc, char *argv[])

{

char *prog = basename (argv[0]);

if (argec < 2)
{
fprintf (stderr, "Usage %s <arg>\n", prog);

exit (1);
}

L
Portability Note: This function may produce different results on different systems.

* basename (char *path) [Function]
This is the standard XPG defined basename. It is similar in spirit to the GNU version,
but may modify the path by removing trailing ’/’ characters. If the path is made up
entirely of '/’ characters, then "/" will be returned. Also, if path is NULL or an empty
string, then "." is returned. The prototype for the XPG version can be found in
‘libgen.h’.
Example of using XPG basename:

#include <libgen.h>

int

main (int argc, char *argv[])

{

char *prog;
char *path = strdupa (argv[0]);

prog = basename (path);

if (argc < 2)
{
fprintf (stderr, "Usage %s <arg>\n", prog);
exit (1);
}

102 The GNU C Library

}

char * dirname (char *path) [Function]
The dirname function is the compliment to the XPG version of basename. It returns
the parent directory of the file specified by path. If path is NULL, an empty string, or
contains no '/’ characters, then "." is returned. The prototype for this function can
be found in ‘libgen.h’.

5.9 strfry

The function below addresses the perennial programming quandary: “How do I take good
data in string form and painlessly turn it into garbage?” This is actually a fairly simple task
for C programmers who do not use the GNU C library string functions, but for programs
based on the GNU C library, the strfry function is the preferred method for destroying
string data.

The prototype for this function is in ‘string.h’.

char * strfry (char *string) [Function]
strfry creates a pseudorandom anagram of a string, replacing the input with the
anagram in place. For each position in the string, strfry swaps it with a position in
the string selected at random (from a uniform distribution). The two positions may
be the same.

The return value of strfry is always string.
Portability Note: This function is unique to the GNU C library.

5.10 Trivial Encryption

The memfrob function converts an array of data to something unrecognizable and back
again. It is not encryption in its usual sense since it is easy for someone to convert the
encrypted data back to clear text. The transformation is analogous to Usenet’s “Rot13”
encryption method for obscuring offensive jokes from sensitive eyes and such. Unlike Rot13,
memfrob works on arbitrary binary data, not just text.

For true encryption, See Chapter 32 [DES Encryption and Password Handling], page 805.

This function is declared in ‘string.h’.

void * memfrob (void *mem, size_t length) [Function]
memfrob transforms (frobnicates) each byte of the data structure at mem, which is
length bytes long, by bitwise exclusive oring it with binary 00101010. It does the
transformation in place and its return value is always mem.

Note that memfrob a second time on the same data structure returns it to its original
state.

This is a good function for hiding information from someone who doesn’t want to see
it or doesn’t want to see it very much. To really prevent people from retrieving the
information, use stronger encryption such as that described in See Chapter 32 [DES
Encryption and Password Handling], page 805.

Portability Note: This function is unique to the GNU C library.

Chapter 5: String and Array Utilities 103

5.11 Encode Binary Data

To store or transfer binary data in environments which only support text one has to encode
the binary data by mapping the input bytes to characters in the range allowed for storing
or transfering. SVID systems (and nowadays XPG compliant systems) provide minimal
support for this task.

char * 164a (long int n) [Function]
This function encodes a 32-bit input value using characters from the basic character
set. It returns a pointer to a 7 character buffer which contains an encoded version of
n. To encode a series of bytes the user must copy the returned string to a destination
buffer. It returns the empty string if n is zero, which is somewhat bizarre but man-
dated by the standard.
Warning: Since a static buffer is used this function should not be used in multi-
threaded programs. There is no thread-safe alternative to this function in the C
library.
Compatibility Note: The XPG standard states that the return value of 164a is un-
defined if n is negative. In the GNU implementation, 164a treats its argument as
unsigned, so it will return a sensible encoding for any nonzero n; however, portable
programs should not rely on this.

To encode a large buffer 164a must be called in a loop, once for each 32-bit word of
the buffer. For example, one could do something like this:

char *

encode (const void *buf, size_t len)

{
/* We know in advance how long the buffer has to be. */
unsigned char *in = (unsigned char *) buf;
char *out = malloc (6 + ((len + 3) / 4) * 6 + 1);
char *cp = out, *p;

/* Encode the length. */

/* Using ‘htonl’ is necessary so that the data can be
decoded even on machines with different byte order.
‘164a’ can return a string shorter than 6 bytes, so
we pad it with encoding of 0 (. ?) at the end by
hand. */

p = stpcpy (cp, 164a (htonl (len)));
cp = mempcpy (p, "...... ", 6 - (p-cp));

while (len > 3)
{
unsigned long int n = *in++;
n = (n << 8) | xin++;

n = (n << 8) | *int+;
n = (n << 8) | *in++;
len -= 4;
p = stpcpy (cp, 164a (htonl (n)));
cp = mempcpy (p, "...... ", 6 - (p-cp);
}
if (len > 0)
{

unsigned long int n = *in++;
if (--len > 0)

104 The GNU C Library

{
n = (n << 8) | *in++;
if (--lemn > 0)
n = (n << 8) | *in;

}
cp = stpepy (cp, 164a (htonl (n)));
}
xcp = °\0’;
return out;
}

It is strange that the library does not provide the complete functionality needed but
so be it.

To decode data produced with 164a the following function should be used.

long int a64l (const char *string) [Function]
The parameter string should contain a string which was produced by a call to 164a.
The function processes at least 6 characters of this string, and decodes the characters
it finds according to the table below. It stops decoding when it finds a character not
in the table, rather like atoi; if you have a buffer which has been broken into lines,
you must be careful to skip over the end-of-line characters.

The decoded number is returned as a long int value.

The 164a and a641l functions use a base 64 encoding, in which each character of an
encoded string represents six bits of an input word. These symbols are used for the base 64
digits:

0 1 2 3 4 5 6 7
0 . / 0 1 2 3 4 5
8 6 7 8 9 A B C D
16 E F G H I J K L
24 M N 0 p Q R S T
32 U v W X Y Z a b
40 c d e f g h i j
48 k 1 m n o P q r
o6 s t u v W X y Z

This encoding scheme is not standard. There are some other encoding methods which
are much more widely used (UU encoding, MIME encoding). Generally, it is better to use
one of these encodings.

5.12 Argz and Envz Vectors

argz vectors are vectors of strings in a contiguous block of memory, each element separated
from its neighbors by null-characters (?\0?).

Envz vectors are an extension of argz vectors where each element is a name-value pair,
separated by a ’=’ character (as in a Unix environment).

5.12.1 Argz Functions

Each argz vector is represented by a pointer to the first element, of type char *, and a size,
of type size_t, both of which can be initialized to 0 to represent an empty argz vector. All

Chapter 5: String and Array Utilities 105

argz functions accept either a pointer and a size argument, or pointers to them, if they will
be modified.

The argz functions use malloc/realloc to allocate/grow argz vectors, and so any argz
vector creating using these functions may be freed by using free; conversely, any argz
function that may grow a string expects that string to have been allocated using malloc
(those argz functions that only examine their arguments or modify them in place will work
on any sort of memory). See Section 3.2.2 [Unconstrained Allocation], page 34.

All argz functions that do memory allocation have a return type of error_t, and return
0 for success, and ENOMEM if an allocation error occurs.

These functions are declared in the standard include file ‘argz.h’.

error_t argz_create (char *const argv(], char **argz, size_t [Function]
*argz_len)
The argz_create function converts the Unix-style argument vector argv (a vector
of pointers to normal C strings, terminated by (char *)0; see Section 25.1 [Program
Arguments], page 657) into an argz vector with the same elements, which is returned
in argz and argz_len.

error_t argz_create_sep (const char *string, int sep, char **argz, [Function]
size_t *argz_len)
The argz_create_sep function converts the null-terminated string string into an
argz vector (returned in argz and argz_len) by splitting it into elements at every
occurrence of the character sep.

size_t argz_count (const char *argz, size_t arg_len) [Function]
Returns the number of elements in the argz vector argz and argz_len.

void argz_extract (char *argz, size_t argz_len, char **argv) [Function]
The argz_extract function converts the argz vector argz and argz_len into a Unix-
style argument vector stored in argv, by putting pointers to every element in argz into
successive positions in argv, followed by a terminator of 0. Argv must be pre-allocated
with enough space to hold all the elements in argz plus the terminating (char *)0
((argz_count (argz, argz_len) + 1) * sizeof (char *) bytes should be enough).
Note that the string pointers stored into argv point into argz—they are not copies—
and so argz must be copied if it will be changed while argv is still active. This
function is useful for passing the elements in argz to an exec function (see Section 26.5
[Executing a File], page 702).

void argz_stringify (char *argz, size_t len, int sep) [Function]
The argz_stringify converts argz into a normal string with the elements separated
by the character sep, by replacing each ’\0’ inside argz (except the last one, which
terminates the string) with sep. This is handy for printing argz in a readable manner.

error_t argz_add (char **argz, size_t *argz_len, const char *str) [Function]
The argz_add function adds the string str to the end of the argz vector *argz, and
updates *argz and *argz_len accordingly.

106 The GNU C Library

error_t argz_add_sep (char **argz, size_t *argz_len, const char [Function]
*str, int delim)
The argz_add_sep function is similar to argz_add, but str is split into separate ele-
ments in the result at occurrences of the character delim. This is useful, for instance,
for adding the components of a Unix search path to an argz vector, by using a value
of ?:? for delim.

error_t argz_append (char **argz, size_t *argz_Ilen, const char [Function]
*buf, size_t buf_len)
The argz_append function appends buf_len bytes starting at buf to the argz vector
xargz, reallocating *argz to accommodate it, and adding buf_len to *argz_len.

void argz_delete (char **argz, size_t *argz_len, char *entry) [Function]
If entry points to the beginning of one of the elements in the argz vector *argz, the
argz_delete function will remove this entry and reallocate *argz, modifying *argz
and *argz_len accordingly. Note that as destructive argz functions usually reallocate
their argz argument, pointers into argz vectors such as entry will then become invalid.

error_t argz_insert (char **argz, size_t *argz_len, char *before, [Function]
const char *entry)
The argz_insert function inserts the string entry into the argz vector *argz at a
point just before the existing element pointed to by before, reallocating *argz and
updating *argz and *argz_len. If before is 0, entry is added to the end instead
(as if by argz_add). Since the first element is in fact the same as *argz, passing in
xargz as the value of before will result in entry being inserted at the beginning.

char * argz_next (char *argz, size_t argz_1len, const char *entry) [Function]
The argz_next function provides a convenient way of iterating over the elements in
the argz vector argz. It returns a pointer to the next element in argz after the element
entry, or O if there are no elements following entry. If entry is 0, the first element of
argz is returned.

This behavior suggests two styles of iteration:

char *entry =
while ((entry
action;

0;
= argz_next (argz, argz_len, entry)))

(the double parentheses are necessary to make some C compilers shut up about what
they consider a questionable while-test) and:

char *entry;
for (entry = argz;
entry;
entry = argz_next (argz, argz_len, entry))
action;

Note that the latter depends on argz having a value of 0 if it is empty (rather than a
pointer to an empty block of memory); this invariant is maintained for argz vectors
created by the functions here.

Chapter 5: String and Array Utilities 107

error_t argz_replace (char **argz, size_t *argz_len, [Function]
const char *str, const char *with, unsigned *replace_count)
Replace any occurrences of the string str in argz with with, reallocating argz as
necessary. If replace_count is non-zero, *replace_count will be incremented by
number of replacements performed.

5.12.2 Envz Functions

Envz vectors are just argz vectors with additional constraints on the form of each element;
as such, argz functions can also be used on them, where it makes sense.

Each element in an envz vector is a name-value pair, separated by a ’=’ character; if
multiple ’=’ characters are present in an element, those after the first are considered part
of the value, and treated like all other non-’\0’ characters.

If no =’ characters are present in an element, that element is considered the name of
a “null” entry, as distinct from an entry with an empty value: envz_get will return O if
given the name of null entry, whereas an entry with an empty value would result in a value
of ""; envz_entry will still find such entries, however. Null entries can be removed with
envz_strip function.

As with argz functions, envz functions that may allocate memory (and thus fail) have a
return type of error_t, and return either 0 or ENOMEM.

These functions are declared in the standard include file ‘envz.h’.

char * envz_entry (const char *envz, size_t envz_len, const char [Function]
*name)
The envz_entry function finds the entry in envz with the name name, and returns a
pointer to the whole entry—that is, the argz element which begins with name followed
by a =’ character. If there is no entry with that name, 0 is returned.

char * envz_get (const char *envz, size_t envz_len, const char *name) [Function]
The envz_get function finds the entry in envz with the name name (like envz_entry),
and returns a pointer to the value portion of that entry (following the *=?). If there
is no entry with that name (or only a null entry), 0 is returned.

error_t envz_add (char **envz, size_t *envz_len, const char *name, [Function]
const char *value)
The envz_add function adds an entry to *envz (updating *envz and *envz_len)
with the name name, and value value. If an entry with the same name already exists
in envz, it is removed first. If value is 0, then the new entry will the special null type
of entry (mentioned above).

error_t envz_merge (char **envz, size_t *envz_len, const char [Function]
*envz2, size_t envz2_len, int override)
The envz_merge function adds each entry in envz2 to envz, as if with envz_add, up-
dating *envz and *envz_len. If override is true, then values in envz2 will supersede
those with the same name in envz, otherwise not.

Null entries are treated just like other entries in this respect, so a null entry in envz
can prevent an entry of the same name in envz2 from being added to envz, if override
is false.

108 The GNU C Library

void envz_strip (char **envz, size_t *envz_len) [Function]
The envz_strip function removes any null entries from envz, updating *envz and
*envz_len.

Chapter 6: Character Set Handling 109

6 Character Set Handling

Character sets used in the early days of computing had only six, seven, or eight bits for
each character: there was never a case where more than eight bits (one byte) were used
to represent a single character. The limitations of this approach became more apparent
as more people grappled with non-Roman character sets, where not all the characters that
make up a language’s character set can be represented by 2% choices. This chapter shows
the functionality that was added to the C library to support multiple character sets.

6.1 Introduction to Extended Characters

A variety of solutions is available to overcome the differences between character sets with a
1:1 relation between bytes and characters and character sets with ratios of 2:1 or 4:1. The
remainder of this section gives a few examples to help understand the design decisions made
while developing the functionality of the C library.

A distinction we have to make right away is between internal and external representation.
Internal representation means the representation used by a program while keeping the text
in memory. External representations are used when text is stored or transmitted through
some communication channel. Examples of external representations include files waiting in
a directory to be read and parsed.

Traditionally there has been no difference between the two representations. It was equally
comfortable and useful to use the same single-byte representation internally and externally.
This comfort level decreases with more and larger character sets.

One of the problems to overcome with the internal representation is handling text that
is externally encoded using different character sets. Assume a program that reads two texts
and compares them using some metric. The comparison can be usefully done only if the
texts are internally kept in a common format.

For such a common format (= character set) eight bits are certainly no longer enough.
So the smallest entity will have to grow: wide characters will now be used. Instead of one
byte per character, two or four will be used instead. (Three are not good to address in
memory and more than four bytes seem not to be necessary).

As shown in some other part of this manual, a completely new family has been created
of functions that can handle wide character texts in memory. The most commonly used
character sets for such internal wide character representations are Unicode and ISO 10646
(also known as UCS for Universal Character Set). Unicode was originally planned as a 16-
bit character set; whereas, ISO 10646 was designed to be a 31-bit large code space. The two
standards are practically identical. They have the same character repertoire and code table,
but Unicode specifies added semantics. At the moment, only characters in the first 0x10000
code positions (the so-called Basic Multilingual Plane, BMP) have been assigned, but the
assignment of more specialized characters outside this 16-bit space is already in progress.
A number of encodings have been defined for Unicode and ISO 10646 characters: UCS-2
is a 16-bit word that can only represent characters from the BMP, UCS-4 is a 32-bit word
than can represent any Unicode and ISO 10646 character, UTF-8 is an ASCII compatible
encoding where ASCII characters are represented by ASCII bytes and non-ASCII characters
by sequences of 2-6 non-ASCII bytes, and finally UTF-16 is an extension of UCS-2 in which
pairs of certain UCS-2 words can be used to encode non-BMP characters up to 0x10ffff.

110 The GNU C Library

To represent wide characters the char type is not suitable. For this reason the ISO C
standard introduces a new type that is designed to keep one character of a wide character
string. To maintain the similarity there is also a type corresponding to int for those
functions that take a single wide character.

wchar_t [Data type]
This data type is used as the base type for wide character strings. In other words,
arrays of objects of this type are the equivalent of char[] for multibyte character
strings. The type is defined in ‘stddef.h’.

The ISO C90 standard, where wchar_t was introduced, does not say anything specific
about the representation. It only requires that this type is capable of storing all
elements of the basic character set. Therefore it would be legitimate to define wchar_
t as char, which might make sense for embedded systems.

But for GNU systems wchar_t is always 32 bits wide and, therefore, capable of rep-
resenting all UCS-4 values and, therefore, covering all of ISO 10646. Some Unix
systems define wchar_t as a 16-bit type and thereby follow Unicode very strictly.
This definition is perfectly fine with the standard, but it also means that to repre-
sent all characters from Unicode and ISO 10646 one has to use UTF-16 surrogate
characters, which is in fact a multi-wide-character encoding. But resorting to multi-
wide-character encoding contradicts the purpose of the wchar_t type.

wint_t [Data type]
wint_t is a data type used for parameters and variables that contain a single wide
character. As the name suggests this type is the equivalent of int when using the
normal char strings. The types wchar_t and wint_t often have the same represen-
tation if their size is 32 bits wide but if wchar_t is defined as char the type wint_t
must be defined as int due to the parameter promotion.

This type is defined in ‘wchar.h’ and was introduced in Amendment 1 to ISO C90.

As there are for the char data type macros are available for specifying the minimum
and maximum value representable in an object of type wchar_t.

wint_t WCHAR_MIN [Macro]
The macro WCHAR_MIN evaluates to the minimum value representable by an object of
type wint_t.

This macro was introduced in Amendment 1 to ISO C90.

wint_t WCHAR_MAX [Macro]
The macro WCHAR_MAX evaluates to the maximum value representable by an object of
type wint_t.

This macro was introduced in Amendment 1 to ISO C90.
Another special wide character value is the equivalent to EOF.

wint_t WEOF [Macro]
The macro WEQF evaluates to a constant expression of type wint_t whose value is
different from any member of the extended character set.
WEOF need not be the same value as EOF and unlike EQF it also need not be negative.
In other words, sloppy code like

Chapter 6: Character Set Handling 111

{

int c;
while ((c = getc (fp)) < 0)

}

has to be rewritten to use WEOF explicitly when wide characters are used:
{

wint_t c;
while ((c = wgetc (fp)) != WEQOF)

}

This macro was introduced in Amendment 1 to ISO C90 and is defined in ‘wchar.h’.

These internal representations present problems when it comes to storing and transmit-
tal. Because each single wide character consists of more than one byte, they are effected by
byte-ordering. Thus, machines with different endianesses would see different values when
accessing the same data. This byte ordering concern also applies for communication pro-
tocols that are all byte-based and, thereforet require that the sender has to decide about
splitting the wide character in bytes. A last (but not least important) point is that wide
characters often require more storage space than a customized byte-oriented character set.

For all the above reasons, an external encoding that is different from the internal encoding
is often used if the latter is UCS-2 or UCS-4. The external encoding is byte-based and can
be chosen appropriately for the environment and for the texts to be handled. A variety of
different character sets can be used for this external encoding (information that will not
be exhaustively presented here-instead, a description of the major groups will suffice). All
of the ASCII-based character sets fulfill one requirement: they are "filesystem safe." This
means that the character */’ is used in the encoding only to represent itself. Things are a
bit different for character sets like EBCDIC (Extended Binary Coded Decimal Interchange
Code, a character set family used by IBM), but if the operation system does not understand
EBCDIC directly the parameters-to-system calls have to be converted first anyhow.

e The simplest character sets are single-byte character sets. There can be only up to
256 characters (for 8 bit character sets), which is not sufficient to cover all languages
but might be sufficient to handle a specific text. Handling of a 8 bit character sets is
simple. This is not true for other kinds presented later, and therefore, the application
one uses might require the use of 8 bit character sets.

e The ISO 2022 standard defines a mechanism for extended character sets where one
character can be represented by more than one byte. This is achieved by associating a
state with the text. Characters that can be used to change the state can be embedded
in the text. Each byte in the text might have a different interpretation in each state.
The state might even influence whether a given byte stands for a character on its own
or whether it has to be combined with some more bytes.

In most uses of ISO 2022 the defined character sets do not allow state changes that
cover more than the next character. This has the big advantage that whenever one
can identify the beginning of the byte sequence of a character one can interpret a text
correctly. Examples of character sets using this policy are the various EUC character

112 The GNU C Library

sets (used by Sun’s operations systems, EUC-JP, EUC-KR, EUC-TW, and EUC-CN)
or Shift_JIS (SJIS, a Japanese encoding).

But there are also character sets using a state that is valid for more than one character
and has to be changed by another byte sequence. Examples for this are ISO-2022-JP,
1S0O-2022-KR, and ISO-2022-CN.

e FKarly attempts to fix 8 bit character sets for other languages using the Roman alphabet
lead to character sets like ISO 6937. Here bytes representing characters like the acute
accent do not produce output themselves: one has to combine them with other charac-
ters to get the desired result. For example, the byte sequence 0xc2 0x61 (non-spacing
acute accent, followed by lower-case ‘a’) to get the “small a with acute” character. To
get the acute accent character on its own, one has to write 0xc2 0x20 (the non-spacing
acute followed by a space).

Character sets like ISO 6937 are used in some embedded systems such as teletex.

e Instead of converting the Unicode or ISO 10646 text used internally, it is often also
sufficient to simply use an encoding different than UCS-2/UCS-4. The Unicode and
ISO 10646 standards even specify such an encoding: UTF-8. This encoding is able to
represent all of ISO 10646 31 bits in a byte string of length one to six.

There were a few other attempts to encode ISO 10646 such as UTF-7, but UTF-8 is
today the only encoding that should be used. In fact, with any luck UTF-8 will soon be
the only external encoding that has to be supported. It proves to be universally usable
and its only disadvantage is that it favors Roman languages by making the byte string
representation of other scripts (Cyrillic, Greek, Asian scripts) longer than necessary if
using a specific character set for these scripts. Methods like the Unicode compression
scheme can alleviate these problems.

The question remaining is: how to select the character set or encoding to use. The
answer: you cannot decide about it yourself, it is decided by the developers of the system
or the majority of the users. Since the goal is interoperability one has to use whatever the
other people one works with use. If there are no constraints, the selection is based on the
requirements the expected circle of users will have. In other words, if a project is expected
to be used in only, say, Russia it is fine to use KOI8-R or a similar character set. But if
at the same time people from, say, Greece are participating one should use a character set
that allows all people to collaborate.

The most widely useful solution seems to be: go with the most general character set,
namely ISO 10646. Use UTF-8 as the external encoding and problems about users not
being able to use their own language adequately are a thing of the past.

One final comment about the choice of the wide character representation is necessary
at this point. We have said above that the natural choice is using Unicode or ISO 10646.
This is not required, but at least encouraged, by the ISO C standard. The standard defines
at least a macro __STDC_IS0_10646__ that is only defined on systems where the wchar_t
type encodes ISO 10646 characters. If this symbol is not defined one should avoid making
assumptions about the wide character representation. If the programmer uses only the
functions provided by the C library to handle wide character strings there should be no
compatibility problems with other systems.

Chapter 6: Character Set Handling 113

6.2 Overview about Character Handling Functions

A Unix C library contains three different sets of functions in two families to handle character
set conversion. One of the function families (the most commonly used) is specified in the
ISO C90 standard and, therefore, is portable even beyond the Unix world. Unfortunately
this family is the least useful one. These functions should be avoided whenever possible,
especially when developing libraries (as opposed to applications).

The second family of functions got introduced in the early Unix standards (XPG2) and
is still part of the latest and greatest Unix standard: Unix 98. It is also the most powerful
and useful set of functions. But we will start with the functions defined in Amendment 1
to ISO C90.

6.3 Restartable Multibyte Conversion Functions

The ISO C standard defines functions to convert strings from a multibyte representation to
wide character strings. There are a number of peculiarities:

e The character set assumed for the multibyte encoding is not specified as an argument
to the functions. Instead the character set specified by the LC_CTYPE category of the
current locale is used; see Section 7.3 [Categories of Activities that Locales Affect],
page 152.

e The functions handling more than one character at a time require NUL terminated
strings as the argument (i.e., converting blocks of text does not work unless one can
add a NUL byte at an appropriate place). The GNU C library contains some extensions
to the standard that allow specifying a size, but basically they also expect terminated
strings.

Despite these limitations the ISO C functions can be used in many contexts. In graphical
user interfaces, for instance, it is not uncommon to have functions that require text to be
displayed in a wide character string if the text is not simple ASCII. The text itself might
come from a file with translations and the user should decide about the current locale,
which determines the translation and therefore also the external encoding used. In such a
situation (and many others) the functions described here are perfect. If more freedom while
performing the conversion is necessary take a look at the iconv functions (see Section 6.5
[Generic Charset Conversion], page 129).

6.3.1 Selecting the conversion and its properties

We already said above that the currently selected locale for the LC_CTYPE category decides
about the conversion that is performed by the functions we are about to describe. Each
locale uses its own character set (given as an argument to localedef) and this is the one
assumed as the external multibyte encoding. The wide character character set always is
UCS-4, at least on GNU systems.

A characteristic of each multibyte character set is the maximum number of bytes that
can be necessary to represent one character. This information is quite important when
writing code that uses the conversion functions (as shown in the examples below). The
ISO C standard defines two macros that provide this information.

114 The GNU C Library

int MB_LEN_MAX [Macro]
MB_LEN_MAX specifies the maximum number of bytes in the multibyte sequence for a
single character in any of the supported locales. It is a compile-time constant and is
defined in ‘limits.h’.

int MB_CUR_MAX [Macro]
MB_CUR_MAX expands into a positive integer expression that is the maximum number
of bytes in a multibyte character in the current locale. The value is never greater than
MB_LEN_MAX. Unlike MB_LEN_MAX this macro need not be a compile-time constant, and
in the GNU C library it is not.

MB_CUR_MAX is defined in ‘stdlib.h’.

Two different macros are necessary since strictly ISO C90 compilers do not allow variable
length array definitions, but still it is desirable to avoid dynamic allocation. This incomplete
piece of code shows the problem:

{
char buf [MB_LEN_MAX];
ssize_t len = 0;

while (! feof (fp))

{
fread (&buf[len], 1, MB_CUR_MAX - len, fp);
/* ... process buf */
len -= used;

}

}

The code in the inner loop is expected to have always enough bytes in the array buf
to convert one multibyte character. The array buf has to be sized statically since many
compilers do not allow a variable size. The fread call makes sure that MB_CUR_MAX bytes
are always available in buf. Note that it isn’t a problem if MB_CUR_MAX is not a compile-time
constant.

6.3.2 Representing the state of the conversion

In the introduction of this chapter it was said that certain character sets use a stateful
encoding. That is, the encoded values depend in some way on the previous bytes in the
text.

Since the conversion functions allow converting a text in more than one step we must
have a way to pass this information from one call of the functions to another.

mbstate_t [Data type]
A variable of type mbstate_t can contain all the information about the shift state
needed from one call to a conversion function to another.

mbstate_t is defined in ‘wchar.h’. It was introduced in Amendment 1 to ISO C90.

To use objects of type mbstate_t the programmer has to define such objects (normally
as local variables on the stack) and pass a pointer to the object to the conversion functions.
This way the conversion function can update the object if the current multibyte character
set is stateful.

Chapter 6: Character Set Handling 115

There is no specific function or initializer to put the state object in any specific state.
The rules are that the object should always represent the initial state before the first use,
and this is achieved by clearing the whole variable with code such as follows:

{
mbstate_t state;

memset (&state, ’\0’, sizeof (state));
/* from now on state can be used. */

}

When using the conversion functions to generate output it is often necessary to test
whether the current state corresponds to the initial state. This is necessary, for example,
to decide whether to emit escape sequences to set the state to the initial state at certain
sequence points. Communication protocols often require this.

int mbsinit (const mbstate_t *ps) [Function]
The mbsinit function determines whether the state object pointed to by ps is in the
initial state. If ps is a null pointer or the object is in the initial state the return value
is nonzero. Otherwise it is zero.

mbsinit was introduced in Amendment 1 to ISO C90 and is declared in ‘wchar.h’.

Code using mbsinit often looks similar to this:

{
mbstate_t state;
memset (&state, ’\0’, sizeof (state));
/* Use state. */

if (! mbsinit (&state))
{
/* Emit code to return to initial state. */
const wchar_t empty[] = L"";
const wchar_t *srcp = empty;
wcsrtombs (outbuf, &srcp, outbuflen, &state);

}

The code to emit the escape sequence to get back to the initial state is interesting. The
wesrtombs function can be used to determine the necessary output code (see Section 6.3.4
[Converting Multibyte and Wide Character Strings|, page 121). Please note that on GNU
systems it is not necessary to perform this extra action for the conversion from multibyte
text to wide character text since the wide character encoding is not stateful. But there is
nothing mentioned in any standard that prohibits making wchar_t using a stateful encoding.

6.3.3 Converting Single Characters

The most fundamental of the conversion functions are those dealing with single characters.
Please note that this does not always mean single bytes. But since there is very often
a subset of the multibyte character set that consists of single byte sequences, there are
functions to help with converting bytes. Frequently, ASCII is a subpart of the multibyte
character set. In such a scenario, each ASCII character stands for itself, and all other
characters have at least a first byte that is beyond the range 0 to 127.

116 The GNU C Library

wint_t btowc (int c) [Function]
The btowc function (“byte to wide character”) converts a valid single byte character
¢ in the initial shift state into the wide character equivalent using the conversion rules
from the currently selected locale of the LC_CTYPE category.

If (unsigned char) c is no valid single byte multibyte character or if ¢ is EOF, the
function returns WEQF.

Please note the restriction of ¢ being tested for validity only in the initial shift state.
No mbstate_t object is used from which the state information is taken, and the
function also does not use any static state.

The btowc function was introduced in Amendment 1 to ISO C90 and is declared in
‘wchar.h’.

Despite the limitation that the single byte value always is interpreted in the initial state
this function is actually useful most of the time. Most characters are either entirely single-
byte character sets or they are extension to ASCIIL. But then it is possible to write code like
this (not that this specific example is very useful):

wchar_t *

itow (unsigned long int val)
{
static wchar_t buf[30];
wchar_t *wcp = &buf[29];
*xucp = L’\0’;
while (val !'= 0)
{
*—-wcp = btowc (0’ + val ’ 10);
val /= 10;
}
if (wcp == &buf[29])
*--wcp = L’0’;
return wcp;

}

Why is it necessary to use such a complicated implementation and not simply cast 0’
+val % 10 to a wide character? The answer is that there is no guarantee that one can
perform this kind of arithmetic on the character of the character set used for wchar_t
representation. In other situations the bytes are not constant at compile time and so the
compiler cannot do the work. In situations like this it is necessary btowc.

There also is a function for the conversion in the other direction.

int wctob (wint_t ¢) [Function]
The wctob function (“wide character to byte”) takes as the parameter a valid wide
character. If the multibyte representation for this character in the initial state is
exactly one byte long, the return value of this function is this character. Otherwise
the return value is EOF.

wctob was introduced in Amendment 1 to ISO C90 and is declared in ‘wchar.h’.

There are more general functions to convert single character from multibyte representa-
tion to wide characters and vice versa. These functions pose no limit on the length of the
multibyte representation and they also do not require it to be in the initial state.

Chapter 6: Character Set Handling 117

size_t mbrtowc (wchar_t *restrict pwc, const char *restrict s, size_t n, [Function]
mbstate_t *restrict ps)

The mbrtowc function (“multibyte restartable to wide character”) converts the next
multibyte character in the string pointed to by s into a wide character and stores it in
the wide character string pointed to by pwc. The conversion is performed according
to the locale currently selected for the LC_CTYPE category. If the conversion for the
character set used in the locale requires a state, the multibyte string is interpreted in
the state represented by the object pointed to by ps. If ps is a null pointer, a static,
internal state variable used only by the mbrtowc function is used.

If the next multibyte character corresponds to the NUL wide character, the return
value of the function is 0 and the state object is afterwards in the initial state. If
the next n or fewer bytes form a correct multibyte character, the return value is the
number of bytes starting from s that form the multibyte character. The conversion
state is updated according to the bytes consumed in the conversion. In both cases
the wide character (either the L’\0’ or the one found in the conversion) is stored in
the string pointed to by pwc if pwe is not null.

If the first n bytes of the multibyte string possibly form a valid multibyte character
but there are more than n bytes needed to complete it, the return value of the function
is (size_t) -2 and no value is stored. Please note that this can happen even if n has
a value greater than or equal to MB_CUR_MAX since the input might contain redundant
shift sequences.

If the first n bytes of the multibyte string cannot possibly form a valid multibyte
character, no value is stored, the global variable errno is set to the value EILSEQ,
and the function returns (size_t) -1. The conversion state is afterwards undefined.

mbrtowc was introduced in Amendment 1 to ISO C90 and is declared in ‘wchar.h’.

Use of mbrtowc is straightforward. A function that copies a multibyte string into a wide
character string while at the same time converting all lowercase characters into uppercase
could look like this (this is not the final version, just an example; it has no error checking,
and sometimes leaks memory):

wchar_t *
mbstouwcs (const char *s)
{
size_t len = strlen (s);
wchar_t *result = malloc ((len + 1) * sizeof (wchar_t));
wchar_t *wcp = result;
wchar_t tmp[1];
mbstate_t state;
size_t nbytes;

memset (&state, ’\0’, sizeof (state));
while ((nbytes = mbrtowc (tmp, s, len, &state)) > 0)
{
if (nbytes >= (size_t) -2)
/* Invalid input string. */
return NULL;
*xwcpt+ = towupper (tmp[0]);
len -= nbytes;
s += nbytes;

}

118 The GNU C Library

return result;
}

The use of mbrtowc should be clear. A single wide character is stored in tmp [0], and the
number of consumed bytes is stored in the variable nbytes. If the conversion is successful,
the uppercase variant of the wide character is stored in the result array and the pointer to
the input string and the number of available bytes is adjusted.

The only non-obvious thing about mbrtowc might be the way memory is allocated for
the result. The above code uses the fact that there can never be more wide characters in the
converted results than there are bytes in the multibyte input string. This method yields a
pessimistic guess about the size of the result, and if many wide character strings have to be
constructed this way or if the strings are long, the extra memory required to be allocated
because the input string contains multibyte characters might be significant. The allocated
memory block can be resized to the correct size before returning it, but a better solution
might be to allocate just the right amount of space for the result right away. Unfortunately
there is no function to compute the length of the wide character string directly from the
multibyte string. There is, however, a function that does part of the work.

size_t mbrlen (const char *restrict s, size_t n, mbstate_t *ps) [Function]
The mbrlen function (“multibyte restartable length”) computes the number of at most
n bytes starting at s, which form the next valid and complete multibyte character.

If the next multibyte character corresponds to the NUL wide character, the return
value is 0. If the next n bytes form a valid multibyte character, the number of bytes
belonging to this multibyte character byte sequence is returned.

If the the first n bytes possibly form a valid multibyte character but the character
is incomplete, the return value is (size_t) -2. Otherwise the multibyte character
sequence is invalid and the return value is (size_t) -1.

The multibyte sequence is interpreted in the state represented by the object pointed
to by ps. If ps is a null pointer, a state object local to mbrlen is used.

mbrlen was introduced in Amendment 1 to ISO C90 and is declared in ‘wchar.h’.

The attentive reader now will note that mbrlen can be implemented as
mbrtowc (NULL, s, n, ps != NULL ? ps : &internal)

This is true and in fact is mentioned in the official specification. How can this function be
used to determine the length of the wide character string created from a multibyte character
string? It is not directly usable, but we can define a function mbslen using it:

size_t
mbslen (const char *s)
{
mbstate_t state;
size_t result = 0;
size_t nbytes;
memset (&state, ’\0’, sizeof (state));
while ((nbytes = mbrlen (s, MB_LEN_MAX, &state)) > 0)
{
if (nbytes >= (size_t) -2)
/* Something is wrong. */
return (size_t) -1;
s += nbytes;
++result;

Chapter 6: Character Set Handling 119

reiurn result;
}

This function simply calls mbrlen for each multibyte character in the string and counts
the number of function calls. Please note that we here use MB_LEN_MAX as the size argument
in the mbrlen call. This is acceptable since a) this value is larger then the length of the
longest multibyte character sequence and b) we know that the string s ends with a NUL byte,
which cannot be part of any other multibyte character sequence but the one representing
the NUL wide character. Therefore, the mbrlen function will never read invalid memory.

Now that this function is available (just to make this clear, this function is not part of
the GNU C library) we can compute the number of wide character required to store the
converted multibyte character string s using

wcs_bytes = (mbslen (s) + 1) * sizeof (wchar_t);

Please note that the mbslen function is quite inefficient. The implementation of
mbstouwcs with mbslen would have to perform the conversion of the multibyte character
input string twice, and this conversion might be quite expensive. So it is necessary to
think about the consequences of using the easier but imprecise method before doing the
work twice.

size_t wcrtomb (char *restrict s, wchar_t wc, mbstate_t *restrict ps) [Function]
The wertomb function (“wide character restartable to multibyte”) converts a single
wide character into a multibyte string corresponding to that wide character.

If s is a null pointer, the function resets the state stored in the objects pointed to by
ps (or the internal mbstate_t object) to the initial state. This can also be achieved
by a call like this:

wcrtombs (temp_buf, L’°\0’, ps)

since, if s is a null pointer, wecrtomb performs as if it writes into an internal buffer,
which is guaranteed to be large enough.

If we is the NUL wide character, wertomb emits, if necessary, a shift sequence to get
the state ps into the initial state followed by a single NUL byte, which is stored in
the string s.

Otherwise a byte sequence (possibly including shift sequences) is written into the
string s. This only happens if wc is a valid wide character (i.e., it has a multibyte
representation in the character set selected by locale of the LC_CTYPE category). If wc
is no valid wide character, nothing is stored in the strings s, errno is set to EILSEQ,
the conversion state in ps is undefined and the return value is (size_t) -1.

If no error occurred the function returns the number of bytes stored in the string s.
This includes all bytes representing shift sequences.

One word about the interface of the function: there is no parameter specifying the
length of the array s. Instead the function assumes that there are at least MB_CUR_MAX
bytes available since this is the maximum length of any byte sequence representing a
single character. So the caller has to make sure that there is enough space available,
otherwise buffer overruns can occur.

wertomb was introduced in Amendment 1 to ISO C90 and is declared in ‘wchar.h’.

120 The GNU C Library

Using wcrtomb is as easy as using mbrtowc. The following example appends a wide
character string to a multibyte character string. Again, the code is not really useful (or
correct), it is simply here to demonstrate the use and some problems.

char *
mbscatwcs (char *s, size_t len, const wchar_t *ws)
{

mbstate_t state;

/* Find the end of the existing string. */

char *wp = strchr (s, ’\0’);

len -= wp - s;
memset (&state, ’\0’, sizeof (state));
do

{

size_t nbytes;
if (len < MB_CUR_LEN)
{

/* We cannot guarantee that the next
character fits into the buffer, so
return an error. */

errno = E2BIG;

return NULL;

}
nbytes = wcrtomb (wp, *ws, &state);
if (nbytes == (size_t) -1)
/* Error in the conversion. */
return NULL;
len -= nbytes;
wp += nbytes;

}
while (*xws++ != L’\0’);
return s;

}

First the function has to find the end of the string currently in the array s. The strchr
call does this very efficiently since a requirement for multibyte character representations is
that the NUL byte is never used except to represent itself (and in this context, the end of
the string).

After initializing the state object the loop is entered where the first task is to make sure
there is enough room in the array s. We abort if there are not at least MB_CUR_LEN bytes
available. This is not always optimal but we have no other choice. We might have less than
MB_CUR_LEN bytes available but the next multibyte character might also be only one byte
long. At the time the wertomb call returns it is too late to decide whether the buffer was
large enough. If this solution is unsuitable, there is a very slow but more accurate solution.

if (len < MB_CUR_LEN)
{
mbstate_t temp_state;
memcpy (&temp_state, &state, sizeof (state));
if (wecrtomb (NULL, *ws, &temp_state) > len)
{
/* We cannot guarantee that the next
character fits into the buffer, so
return an error. */
errno = E2BIG;
return NULL;

Chapter 6: Character Set Handling 121

Here we perform the conversion that might overflow the buffer so that we are afterwards
in the position to make an exact decision about the buffer size. Please note the NULL
argument for the destination buffer in the new wcrtomb call; since we are not interested in
the converted text at this point, this is a nice way to express this. The most unusual thing
about this piece of code certainly is the duplication of the conversion state object, but if a
change of the state is necessary to emit the next multibyte character, we want to have the
same shift state change performed in the real conversion. Therefore, we have to preserve
the initial shift state information.

There are certainly many more and even better solutions to this problem. This example
is only provided for educational purposes.

6.3.4 Converting Multibyte and Wide Character Strings

The functions described in the previous section only convert a single character at a time.
Most operations to be performed in real-world programs include strings and therefore the
ISO C standard also defines conversions on entire strings. However, the defined set of
functions is quite limited; therefore, the GNU C library contains a few extensions that can
help in some important situations.

size_t mbsrtowcs (wchar_t *restrict dst, const char **restrict src, [Function]
size_t 1en, mbstate_t *restrict ps)

The mbsrtowcs function (“multibyte string restartable to wide character string”)
converts an NUL-terminated multibyte character string at *src into an equivalent
wide character string, including the NUL wide character at the end. The conversion
is started using the state information from the object pointed to by ps or from an
internal object of mbsrtowcs if ps is a null pointer. Before returning, the state object
is updated to match the state after the last converted character. The state is the
initial state if the terminating NUL byte is reached and converted.

If dst is not a null pointer, the result is stored in the array pointed to by dst; otherwise,
the conversion result is not available since it is stored in an internal buffer.

If len wide characters are stored in the array dst before reaching the end of the input
string, the conversion stops and len is returned. If dst is a null pointer, len is never

checked.

Another reason for a premature return from the function call is if the input string
contains an invalid multibyte sequence. In this case the global variable errno is set
to EILSEQ and the function returns (size_t) -1.

In all other cases the function returns the number of wide characters converted during
this call. If dst is not null, mbsrtowcs stores in the pointer pointed to by src either a
null pointer (if the NUL byte in the input string was reached) or the address of the
byte following the last converted multibyte character.

mbsrtowcs was introduced in Amendment 1 to ISO C90 and is declared in ‘wchar.h’.

The definition of the mbsrtowcs function has one important limitation. The requirement
that dst has to be a NUL-terminated string provides problems if one wants to convert buffers

122 The GNU C Library

with text. A buffer is normally no collection of NUL-terminated strings but instead a
continuous collection of lines, separated by newline characters. Now assume that a function
to convert one line from a buffer is needed. Since the line is not NUL-terminated, the source
pointer cannot directly point into the unmodified text buffer. This means, either one inserts
the NUL byte at the appropriate place for the time of the mbsrtowcs function call (which is
not doable for a read-only buffer or in a multi-threaded application) or one copies the line
in an extra buffer where it can be terminated by a NUL byte. Note that it is not in general
possible to limit the number of characters to convert by setting the parameter len to any
specific value. Since it is not known how many bytes each multibyte character sequence is
in length, one can only guess.

There is still a problem with the method of NUL-terminating a line right after the
newline character, which could lead to very strange results. As said in the description of
the mbsrtowcs function above the conversion state is guaranteed to be in the initial shift
state after processing the NUL byte at the end of the input string. But this NUL byte is
not really part of the text (i.e., the conversion state after the newline in the original text
could be something different than the initial shift state and therefore the first character
of the next line is encoded using this state). But the state in question is never accessible
to the user since the conversion stops after the NUL byte (which resets the state). Most
stateful character sets in use today require that the shift state after a newline be the initial
state-but this is not a strict guarantee. Therefore, simply NUL-terminating a piece of a
running text is not always an adequate solution and, therefore, should never be used in
generally used code.

The generic conversion interface (see Section 6.5 [Generic Charset Conversion], page 129)
does not have this limitation (it simply works on buffers, not strings), and the GNU C library
contains a set of functions that take additional parameters specifying the maximal number
of bytes that are consumed from the input string. This way the problem of mbsrtowcs’s
example above could be solved by determining the line length and passing this length to
the function.

size_t wcsrtombs (char *restrict dst, const wchar_t **restrict src, [Function]
size_t 1en, mbstate_t *restrict ps)

The wcsrtombs function (“wide character string restartable to multibyte string”) con-
verts the NUL-terminated wide character string at *src into an equivalent multibyte
character string and stores the result in the array pointed to by dst. The NUL wide
character is also converted. The conversion starts in the state described in the object
pointed to by ps or by a state object locally to wcsrtombs in case ps is a null pointer.
If dst is a null pointer, the conversion is performed as usual but the result is not
available. If all characters of the input string were successfully converted and if dst
is not a null pointer, the pointer pointed to by src gets assigned a null pointer.

If one of the wide characters in the input string has no valid multibyte character
equivalent, the conversion stops early, sets the global variable errno to EILSEQ, and
returns (size_t) -1.

Another reason for a premature stop is if dst is not a null pointer and the next
converted character would require more than len bytes in total to the array dst. In
this case (and if dest is not a null pointer) the pointer pointed to by src is assigned
a value pointing to the wide character right after the last one successfully converted.

Chapter 6: Character Set Handling 123

Except in the case of an encoding error the return value of the wecsrtombs function
is the number of bytes in all the multibyte character sequences stored in dst. Before
returning the state in the object pointed to by ps (or the internal object in case ps is
a null pointer) is updated to reflect the state after the last conversion. The state is
the initial shift state in case the terminating NUL wide character was converted.

The wesrtombs function was introduced in Amendment 1 to ISO C90 and is declared
in ‘wchar.h’.

The restriction mentioned above for the mbsrtowcs function applies here also. There is
no possibility of directly controlling the number of input characters. One has to place the
NUL wide character at the correct place or control the consumed input indirectly via the
available output array size (the len parameter).

size_t mbsnrtowcs (wchar_t *restrict dst, const char **restrict src, [Function]
size_t nmc, size_t 1en, mbstate_t *restrict ps)
The mbsnrtowcs function is very similar to the mbsrtowcs function. All the param-
eters are the same except for nme, which is new. The return value is the same as for
mbsrtowcs.

This new parameter specifies how many bytes at most can be used from the multibyte
character string. In other words, the multibyte character string *src need not be
NUL-terminated. But if a NUL byte is found within the nmc first bytes of the string,
the conversion stops here.

This function is a GNU extension. It is meant to work around the problems mentioned
above. Now it is possible to convert a buffer with multibyte character text piece for
piece without having to care about inserting NUL bytes and the effect of NUL bytes
on the conversion state.

A function to convert a multibyte string into a wide character string and display it could
be written like this (this is not a really useful example):

void
showmbs (const char #*src, FILE *fp)
{
mbstate_t state;
int cnt = 0;
memset (&state, ’\0’, sizeof (state));
while (1)
{
wchar_t linebuf[100];
const char *endp = strchr (src, ’\n’);
size_t n;

/* Exit if there is no more line. */
if (endp == NULL)
break;

n = mbsnrtowcs (linebuf, &src, endp - src, 99, &state);
linebuf[n] = L’\0’;
fprintf (fp, "line %d: \"%S\"\n", linebuf);

124 The GNU C Library

There is no problem with the state after a call to mbsnrtowcs. Since we don’t insert
characters in the strings that were not in there right from the beginning and we use state
only for the conversion of the given buffer, there is no problem with altering the state.

size_t wcsnrtombs (char *restrict dst, const wchar_t **restrict src, [Function]
size_t nwc, size_t 1en, mbstate_t *restrict ps)
The wesnrtombs function implements the conversion from wide character strings to
multibyte character strings. It is similar to wcsrtombs but, just like mbsnrtowcs, it
takes an extra parameter, which specifies the length of the input string.

No more than nwc wide characters from the input string *src are converted. If the
input string contains a NUL wide character in the first nwc characters, the conversion
stops at this place.

The wcsnrtombs function is a GNU extension and just like mbsnrtowcs helps in
situations where no NUL-terminated input strings are available.

6.3.5 A Complete Multibyte Conversion Example

The example programs given in the last sections are only brief and do not contain all the
error checking, etc. Presented here is a complete and documented example. It features the
mbrtowc function but it should be easy to derive versions using the other functions.
int
file_mbsrtowcs (int input, int output)
{
/* Note the use of MB_LEN_MAX.
MB_CUR_MAX cannot portably be used here. */
char buffer[BUFSIZ + MB_LEN_MAX];
mbstate_t state;
int filled = 0;
int eof = 0;

/* Initialize the state. */
memset (&state, ’\0’, sizeof (state));

while (!eof)
{
ssize_t nread;
ssize_t nwrite;
char *inp = buffer;
wchar_t outbuf [BUFSIZ];
wchar_t *outp = outbuf;

/* Fill up the buffer from the input file. */
nread = read (input, buffer + filled, BUFSIZ);
if (nread < 0)
{
perror ("read");
return O;
}
/* If we reach end of file, make a note to read no more. */
if (nread == 0)
eof = 1;

/* filled is now the number of bytes in buffer. */
filled += nread;

Chapter 6: Character Set Handling 125

}

/* Convert those bytes to wide characters—as many as we can. */
while (1)
{
size_t thislen = mbrtowc (outp, inp, filled, &state);
/* Stop converting at invalid character;
this can mean we have read just the first part
of a valid character. */
if (thislen == (size_t) -1)
break;
/* We want to handle embedded NUL bytes
but the return value is 0. Correct this. */
if (thislen == 0)
thislen = 1;
/* Advance past this character. */
inp += thislen;
filled -= thislen;
++outp;

}

/* Write the wide characters we just made. */
nwrite = write (output, outbuf,
(outp - outbuf) #* sizeof (wchar_t));
if (nwrite < 0)
{
perror ("write");
return O;

}

/* See if we have a real invalid character. */
if ((eof && filled > 0) || filled >= MB_CUR_MAX)
{
error (0, 0, "invalid multibyte character");
return 0;

}

/* If any characters must be carried forward,
put them at the beginning of buffer. */
if (filled > 0)
memmove (inp, buffer, filled);

return 1;

}

6.4 Non-reentrant Conversion Function

The functions described in the previous chapter are defined in Amendment 1 to ISO C90,
but the original ISO CY0 standard also contained functions for character set conversion.
The reason that these original functions are not described first is that they are almost
entirely useless.

The problem is that all the conversion functions described in the original ISO C90 use a

local state.

Using a local state implies that multiple conversions at the same time (not only

when using threads) cannot be done, and that you cannot first convert single characters
and then strings since you cannot tell the conversion functions which state to use.

126 The GNU C Library

These original functions are therefore usable only in a very limited set of situations. One
must complete converting the entire string before starting a new one, and each string/text
must be converted with the same function (there is no problem with the library itself; it is
guaranteed that no library function changes the state of any of these functions). For the
above reasons it is highly requested that the functions described in the previous section be
used in place of non-reentrant conversion functions.

6.4.1 Non-reentrant Conversion of Single Characters

int mbtowc (wchar_t *restrict result, const char *restrict string, size.t [Function]
size)
The mbtowc (“multibyte to wide character”) function when called with non-null string
converts the first multibyte character beginning at string to its corresponding wide
character code. It stores the result in *result.

mbtowc never examines more than size bytes. (The idea is to supply for size the
number of bytes of data you have in hand.)

mbtowc with non-null string distinguishes three possibilities: the first size bytes at
string start with valid multibyte characters, they start with an invalid byte sequence
or just part of a character, or string points to an empty string (a null character).

For a valid multibyte character, mbtowc converts it to a wide character and stores
that in xresult, and returns the number of bytes in that character (always at least
1 and never more than size).

For an invalid byte sequence, mbtowc returns —1. For an empty string, it returns 0,
also storing ’\0’ in *result.

If the multibyte character code uses shift characters, then mbtowc maintains and
updates a shift state as it scans. If you call mbtowc with a null pointer for string, that
initializes the shift state to its standard initial value. It also returns nonzero if the
multibyte character code in use actually has a shift state. See Section 6.4.3 [States
in Non-reentrant Functions|, page 128.

int wctomb (char *string, wchar_t wchar) [Function]
The wctomb (“wide character to multibyte”) function converts the wide character
code wchar to its corresponding multibyte character sequence, and stores the result
in bytes starting at string. At most MB_CUR_MAX characters are stored.

wctomb with non-null string distinguishes three possibilities for wchar: a valid wide
character code (one that can be translated to a multibyte character), an invalid code,
and L°\0’.

Given a valid code, wctomb converts it to a multibyte character, storing the bytes
starting at string. Then it returns the number of bytes in that character (always at
least 1 and never more than MB_CUR_MAX).

If wchar is an invalid wide character code, wctomb returns —1. If wchar is L°\0’, it
returns 0, also storing ’\0’ in *string.

If the multibyte character code uses shift characters, then wctomb maintains and
updates a shift state as it scans. If you call wetomb with a null pointer for string, that
initializes the shift state to its standard initial value. It also returns nonzero if the

Chapter 6: Character Set Handling 127

multibyte character code in use actually has a shift state. See Section 6.4.3 [States
in Non-reentrant Functions|, page 128.

Calling this function with a wchar argument of zero when string is not null has
the side-effect of reinitializing the stored shift state as well as storing the multibyte
character \0’ and returning 0.

Similar to mbrlen there is also a non-reentrant function that computes the length of a
multibyte character. It can be defined in terms of mbtowc.

int mblen (const char *string, size_t size) [Function]
The mblen function with a non-null string argument returns the number of bytes that
make up the multibyte character beginning at string, never examining more than size
bytes. (The idea is to supply for size the number of bytes of data you have in hand.)

The return value of mblen distinguishes three possibilities: the first size bytes at
string start with valid multibyte characters, they start with an invalid byte sequence
or just part of a character, or string points to an empty string (a null character).

For a valid multibyte character, mblen returns the number of bytes in that character
(always at least 1 and never more than size). For an invalid byte sequence, mblen
returns —1. For an empty string, it returns 0.

If the multibyte character code uses shift characters, then mblen maintains and up-
dates a shift state as it scans. If you call mblen with a null pointer for string, that
initializes the shift state to its standard initial value. It also returns a nonzero value
if the multibyte character code in use actually has a shift state. See Section 6.4.3
[States in Non-reentrant Functions], page 128.
The function mblen is declared in ‘stdlib.h’.

6.4.2 Non-reentrant Conversion of Strings

For convenience the ISO C90 standard also defines functions to convert entire strings instead
of single characters. These functions suffer from the same problems as their reentrant
counterparts from Amendment 1 to ISO C90; see Section 6.3.4 [Converting Multibyte and
Wide Character Strings], page 121.

size_t mbstowcs (wchar_t *wstring, const char *string, size_t size) [Function]
The mbstowcs (“multibyte string to wide character string”) function converts the
null-terminated string of multibyte characters string to an array of wide character
codes, storing not more than size wide characters into the array beginning at wstring.
The terminating null character counts towards the size, so if size is less than the
actual number of wide characters resulting from string, no terminating null character
is stored.

The conversion of characters from string begins in the initial shift state.

If an invalid multibyte character sequence is found, the mbstowcs function returns
a value of —1. Otherwise, it returns the number of wide characters stored in the
array wstring. This number does not include the terminating null character, which is
present if the number is less than size.

Here is an example showing how to convert a string of multibyte characters, allocating
enough space for the result.

128 The GNU C Library

wchar_t #*
mbstowcs_alloc (const char *string)
{
size_t size = strlen (string) + 1;
wchar_t *buf = xmalloc (size * sizeof (wchar_t));

size = mbstowcs (buf, string, size);
if (size == (size_t) -1)
return NULL;
buf = xrealloc (buf, (size + 1) * sizeof (wchar_t));
return buf;

}

size_t wcstombs (char *string, const wchar_t *wstring, size_t size) [Function]
The westombs (“wide character string to multibyte string”) function converts the null-
terminated wide character array wstring into a string containing multibyte characters,
storing not more than size bytes starting at string, followed by a terminating null
character if there is room. The conversion of characters begins in the initial shift
state.

The terminating null character counts towards the size, so if size is less than or equal
to the number of bytes needed in wstring, no terminating null character is stored.

If a code that does not correspond to a valid multibyte character is found, the
wcstombs function returns a value of —1. Otherwise, the return value is the number
of bytes stored in the array string. This number does not include the terminating
null character, which is present if the number is less than size.

6.4.3 States in Non-reentrant Functions

In some multibyte character codes, the meaning of any particular byte sequence is not fixed;
it depends on what other sequences have come earlier in the same string. Typically there are
just a few sequences that can change the meaning of other sequences; these few are called
shift sequences and we say that they set the shift state for other sequences that follow.

To illustrate shift state and shift sequences, suppose we decide that the sequence 0200
(just one byte) enters Japanese mode, in which pairs of bytes in the range from 0240 to 0377
are single characters, while 0201 enters Latin-1 mode, in which single bytes in the range
from 0240 to 0377 are characters, and interpreted according to the ISO Latin-1 character
set. This is a multibyte code that has two alternative shift states (“Japanese mode” and
“Latin-1 mode”), and two shift sequences that specify particular shift states.

When the multibyte character code in use has shift states, then mblen, mbtowc, and
wctomb must maintain and update the current shift state as they scan the string. To make
this work properly, you must follow these rules:

e Before starting to scan a string, call the function with a null pointer for the multibyte
character address—for example, mblen (NULL, 0). This initializes the shift state to its
standard initial value.

e Scan the string one character at a time, in order. Do not “back up” and rescan
characters already scanned, and do not intersperse the processing of different strings.

Here is an example of using mblen following these rules:
void
scan_string (char *s)

Chapter 6: Character Set Handling 129

int length = strlen (s);

/* Initialize shift state. */
mblen (NULL, 0);

while (1)
{
int thischar = mblen (s, length);
/* Deal with end of string and invalid characters. */
if (thischar == 0)

break;
if (thischar == -1)
{
error ("invalid multibyte character");
break;
}

/* Advance past this character. %/
s += thischar;
length -= thischar;

}

The functions mblen, mbtowc and wctomb are not reentrant when using a multibyte code
that uses a shift state. However, no other library functions call these functions, so you don’t
have to worry that the shift state will be changed mysteriously.

6.5 Generic Charset Conversion

The conversion functions mentioned so far in this chapter all had in common that they
operate on character sets that are not directly specified by the functions. The multibyte
encoding used is specified by the currently selected locale for the LC_CTYPE category. The
wide character set is fixed by the implementation (in the case of GNU C library it is always
UCS-4 encoded 1SO 10646.

This has of course several problems when it comes to general character conversion:

e For every conversion where neither the source nor the destination character set is the
character set of the locale for the LC_CTYPE category, one has to change the LC_CTYPE
locale using setlocale.

Changing the LC_TYPE locale introduces major problems for the rest of the programs
since several more functions (e.g., the character classification functions, see Section 4.1
[Classification of Characters|, page 65) use the LC_CTYPE category.

e Parallel conversions to and from different character sets are not possible since the LC_
CTYPE selection is global and shared by all threads.

e If neither the source nor the destination character set is the character set used for
wchar_t representation, there is at least a two-step process necessary to convert a
text using the functions above. One would have to select the source character set as
the multibyte encoding, convert the text into a wchar_t text, select the destination
character set as the multibyte encoding, and convert the wide character text to the
multibyte (= destination) character set.

Even if this is possible (which is not guaranteed) it is a very tiring work. Plus it suffers
from the other two raised points even more due to the steady changing of the locale.

130 The GNU C Library

The XPG2 standard defines a completely new set of functions, which has none of these
limitations. They are not at all coupled to the selected locales, and they have no con-
straints on the character sets selected for source and destination. Only the set of available
conversions limits them. The standard does not specify that any conversion at all must be
available. Such availability is a measure of the quality of the implementation.

In the following text first the interface to iconv and then the conversion function, will
be described. Comparisons with other implementations will show what obstacles stand in
the way of portable applications. Finally, the implementation is described in so far as might
interest the advanced user who wants to extend conversion capabilities.

6.5.1 Generic Character Set Conversion Interface

This set of functions follows the traditional cycle of using a resource: open—use—close. The
interface consists of three functions, each of which implements one step.

Before the interfaces are described it is necessary to introduce a data type. Just like
other open—use—close interfaces the functions introduced here work using handles and the
‘iconv.h’ header defines a special type for the handles used.

iconv_t [Data Type]
This data type is an abstract type defined in ‘iconv.h’. The user must not assume
anything about the definition of this type; it must be completely opaque.

Objects of this type can get assigned handles for the conversions using the iconv
functions. The objects themselves need not be freed, but the conversions for which
the handles stand for have to.

The first step is the function to create a handle.

iconv_t iconv_open (const char *tocode, const char *fromcode) [Function]
The iconv_open function has to be used before starting a conversion. The two
parameters this function takes determine the source and destination character set
for the conversion, and if the implementation has the possibility to perform such a
conversion, the function returns a handle.

If the wanted conversion is not available, the iconv_open function returns (iconv_t)
-1. In this case the global variable errno can have the following values:

EMFILE The process already has OPEN_MAX file descriptors open.

ENFILE The system limit of open file is reached.

ENOMEM Not enough memory to carry out the operation.

EINVAL The conversion from fromcode to tocode is not supported.

It is not possible to use the same descriptor in different threads to perform independent
conversions. The data structures associated with the descriptor include information
about the conversion state. This must not be messed up by using it in different
conversions.

An iconv descriptor is like a file descriptor as for every use a new descriptor must
be created. The descriptor does not stand for all of the conversions from fromset to
toset.

Chapter 6: Character Set Handling 131

The GNU C library implementation of iconv_open has one significant extension to
other implementations. To ease the extension of the set of available conversions, the
implementation allows storing the necessary files with data and code in an arbitrary
number of directories. How this extension must be written will be explained below (see
Section 6.5.4 [The iconv Implementation in the GNU C library], page 136). Here it is
only important to say that all directories mentioned in the GCONV_PATH environment
variable are considered only if they contain a file ‘gconv-modules’. These directories
need not necessarily be created by the system administrator. In fact, this extension
is introduced to help users writing and using their own, new conversions. Of course,
this does not work for security reasons in SUID binaries; in this case only the system
directory is considered and this normally is ‘prefix/lib/gconv’. The GCONV_PATH
environment variable is examined exactly once at the first call of the iconv_open
function. Later modifications of the variable have no effect.

The iconv_open function was introduced early in the X/Open Portability Guide,
version 2. It is supported by all commercial Unices as it is required for the Unix
branding. However, the quality and completeness of the implementation varies widely.
The iconv_open function is declared in ‘iconv.h’.

The iconv implementation can associate large data structure with the handle returned
by iconv_open. Therefore, it is crucial to free all the resources once all conversions are
carried out and the conversion is not needed anymore.

int iconv_close (iconv_t cd) [Function]
The iconv_close function frees all resources associated with the handle cd, which
must have been returned by a successful call to the iconv_open function.

If the function call was successful the return value is 0. Otherwise it is —1 and errno
is set appropriately. Defined error are:

EBADF The conversion descriptor is invalid.

The iconv_close function was introduced together with the rest of the iconv func-
tions in XPG2 and is declared in ‘iconv.h’.

The standard defines only one actual conversion function. This has, therefore, the most
general interface: it allows conversion from one buffer to another. Conversion from a file to
a buffer, vice versa, or even file to file can be implemented on top of it.

size_t iconv (iconv_t cd, char **inbuf, size_t *inbytesleft, char [Function]
**outbuf, size_t *outbytesleft)
The iconv function converts the text in the input buffer according to the rules associ-
ated with the descriptor c¢d and stores the result in the output buffer. It is possible to
call the function for the same text several times in a row since for stateful character
sets the necessary state information is kept in the data structures associated with the
descriptor.

The input buffer is specified by *inbuf and it contains *inbytesleft bytes. The
extra indirection is necessary for communicating the used input back to the caller
(see below). Tt is important to note that the buffer pointer is of type char and the
length is measured in bytes even if the input text is encoded in wide characters.

132

The GNU C Library

The output buffer is specified in a similar way. *outbuf points to the beginning of
the buffer with at least *outbytesleft bytes room for the result. The buffer pointer
again is of type char and the length is measured in bytes. If outbuf or *outbuf is a
null pointer, the conversion is performed but no output is available.

If inbuf is a null pointer, the iconv function performs the necessary action to put the
state of the conversion into the initial state. This is obviously a no-op for non-stateful
encodings, but if the encoding has a state, such a function call might put some byte
sequences in the output buffer, which perform the necessary state changes. The next
call with inbuf not being a null pointer then simply goes on from the initial state.
It is important that the programmer never makes any assumption as to whether the
conversion has to deal with states. Even if the input and output character sets are
not stateful, the implementation might still have to keep states. This is due to the
implementation chosen for the GNU C library as it is described below. Therefore an
iconv call to reset the state should always be performed if some protocol requires
this for the output text.

The conversion stops for one of three reasons. The first is that all characters from
the input buffer are converted. This actually can mean two things: either all bytes
from the input buffer are consumed or there are some bytes at the end of the buffer
that possibly can form a complete character but the input is incomplete. The second
reason for a stop is that the output buffer is full. And the third reason is that the
input contains invalid characters.

In all of these cases the buffer pointers after the last successful conversion, for input
and output buffer, are stored in inbuf and outbuf, and the available room in each
buffer is stored in inbytesleft and outbytesleft.

Since the character sets selected in the iconv_open call can be almost arbitrary,
there can be situations where the input buffer contains valid characters, which have
no identical representation in the output character set. The behavior in this situation
is undefined. The current behavior of the GNU C library in this situation is to return
with an error immediately. This certainly is not the most desirable solution; therefore,
future versions will provide better ones, but they are not yet finished.

If all input from the input buffer is successfully converted and stored in the output
buffer, the function returns the number of non-reversible conversions performed. In
all other cases the return value is (size_t) -1 and errno is set appropriately. In
such cases the value pointed to by inbytesleft is nonzero.

EILSEQ The conversion stopped because of an invalid byte sequence in the input.
After the call, *inbuf points at the first byte of the invalid byte sequence.

E2BIG The conversion stopped because it ran out of space in the output buffer.

EINVAL The conversion stopped because of an incomplete byte sequence at the
end of the input buffer.

EBADF The cd argument is invalid.

The iconv function was introduced in the XPG2 standard and is declared in the
‘4conv.h’ header.

Chapter 6: Character Set Handling 133

The definition of the iconv function is quite good overall. It provides quite flexible
functionality. The only problems lie in the boundary cases, which are incomplete byte
sequences at the end of the input buffer and invalid input. A third problem, which is not
really a design problem, is the way conversions are selected. The standard does not say
anything about the legitimate names, a minimal set of available conversions. We will see
how this negatively impacts other implementations, as demonstrated below.

6.5.2 A complete iconv example

The example below features a solution for a common problem. Given that one knows the
internal encoding used by the system for wchar_t strings, one often is in the position to read
text from a file and store it in wide character buffers. One can do this using mbsrtowcs,

but then we run into the problems discussed above.
int
file2wcs (int fd, const char *charset, wchar_t #*outbuf, size_t avail)
{
char inbuf[BUFSIZ];
size_t insize = 0;
char #wrptr = (char *) outbuf;
int result = 0;
iconv_t cd;

cd = iconv_open ("WCHAR_T", charset);
if (cd == (iconv_t) -1)
{
/* Something went wrong. */
if (errno == EINVAL)
error (0, 0, "conversion from ’%s’ to wchar_t not available",
charset) ;
else
perror ("iconv_open");

/* Terminate the output string. */
*outbuf = L’°\0’;

return -1;

}

while (avail > 0)
{
size_t nread;
size_t nconv;
char *inptr = inbuf;

/* Read more input. */
nread = read (fd, inbuf + insize, sizeof (inbuf) - insize);
if (nread == 0)
{
/* When we come here the file is completely read.
This still could mean there are some unused
characters in the inbuf. Put them back. */
if (lseek (fd, -insize, SEEK_CUR) == -1)
result = -1;

/* Now write out the byte sequence to get into the
initial state if this is necessary. */

134 The GNU C Library

iconv (cd, NULL, NULL, &wrptr, &avail);

break;
}

insize += nread;

/* Do the conversion. */
nconv = iconv (cd, &inptr, &insize, &wrptr, &avail);
if (nconv == (size_t) -1)
{
/* Not everything went right. It might only be
an unfinished byte sequence at the end of the
buffer. Or it is a real problem. */
if (errno == EINVAL)

/* This is harmless. Simply move the unused
bytes to the beginning of the buffer so that
they can be used in the next round. */

memmove (inbuf, inptr, insize);

else

{

/* It is a real problem. Maybe we ran out of
space in the output buffer or we have invalid
input. In any case back the file pointer to
the position of the last processed byte. */

lseek (fd, -insize, SEEK_CUR);

result = -1;

break;

}
}

/* Terminate the output string. */
if (avail >= sizeof (wchar_t))
*((wchar_t *) wrptr) = L°\0’;

if (iconv_close (cd) != 0)
perror ("iconv_close");

return (wchar_t *) wrptr - outbuf;
}
This example shows the most important aspects of using the iconv functions. It shows
how successive calls to iconv can be used to convert large amounts of text. The user does
not have to care about stateful encodings as the functions take care of everything.

An interesting point is the case where iconv returns an error and errno is set to EINVAL.
This is not really an error in the transformation. It can happen whenever the input character
set contains byte sequences of more than one byte for some character and texts are not
processed in one piece. In this case there is a chance that a multibyte sequence is cut. The
caller can then simply read the remainder of the takes and feed the offending bytes together
with new character from the input to iconv and continue the work. The internal state kept
in the descriptor is not unspecified after such an event as is the case with the conversion
functions from the ISO C standard.

The example also shows the problem of using wide character strings with iconv. As
explained in the description of the iconv function above, the function always takes a pointer
to a char array and the available space is measured in bytes. In the example, the output

Chapter 6: Character Set Handling 135

buffer is a wide character buffer; therefore, we use a local variable wrptr of type char *,
which is used in the iconv calls.

This looks rather innocent but can lead to problems on platforms that have tight restric-
tion on alignment. Therefore the caller of iconv has to make sure that the pointers passed
are suitable for access of characters from the appropriate character set. Since, in the above
case, the input parameter to the function is a wchar_t pointer, this is the case (unless the
user violates alignment when computing the parameter). But in other situations, especially
when writing generic functions where one does not know what type of character set one
uses and, therefore, treats text as a sequence of bytes, it might become tricky.

6.5.3 Some Details about other iconv Implementations

This is not really the place to discuss the iconv implementation of other systems but it
is necessary to know a bit about them to write portable programs. The above mentioned
problems with the specification of the iconv functions can lead to portability issues.

The first thing to notice is that, due to the large number of character sets in use, it is
certainly not practical to encode the conversions directly in the C library. Therefore, the
conversion information must come from files outside the C library. This is usually done in
one or both of the following ways:

e The C library contains a set of generic conversion functions that can read the needed
conversion tables and other information from data files. These files get loaded when
necessary.

This solution is problematic as it requires a great deal of effort to apply to all char-
acter sets (potentially an infinite set). The differences in the structure of the different
character sets is so large that many different variants of the table-processing functions
must be developed. In addition, the generic nature of these functions make them slower
than specifically implemented functions.

e The C library only contains a framework that can dynamically load object files and
execute the conversion functions contained therein.

This solution provides much more flexibility. The C library itself contains only very lit-
tle code and therefore reduces the general memory footprint. Also, with a documented
interface between the C library and the loadable modules it is possible for third parties
to extend the set of available conversion modules. A drawback of this solution is that
dynamic loading must be available.

Some implementations in commercial Unices implement a mixture of these possibilities;
the majority implement only the second solution. Using loadable modules moves the code
out of the library itself and keeps the door open for extensions and improvements, but
this design is also limiting on some platforms since not many platforms support dynamic
loading in statically linked programs. On platforms without this capability it is therefore
not possible to use this interface in statically linked programs. The GNU C library has, on
ELF platforms, no problems with dynamic loading in these situations; therefore, this point
is moot. The danger is that one gets acquainted with this situation and forgets about the
restrictions on other systems.

A second thing to know about other iconv implementations is that the number of
available conversions is often very limited. Some implementations provide, in the standard
release (not special international or developer releases), at most 100 to 200 conversion

136 The GNU C Library

possibilities. This does not mean 200 different character sets are supported; for example,
conversions from one character set to a set of 10 others might count as 10 conversions.
Together with the other direction this makes 20 conversion possibilities used up by one
character set. One can imagine the thin coverage these platform provide. Some Unix
vendors even provide only a handful of conversions, which renders them useless for almost
all uses.

This directly leads to a third and probably the most problematic point. The way the
iconv conversion functions are implemented on all known Unix systems and the availability
of the conversion functions from character set A to B and the conversion from B to C does
not imply that the conversion from A to C is available.

This might not seem unreasonable and problematic at first, but it is a quite big problem
as one will notice shortly after hitting it. To show the problem we assume to write a program
that has to convert from A to C. A call like

cd = iconv_open ("C", "A");

fails according to the assumption above. But what does the program do now? The conver-
sion is necessary; therefore, simply giving up is not an option.

This is a nuisance. The iconv function should take care of this. But how should the
program proceed from here on? If it tries to convert to character set B, first the two
iconv_open calls

cdl = iconv_open ("B", "A");
and
cd2 = iconv_open ("C", "B");

will succeed, but how to find B?

Unfortunately, the answer is: there is no general solution. On some systems guessing
might help. On those systems most character sets can convert to and from UTF-8 encoded
ISO 10646 or Unicode text. Beside this only some very system-specific methods can help.
Since the conversion functions come from loadable modules and these modules must be
stored somewhere in the filesystem, one could try to find them and determine from the
available file which conversions are available and whether there is an indirect route from A
to C.

This example shows one of the design errors of iconv mentioned above. It should at
least be possible to determine the list of available conversion programmatically so that if
iconv_open says there is no such conversion, one could make sure this also is true for
indirect routes.

6.5.4 The iconv Implementation in the GNU C library

After reading about the problems of iconv implementations in the last section it is certainly
good to note that the implementation in the GNU C library has none of the problems
mentioned above. What follows is a step-by-step analysis of the points raised above. The
evaluation is based on the current state of the development (as of January 1999). The
development of the iconv functions is not complete, but basic functionality has solidified.

The GNU C library’s iconv implementation uses shared loadable modules to implement
the conversions. A very small number of conversions are built into the library itself but
these are only rather trivial conversions.

Chapter 6: Character Set Handling 137

All the benefits of loadable modules are available in the GNU C library implementation.
This is especially appealing since the interface is well documented (see below), and it,
therefore, is easy to write new conversion modules. The drawback of using loadable objects
is not a problem in the GNU C library, at least on ELF systems. Since the library is able to
load shared objects even in statically linked binaries, static linking need not be forbidden
in case one wants to use iconv.

The second mentioned problem is the number of supported conversions. Currently, the
GNU C library supports more than 150 character sets. The way the implementation is
designed the number of supported conversions is greater than 22350 (150 times 149). If any
conversion from or to a character set is missing, it can be added easily.

Particularly impressive as it may be, this high number is due to the fact that the GNU
C library implementation of iconv does not have the third problem mentioned above (i.e.,
whenever there is a conversion from a character set A to B and from B to C it is always
possible to convert from A to C directly). If the iconv_open returns an error and sets errno
to EINVAL, there is no known way, directly or indirectly, to perform the wanted conversion.

Triangulation is achieved by providing for each character set a conversion from and to
UCS-4 encoded ISO 10646. Using ISO 10646 as an intermediate representation it is possible
to triangulate (i.e., convert with an intermediate representation).

There is no inherent requirement to provide a conversion to ISO 10646 for a new char-
acter set, and it is also possible to provide other conversions where neither source nor
destination character set is ISO 10646. The existing set of conversions is simply meant to
cover all conversions that might be of interest.

All currently available conversions use the triangulation method above, making conver-
sion run unnecessarily slow. If, for example, somebody often needs the conversion from
150-2022-JP to EUC-JP, a quicker solution would involve direct conversion between the
two character sets, skipping the input to ISO 10646 first. The two character sets of interest
are much more similar to each other than to ISO 10646.

In such a situation one easily can write a new conversion and provide it as a better
alternative. The GNU C library iconv implementation would automatically use the module
implementing the conversion if it is specified to be more efficient.

6.5.4.1 Format of ‘gconv-modules’ files

All information about the available conversions comes from a file named ‘gconv-modules’,
which can be found in any of the directories along the GCONV_PATH. The ‘gconv-modules’
files are line-oriented text files, where each of the lines has one of the following formats:

e If the first non-whitespace character is a # the line contains only comments and is
ignored.

e Lines starting with alias define an alias name for a character set. Two more words
are expected on the line. The first word defines the alias name, and the second defines
the original name of the character set. The effect is that it is possible to use the alias
name in the fromset or toset parameters of iconv_open and achieve the same result as
when using the real character set name.

This is quite important as a character set has often many different names. There is
normally an official name but this need not correspond to the most popular name.
Beside this many character sets have special names that are somehow constructed.

138 The GNU C Library

For example, all character sets specified by the ISO have an alias of the form IS0-
IR-nnn where nnn is the registration number. This allows programs that know about
the registration number to construct character set names and use them in iconv_open
calls. More on the available names and aliases follows below.

e Lines starting with module introduce an available conversion module. These lines must
contain three or four more words.

The first word specifies the source character set, the second word the destination char-
acter set of conversion implemented in this module, and the third word is the name
of the loadable module. The filename is constructed by appending the usual shared
object suffix (normally ‘.so’) and this file is then supposed to be found in the same
directory the ‘gconv-modules’ file is in. The last word on the line, which is optional,
is a numeric value representing the cost of the conversion. If this word is missing, a
cost of 1 is assumed. The numeric value itself does not matter that much; what counts
are the relative values of the sums of costs for all possible conversion paths. Below is
a more precise description of the use of the cost value.

Returning to the example above where one has written a module to directly convert
from ISO-2022-JP to EUC-JP and back. All that has to be done is to put the new module,
let its name be ISO2022JP-EUCJP.s0, in a directory and add a file ‘gconv-modules’ with
the following content in the same directory:

module IS0-2022-JP// EUC-JP// IS02022JP-EUCJP 1
module EUC-JP// 1S0-2022-JP// IS02022JP-EUCJP 1

To see why this is sufficient, it is necessary to understand how the conversion used by
iconv (and described in the descriptor) is selected. The approach to this problem is quite
simple.

At the first call of the iconv_open function the program reads all available
‘gconv-modules’ files and builds up two tables: one containing all the known aliases and
another that contains the information about the conversions and which shared object
implements them.

6.5.4.2 Finding the conversion path in iconv

The set of available conversions form a directed graph with weighted edges. The weights
on the edges are the costs specified in the ‘gconv-modules’ files. The iconv_open function
uses an algorithm suitable for search for the best path in such a graph and so constructs a
list of conversions that must be performed in succession to get the transformation from the
source to the destination character set.

Explaining why the above ‘gconv-modules’ files allows the iconv implementation to
resolve the specific ISO-2022-JP to EUC-JP conversion module instead of the conversion
coming with the library itself is straightforward. Since the latter conversion takes two steps
(from ISO-2022-JP to ISO 10646 and then from ISO 10646 to EUC-JP), the cost is 1+1 = 2.
The above ‘gconv-modules’ file, however, specifies that the new conversion modules can
perform this conversion with only the cost of 1.

A mysterious item about the ‘gconv-modules’ file above (and also the file coming with
the GNU C library) are the names of the character sets specified in the module lines. Why
do almost all the names end in //7 And this is not all: the names can actually be regular
expressions. At this point in time this mystery should not be revealed, unless you have the

Chapter 6: Character Set Handling 139

relevant spell-casting materials: ashes from an original DOS 6.2 boot disk burnt in effigy, a
crucifix blessed by St. Emacs, assorted herbal roots from Central America, sand from Cebu,
etc. Sorry! The part of the implementation where this is used is not yet finished. For now
please simply follow the existing examples. It’ll become clearer once it is. —drepper

A last remark about the ‘gconv-modules’ is about the names not ending with //. A
character set named INTERNAL is often mentioned. From the discussion above and the
chosen name it should have become clear that this is the name for the representation used
in the intermediate step of the triangulation. We have said that this is UCS-4 but actually
that is not quite right. The UCS-4 specification also includes the specification of the byte
ordering used. Since a UCS-4 value consists of four bytes, a stored value is effected by byte
ordering. The internal representation is not the same as UCS-4 in case the byte ordering
of the processor (or at least the running process) is not the same as the one required for
UCS-4. This is done for performance reasons as one does not want to perform unnecessary
byte-swapping operations if one is not interested in actually seeing the result in UCS-4. To
avoid trouble with endianess, the internal representation consistently is named INTERNAL
even on big-endian systems where the representations are identical.

6.5.4.3 iconv module data structures

So far this section has described how modules are located and considered to be used. What
remains to be described is the interface of the modules so that one can write new ones. This
section describes the interface as it is in use in January 1999. The interface will change a
bit in the future but, with luck, only in an upwardly compatible way.

The definitions necessary to write new modules are publicly available in the non-standard
header ‘gconv.h’. The following text, therefore, describes the definitions from this header
file. First, however, it is necessary to get an overview.

From the perspective of the user of iconv the interface is quite simple: the iconv_open
function returns a handle that can be used in calls to iconv, and finally the handle is freed
with a call to iconv_close. The problem is that the handle has to be able to represent the
possibly long sequences of conversion steps and also the state of each conversion since the
handle is all that is passed to the iconv function. Therefore, the data structures are really
the elements necessary to understanding the implementation.

We need two different kinds of data structures. The first describes the conversion and the
second describes the state etc. There are really two type definitions like this in ‘gconv.h’.

struct __gconv_step [Data type]
This data structure describes one conversion a module can perform. For each func-
tion in a loaded module with conversion functions there is exactly one object of this
type. This object is shared by all users of the conversion (i.e., this object does not
contain any information corresponding to an actual conversion; it only describes the
conversion itself).

struct __gconv_loaded_object *__shlib_handle

const char *__modname

int __counter
All these elements of the structure are used internally in the C library to
coordinate loading and unloading the shared. One must not expect any

of the other elements to be available or initialized.

140

The GNU C Library

const char *__from_name
const char *__to_name

__from_name and __to_name contain the names of the source and desti-
nation character sets. They can be used to identify the actual conversion
to be carried out since one module might implement conversions for more
than one character set and/or direction.

geconv_fct __fct
geconv_init_fct __init_fct
geconv_end_fct __end_fct

int
int _
int

int

These elements contain pointers to the functions in the loadable module.
The interface will be explained below.

__min_needed_from
_max_needed_from
__min_needed_to
__max_needed_to;

These values have to be supplied in the init function of the module. The
__min_needed_from value specifies how many bytes a character of the
source character set at least needs. The __max_needed_from specifies

the maximum value that also includes possible shift sequences.

The __min_needed_to and __max_needed_to values serve the same pur-
pose as __min_needed_from and __max_needed_from but this time for
the destination character set.

It is crucial that these values be accurate since otherwise the conversion
functions will have problems or not work at all.

int __stateful

This element must also be initialized by the init function. int
__stateful is nonzero if the source character set is stateful. Otherwise
1t 1s zero.

void *__data

This element can be used freely by the conversion functions in the module.
void *__data can be used to communicate extra information from one
call to another. void *__data need not be initialized if not needed at all.
If void *__data element is assigned a pointer to dynamically allocated
memory (presumably in the init function) it has to be made sure that the
end function deallocates the memory. Otherwise the application will leak
memory.

It is important to be aware that this data structure is shared by all users
of this specification conversion and therefore the __data element must
not contain data specific to one specific use of the conversion function.

struct __gconv_step_data [Data type]
This is the data structure that contains the information specific to each use of the
conversion functions.

Chapter 6: Character Set Handling 141

char *__outbuf

char *__outbufend
These elements specify the output buffer for the conversion step. The __
outbuf element points to the beginning of the buffer, and __outbufend
points to the byte following the last byte in the buffer. The conversion
function must not assume anything about the size of the buffer but it can
be safely assumed the there is room for at least one complete character
in the output buffer.

Once the conversion is finished, if the conversion is the last step, the __
outbuf element must be modified to point after the last byte written into
the buffer to signal how much output is available. If this conversion step
is not the last one, the element must not be modified. The __outbufend
element must not be modified.

int __is_last
This element is nonzero if this conversion step is the last one. This infor-
mation is necessary for the recursion. See the description of the conversion
function internals below. This element must never be modified.

int __invocation_counter
The conversion function can use this element to see how many calls of
the conversion function already happened. Some character sets require a
certain prolog when generating output, and by comparing this value with
zero, one can find out whether it is the first call and whether, therefore,
the prolog should be emitted. This element must never be modified.

int __internal_use
This element is another one rarely used but needed in certain situations.
It is assigned a nonzero value in case the conversion functions are used to
implement mbsrtowcs et.al. (i.e., the function is not used directly through
the iconv interface).

This sometimes makes a difference as it is expected that the iconv func-
tions are used to translate entire texts while the mbsrtowcs functions are
normally used only to convert single strings and might be used multiple
times to convert entire texts.

But in this situation we would have problem complying with some rules
of the character set specification. Some character sets require a pro-
log, which must appear exactly once for an entire text. If a number of
mbsrtowcs calls are used to convert the text, only the first call must add
the prolog. However, because there is no communication between the
different calls of mbsrtowcs, the conversion functions have no possibility
to find this out. The situation is different for sequences of iconv calls
since the handle allows access to the needed information.

The int __internal_use element is mostly used together with

_invocation_counter as follows:

if (!data->__internal_use
&% data->__invocation_counter == 0)

/* Emit prolog. */

142 The GNU C Library

This element must never be modified.

mbstate_t *__statep
The __statep element points to an object of type mbstate_t (see Sec-
tion 6.3.2 [Representing the state of the conversion|, page 114). The
conversion of a stateful character set must use the object pointed to by
__statep to store information about the conversion state. The __statep
element itself must never be modified.

mbstate_t __state
This element must never be used directly. It is only part of this structure
to have the needed space allocated.

6.5.4.4 iconv module interfaces

With the knowledge about the data structures we now can describe the conversion function
itself. To understand the interface a bit of knowledge is necessary about the functionality
in the C library that loads the objects with the conversions.

It is often the case that one conversion is used more than once (i.e., there are several
iconv_open calls for the same set of character sets during one program run). The mbsrtowcs
et.al. functions in the GNU C library also use the iconv functionality, which increases the
number of uses of the same functions even more.

Because of this multiple use of conversions, the modules do not get loaded exclusively
for one conversion. Instead a module once loaded can be used by an arbitrary number
of iconv or mbsrtowcs calls at the same time. The splitting of the information between
conversion- function-specific information and conversion data makes this possible. The last
section showed the two data structures used to do this.

This is of course also reflected in the interface and semantics of the functions that the
modules must provide. There are three functions that must have the following names:

gconv_init
The gconv_init function initializes the conversion function specific data struc-
ture. This very same object is shared by all conversions that use this conversion
and, therefore, no state information about the conversion itself must be stored
in here. If a module implements more than one conversion, the gconv_init
function will be called multiple times.

gconv_end
The gconv_end function is responsible for freeing all resources allocated by the
gconv_init function. If there is nothing to do, this function can be missing.
Special care must be taken if the module implements more than one conver-
sion and the gconv_init function does not allocate the same resources for all
conversions.

gconv This is the actual conversion function. It is called to convert one block of text.
It gets passed the conversion step information initialized by gconv_init and
the conversion data, specific to this use of the conversion functions.

There are three data types defined for the three module interface functions and these
define the interface.

Chapter 6: Character Set Handling 143

int

(*__gconv_init_fct) (struct __gconv_step *) [Data type]
This specifies the interface of the initialization function of the module. It is called
exactly once for each conversion the module implements.

As explained in the description of the struct __gconv_step data structure above
the initialization function has to initialize parts of it.

__min_needed_from

__max_needed_from

__min_needed_to

__max_needed_to
These elements must be initialized to the exact numbers of the minimum
and maximum number of bytes used by one character in the source and
destination character sets, respectively. If the characters all have the
same size, the minimum and maximum values are the same.

_stateful
This element must be initialized to an nonzero value if the source char-
acter set is stateful. Otherwise it must be zero.

If the initialization function needs to communicate some information to the conversion
function, this communication can happen using the __data element of the __gconv_
step structure. But since this data is shared by all the conversions, it must not be
modified by the conversion function. The example below shows how this can be used.

#define MIN_NEEDED_FROM 1
#define MAX_NEEDED_FROM 4
#define MIN_NEEDED_TO 4
#define MAX_NEEDED_TO 4

int
geconv_init (struct __gconv_step *step)
{
/* Determine which direction. */
struct iso02022jp_data *new_data;
enum direction dir = illegal_dir;
enum variant var = illegal_var;
int result;

if (__strcasecmp (step->__from_name, "IS0-2022-JP//") == 0)

{
dir = from_iso02022jp;
var = is02022jp;
}
else if (__strcasecmp (step->__to_name, "IS0-2022-JP//") == 0)
{
dir = to_is02022jp;
var = is02022jp;
}
else if (__strcasecmp (step->__from_name, "IS0-2022-JP-2//") == 0)
{
dir = from_iso02022jp;
var = is02022jp2;
}
else if (__strcasecmp (step->__to_name, "IS0-2022-JP-2//") == 0)
{
dir = to_is02022]jp;

144

The GNU C Library

var = is02022jp2;

}
result = __GCONV_NOCONV;
if (dir !'= illegal_dir)
{

new_data = (struct iso2022jp_data *)
malloc (sizeof (struct iso2022jp_data));

result = __GCONV_NOMEM;
if (new_data !'= NULL)
{
new_data->dir = dir;
new_data->var = var;
step->__data = new_data;

if (dir == from_iso02022jp)
{
step->__min_needed_from = MIN_NEEDED_FROM;
step->__max_needed_from = MAX_NEEDED_FRONM;
step—>__min_needed_to = MIN_NEEDED_TO;
step->__max_needed_to = MAX_NEEDED_TO;

step->__min_needed_from = MIN_NEEDED_TO;

step->__max_needed_from = MAX_NEEDED_TO;

step->__min_needed_to = MIN_NEEDED_FROM;

step->__max_needed_to = MAX_NEEDED_FROM + 2;
}

/* Yes, this is a stateful encoding. */
step->__stateful = 1;

result = __GCONV_0OK;
}

return result;
}
The function first checks which conversion is wanted. The module from which this
function is taken implements four different conversions; which one is selected can be
determined by comparing the names. The comparison should always be done without
paying attention to the case.

Next, a data structure, which contains the necessary information about which conver-
sion is selected, is allocated. The data structure struct is02022jp_data is locally
defined since, outside the module, this data is not used at all. Please note that if all
four conversions this modules supports are requested there are four data blocks.

One interesting thing is the initialization of the __min_ and __max_ elements of the
step data object. A single 1SO-2022-JP character can consist of one to four bytes.
Therefore the MIN_NEEDED_FROM and MAX_NEEDED_FROM macros are defined this way.
The output is always the INTERNAL character set (aka UCS-4) and therefore each
character consists of exactly four bytes. For the conversion from INTERNAL to ISO-
2022-JP we have to take into account that escape sequences might be necessary to

Chapter 6: Character Set Handling 145

switch the character sets. Therefore the __max_needed_to element for this direction
gets assigned MAX_NEEDED_FROM + 2. This takes into account the two bytes needed for
the escape sequences to single the switching. The asymmetry in the maximum values
for the two directions can be explained easily: when reading [SO-2022-JP text, escape
sequences can be handled alone (i.e., it is not necessary to process a real character
since the effect of the escape sequence can be recorded in the state information).
The situation is different for the other direction. Since it is in general not known
which character comes next, one cannot emit escape sequences to change the state in
advance. This means the escape sequences that have to be emitted together with the
next character. Therefore one needs more room than only for the character itself.

The possible return values of the initialization function are:

__GCONV_0OK
The initialization succeeded

__GCONV_NOCONV
The requested conversion is not supported in the module. This can hap-
pen if the ‘gconv-modules’ file has errors.

__GCONV_NOMEM
Memory required to store additional information could not be allocated.

The function called before the module is unloaded is significantly easier. It often has
nothing at all to do; in which case it can be left out completely.

void (*__gconv_end_fct) (struct gconv_step *) [Data type]
The task of this function is to free all resources allocated in the initialization function.
Therefore only the __data element of the object pointed to by the argument is of
interest. Continuing the example from the initialization function, the finalization
function looks like this:

void
gconv_end (struct __gconv_step *data)
{
free (data->__data);
}

The most important function is the conversion function itself, which can get quite com-
plicated for complex character sets. But since this is not of interest here, we will only
describe a possible skeleton for the conversion function.

int (*__gconv_fct) (struct __gconv_step *, struct __gconv_step_data [Data type]
* const char ** const char *, size_t *, int)
The conversion function can be called for two basic reason: to convert text or to reset
the state. From the description of the iconv function it can be seen why the flushing
mode is necessary. What mode is selected is determined by the sixth argument, an
integer. This argument being nonzero means that flushing is selected.

Common to both modes is where the output buffer can be found. The information
about this buffer is stored in the conversion step data. A pointer to this information
is passed as the second argument to this function. The description of the struct
__gconv_step_data structure has more information on the conversion step data.

146

The GNU C Library

What has to be done for flushing depends on the source character set. If the source
character set is not stateful, nothing has to be done. Otherwise the function has to
emit a byte sequence to bring the state object into the initial state. Once this all
happened the other conversion modules in the chain of conversions have to get the
same chance. Whether another step follows can be determined from the __is_last
element of the step data structure to which the first parameter points.

The more interesting mode is when actual text has to be converted. The first step in
this case is to convert as much text as possible from the input buffer and store the
result in the output buffer. The start of the input buffer is determined by the third
argument, which is a pointer to a pointer variable referencing the beginning of the
buffer. The fourth argument is a pointer to the byte right after the last byte in the
buffer.

The conversion has to be performed according to the current state if the character
set is stateful. The state is stored in an object pointed to by the __statep element of
the step data (second argument). Once either the input buffer is empty or the output
buffer is full the conversion stops. At this point, the pointer variable referenced by
the third parameter must point to the byte following the last processed byte (i.e., if
all of the input is consumed, this pointer and the fourth parameter have the same
value).

What now happens depends on whether this step is the last one. If it is the last
step, the only thing that has to be done is to update the __outbuf element of the
step data structure to point after the last written byte. This update gives the caller
the information on how much text is available in the output buffer. In addition,
the variable pointed to by the fifth parameter, which is of type size_t, must be
incremented by the number of characters (not bytes) that were converted in a non-
reversible way. Then, the function can return.

In case the step is not the last one, the later conversion functions have to get a chance
to do their work. Therefore, the appropriate conversion function has to be called. The
information about the functions is stored in the conversion data structures, passed as
the first parameter. This information and the step data are stored in arrays, so the
next element in both cases can be found by simple pointer arithmetic:
int
gconv (struct __gconv_step *step, struct __gconv_step_data *data,
const char **inbuf, const char *inbufend, size_t *written,
int do_flush)
{
struct __gconv_step *next_step = step + 1;
struct __gconv_step_data *next_data = data + 1;

The next_step pointer references the next step information and next_data the next
data record. The call of the next function therefore will look similar to this:
next_step->__fct (next_step, next_data, &outerr, outbuf,
written, 0)
But this is not yet all. Once the function call returns the conversion function might
have some more to do. If the return value of the function is __GCONV_EMPTY_INPUT,
more room is available in the output buffer. Unless the input buffer is empty the
conversion, functions start all over again and process the rest of the input buffer. If

Chapter 6: Character Set Handling 147

the return value is not __GCONV_EMPTY_INPUT, something went wrong and we have
to recover from this.

A requirement for the conversion function is that the input buffer pointer (the third
argument) always point to the last character that was put in converted form into the
output buffer. This is trivially true after the conversion performed in the current step,
but if the conversion functions deeper downstream stop prematurely, not all characters
from the output buffer are consumed and, therefore, the input buffer pointers must
be backed off to the right position.

Correcting the input buffers is easy to do if the input and output character sets
have a fixed width for all characters. In this situation we can compute how many
characters are left in the output buffer and, therefore, can correct the input buffer
pointer appropriately with a similar computation. Things are getting tricky if either
character set has characters represented with variable length byte sequences, and it
gets even more complicated if the conversion has to take care of the state. In these
cases the conversion has to be performed once again, from the known state before
the initial conversion (i.e., if necessary the state of the conversion has to be reset and
the conversion loop has to be executed again). The difference now is that it is known
how much input must be created, and the conversion can stop before converting the
first unused character. Once this is done the input buffer pointers must be updated
again and the function can return.

One final thing should be mentioned. If it is necessary for the conversion to know
whether it is the first invocation (in case a prolog has to be emitted), the conver-
sion function should increment the __invocation_counter element of the step data
structure just before returning to the caller. See the description of the struct __
gconv_step_data structure above for more information on how this can be used.

The return value must be one of the following values:

__GCONV_EMPTY_INPUT
All input was consumed and there is room left in the output buffer.

__GCONV_FULL_OUTPUT
No more room in the output buffer. In case this is not the last step this
value is propagated down from the call of the next conversion function in
the chain.

__GCONV_INCOMPLETE_INPUT
The input buffer is not entirely empty since it contains an incomplete
character sequence.

The following example provides a framework for a conversion function. In case a new
conversion has to be written the holes in this implementation have to be filled and
that is it.
int
geconv (struct __gconv_step *step, struct __gconv_step_data *data,
const char **inbuf, const char *inbufend, size_t *written,
int do_flush)
{
struct __gconv_step *next_step = step + 1;
struct __gconv_step_data *next_data = data + 1;
gconv_fct fct = next_step->__fct;

148 The GNU C Library

int status;

/* If the function is called with no input this means we have
to reset to the initial state. The possibly partly
converted input is dropped. */

if (do_flush)

{
status = __GCONV_OK;

/* Possible emit a byte sequence which put the state object
into the initial state. */

/* Call the steps down the chain if there are any but only
if we successfully emitted the escape sequence. */
if (status == __GCONV_OK && ! data->__is_last)
status = fct (next_step, next_data, NULL, NULL,
written, 1);

else

/* We preserve the initial values of the pointer variables. */
const char *inptr = *inbuf;
char *outbuf = data->__outbuf;

char *outend = data->__outbufend;
char *outptr;

do
{
/* Remember the start value for this round. */
inptr = *inbuf;
/* The outbuf buffer is empty. */
outptr = outbuf;

/* For stateful encodings the state must be safe here. */

/* Run the conversion loop. status is set
appropriately afterwards. */

/* If this is the last step, leave the loop. There is
nothing we can do. */
if (data->__is_last)
{
/* Store information about how many bytes are
available. x/
data->__outbuf = outbuf;

/* If any non-reversible conversions were performed,
add the number to *written. */

break;
}

/* Write out all output that was produced. */
if (outbuf > outptr)
{
const char *outerr = data->__outbuf;
int result;

Chapter 6: Character Set Handling 149

result = fct (next_step, next_data, &outerr,
outbuf, written, 0);

if (result != __GCONV_EMPTY_INPUT)
{
if (outerr != outbuf)
{
/* Reset the input buffer pointer. We
document here the complex case. */
size_t nstatus;

/* Reload the pointers. */
*inbuf = inptr;
outbuf = outptr;

/* Possibly reset the state. */

/* Redo the conversion, but this time
the end of the output buffer is at
outerr. */

}

/* Change the status. */
status = result;
}
else
/* All the output is consumed, we can make
another run if everything was ok. */

if (status == __GCONV_FULL_QUTPUT)
status = __GCONV_OK;
}
}
while (status == __GCONV_0K);

/* We finished one use of this step. */
++data->__invocation_counter;

}

return status;

}

This information should be sufficient to write new modules. Anybody doing so should
also take a look at the available source code in the GNU C library sources. It contains
many examples of working and optimized modules.

150 The GNU C Library

Chapter 7: Locales and Internationalization 151

7 Locales and Internationalization

Different countries and cultures have varying conventions for how to communicate. These
conventions range from very simple ones, such as the format for representing dates and
times, to very complex ones, such as the language spoken.

Internationalization of software means programming it to be able to adapt to the user’s
favorite conventions. In ISO C, internationalization works by means of locales. Each locale
specifies a collection of conventions, one convention for each purpose. The user chooses a
set of conventions by specifying a locale (via environment variables).

All programs inherit the chosen locale as part of their environment. Provided the pro-
grams are written to obey the choice of locale, they will follow the conventions preferred by
the user.

7.1 What Effects a Locale Has

Each locale specifies conventions for several purposes, including the following:

e What multibyte character sequences are valid, and how they are interpreted (see Chap-
ter 6 [Character Set Handling], page 109).

e Classification of which characters in the local character set are considered alphabetic,
and upper- and lower-case conversion conventions (see Chapter 4 [Character Handling],
page 65).

e The collating sequence for the local language and character set (see Section 5.6 [Colla-
tion Functions], page 90).

e Formatting of numbers and currency amounts (see Section 7.6.1.1 [Generic Numeric
Formatting Parameters], page 156).

e Formatting of dates and times (see Section 21.4.5 [Formatting Calendar Time]|,
page 562).

e What language to use for output, including error messages (see Chapter 8 [Message
Translation], page 169).

e What language to use for user answers to yes-or-no questions (see Section 7.8 [Yes-or-No
Questions], page 167).

e What language to use for more complex user input. (The C library doesn’t yet help
you implement this.)

Some aspects of adapting to the specified locale are handled automatically by the library
subroutines. For example, all your program needs to do in order to use the collating sequence
of the chosen locale is to use strcoll or strxfrm to compare strings.

Other aspects of locales are beyond the comprehension of the library. For example, the
library can’t automatically translate your program’s output messages into other languages.
The only way you can support output in the user’s favorite language is to program this
more or less by hand. The C library provides functions to handle translations for multiple
languages easily.

This chapter discusses the mechanism by which you can modify the current locale. The
effects of the current locale on specific library functions are discussed in more detail in the
descriptions of those functions.

152 The GNU C Library

7.2 Choosing a Locale

The simplest way for the user to choose a locale is to set the environment variable LANG.
This specifies a single locale to use for all purposes. For example, a user could specify a
hypothetical locale named ‘espana-castellano’ to use the standard conventions of most
of Spain.

The set of locales supported depends on the operating system you are using, and so do
their names. We can’t make any promises about what locales will exist, except for one
standard locale called ‘C’ or ‘POSIX’. Later we will describe how to construct locales.

A user also has the option of specifying different locales for different purposes—in effect,
choosing a mixture of multiple locales.

For example, the user might specify the locale ‘espana-castellano’ for most purposes,
but specify the locale ‘usa-english’ for currency formatting. This might make sense if
the user is a Spanish-speaking American, working in Spanish, but representing monetary
amounts in US dollars.

Note that both locales ‘espana-castellano’ and ‘usa-english’, like all locales, would
include conventions for all of the purposes to which locales apply. However, the user can
choose to use each locale for a particular subset of those purposes.

7.3 Categories of Activities that Locales Affect

The purposes that locales serve are grouped into categories, so that a user or a program
can choose the locale for each category independently. Here is a table of categories; each
name is both an environment variable that a user can set, and a macro name that you can
use as an argument to setlocale.

LC_COLLATE
This category applies to collation of strings (functions strcoll and strxfrm);
see Section 5.6 [Collation Functions|, page 90.

LC_CTYPE This category applies to classification and conversion of characters, and to multi-
byte and wide characters; see Chapter 4 [Character Handling], page 65, and
Chapter 6 [Character Set Handling], page 109.

LC_MONETARY
This category applies to formatting monetary values; see Section 7.6.1.1
[Generic Numeric Formatting Parameters], page 156.

LC_NUMERIC
This category applies to formatting numeric values that are not monetary; see
Section 7.6.1.1 [Generic Numeric Formatting Parameters|, page 156.

LC_TIME This category applies to formatting date and time values; see Section 21.4.5
[Formatting Calendar Time], page 562.

LC_MESSAGES
This category applies to selecting the language used in the user interface for mes-
sage translation (see Section 8.2 [The Uniforum approach to Message Transla-
tion], page 178; see Section 8.1 [X/Open Message Catalog Handling], page 169)
and contains regular expressions for affirmative and negative responses.

Chapter 7: Locales and Internationalization 153

LC_ALL This is not an environment variable; it is only a macro that you can use with
setlocale to set a single locale for all purposes. Setting this environment
variable overwrites all selections by the other LC_* variables or LANG.

LANG If this environment variable is defined, its value specifies the locale to use for
all purposes except as overridden by the variables above.

When developing the message translation functions it was felt that the functionality
provided by the variables above is not sufficient. For example, it should be possible to
specify more than one locale name. Take a Swedish user who better speaks German than
English, and a program whose messages are output in English by default. It should be
possible to specify that the first choice of language is Swedish, the second German, and
if this also fails to use English. This is possible with the variable LANGUAGE. For further
description of this GNU extension see Section 8.2.1.6 [User influence on gettext], page 189.

7.4 How Programs Set the Locale

A C program inherits its locale environment variables when it starts up. This happens
automatically. However, these variables do not automatically control the locale used by the
library functions, because ISO C says that all programs start by default in the standard ‘C’
locale. To use the locales specified by the environment, you must call setlocale. Call it
as follows:

setlocale (LC_ALL, "");
to select a locale based on the user choice of the appropriate environment variables.

You can also use setlocale to specify a particular locale, for general use or for a specific
category.

The symbols in this section are defined in the header file ‘locale.h’.

char * setlocale (int category, const char *locale) [Function]
The function setlocale sets the current locale for category category to locale. A list
of all the locales the system provides can be created by running

locale -a

If category is LC_ALL, this specifies the locale for all purposes. The other possible
values of category specify an single purpose (see Section 7.3 [Categories of Activities
that Locales Affect], page 152).

You can also use this function to find out the current locale by passing a null pointer
as the locale argument. In this case, setlocale returns a string that is the name of
the locale currently selected for category category.

The string returned by setlocale can be overwritten by subsequent calls, so you
should make a copy of the string (see Section 5.4 [Copying and Concatenation],
page 77) if you want to save it past any further calls to setlocale. (The standard
library is guaranteed never to call setlocale itself.)

You should not modify the string returned by setlocale. It might be the same string
that was passed as an argument in a previous call to setlocale. One requirement is
that the category must be the same in the call the string was returned and the one
when the string is passed in as locale parameter.

154 The GNU C Library

When you read the current locale for category LC_ALL, the value encodes the entire
combination of selected locales for all categories. In this case, the value is not just a
single locale name. In fact, we don’t make any promises about what it looks like. But
if you specify the same “locale name” with LC_ALL in a subsequent call to setlocale,
it restores the same combination of locale selections.

To be sure you can use the returned string encoding the currently selected locale at a
later time, you must make a copy of the string. It is not guaranteed that the returned
pointer remains valid over time.

When the locale argument is not a null pointer, the string returned by setlocale
reflects the newly-modified locale.

If you specify an empty string for locale, this means to read the appropriate environ-
ment variable and use its value to select the locale for category.

If a nonempty string is given for locale, then the locale of that name is used if possible.

If you specify an invalid locale name, setlocale returns a null pointer and leaves the
current locale unchanged.

Here is an example showing how you might use setlocale to temporarily switch to a
new locale.

#include <stddef.h>
#include <locale.h>
#include <stdlib.h>
#include <string.h>

void

with_other_locale (char *new_locale,
void (*subroutine) (int),
int argument)

char *old_locale, *saved_locale;

/* Get the name of the current locale. */
o0ld_locale = setlocale (LC_ALL, NULL);

/* Copy the name so it won’t be clobbered by setlocale. */
saved_locale = strdup (old_locale);
if (saved_locale == NULL)

fatal ("Out of memory");

/* Now change the locale and do some stuff with it. */
setlocale (LC_ALL, new_locale);
(*#subroutine) (argument);

/* Restore the original locale. */
setlocale (LC_ALL, saved_locale);
free (saved_locale);

}

Portability Note: Some ISO C systems may define additional locale categories, and
future versions of the library will do so. For portability, assume that any symbol beginning
with ‘LC_’ might be defined in ‘locale.h’.

Chapter 7: Locales and Internationalization 155

7.5 Standard Locales

The only locale names you can count on finding on all operating systems are these three
standard ones:

neH This is the standard C locale. The attributes and behavior it provides are
specified in the [SO C standard. When your program starts up, it initially uses
this locale by default.

"POSIX" This is the standard POSIX locale. Currently, it is an alias for the standard C
locale.

e The empty name says to select a locale based on environment variables. See
Section 7.3 [Categories of Activities that Locales Affect], page 152.

Defining and installing named locales is normally a responsibility of the system admin-
istrator at your site (or the person who installed the GNU C library). It is also possible for
the user to create private locales. All this will be discussed later when describing the tool
to do so.

If your program needs to use something other than the ‘C’ locale, it will be more portable
if you use whatever locale the user specifies with the environment, rather than trying to
specify some non-standard locale explicitly by name. Remember, different machines might
have different sets of locales installed.

7.6 Accessing Locale Information

There are several ways to access locale information. The simplest way is to let the C library
itself do the work. Several of the functions in this library implicitly access the locale data,
and use what information is provided by the currently selected locale. This is how the locale
model is meant to work normally.

As an example take the strftime function, which is meant to nicely format date and
time information (see Section 21.4.5 [Formatting Calendar Time], page 562). Part of the
standard information contained in the LC_TIME category is the names of the months. Instead
of requiring the programmer to take care of providing the translations the strftime function
does this all by itself. %A in the format string is replaced by the appropriate weekday name
of the locale currently selected by LC_TIME. This is an easy example, and wherever possible
functions do things automatically in this way.

But there are quite often situations when there is simply no function to perform the task,
or it is simply not possible to do the work automatically. For these cases it is necessary to
access the information in the locale directly. To do this the C library provides two functions:
localeconv and nl_langinfo. The former is part of ISO C and therefore portable, but
has a brain-damaged interface. The second is part of the Unix interface and is portable in
as far as the system follows the Unix standards.

7.6.1 localeconv: It is portable but ...

Together with the setlocale function the ISO C people invented the localeconv function.
It is a masterpiece of poor design. It is expensive to use, not extendable, and not generally
usable as it provides access to only LC_MONETARY and LC_NUMERIC related information.
Nevertheless, if it is applicable to a given situation it should be used since it is very portable.

156 The GNU C Library

The function strfmon formats monetary amounts according to the selected locale using this
information.

struct lconv * localeconv (void) [Function]
The localeconv function returns a pointer to a structure whose components contain
information about how numeric and monetary values should be formatted in the
current locale.

You should not modify the structure or its contents. The structure might be over-
written by subsequent calls to localeconv, or by calls to setlocale, but no other
function in the library overwrites this value.

struct lconv [Data Type]
localeconv’s return value is of this data type. Its elements are described in the
following subsections.

If a member of the structure struct lconv has type char, and the value is CHAR_MAX,
it means that the current locale has no value for that parameter.

7.6.1.1 Generic Numeric Formatting Parameters

These are the standard members of struct lconv; there may be others.

char *decimal_point

char *mon_decimal_point
These are the decimal-point separators used in formatting non-monetary and
monetary quantities, respectively. In the ‘C’ locale, the value of decimal_point
is ".", and the value of mon_decimal_point is "".

char *thousands_sep

char *mon_thousands_sep
These are the separators used to delimit groups of digits to the left of the decimal
point in formatting non-monetary and monetary quantities, respectively. In the
‘C’ locale, both members have a value of "" (the empty string).

char *grouping

char *mon_grouping
These are strings that specify how to group the digits to the left of the decimal
point. grouping applies to non-monetary quantities and mon_grouping applies
to monetary quantities. Use either thousands_sep or mon_thousands_sep to
separate the digit groups.

Each member of these strings is to be interpreted as an integer value of type
char. Successive numbers (from left to right) give the sizes of successive groups
(from right to left, starting at the decimal point.) The last member is either
0, in which case the previous member is used over and over again for all the
remaining groups, or CHAR_MAX, in which case there is no more grouping—or,
put another way, any remaining digits form one large group without separators.

For example, if grouping is "\04\03\02", the correct grouping for the number
123456787654321 is ‘127, ‘347, ‘667, ‘78, ‘765", ‘4321°. This uses a group of 4
digits at the end, preceded by a group of 3 digits, preceded by groups of 2 digits

Chapter 7: Locales and Internationalization 157

', the number would be printed as

(as many as needed). With a separator of *,
‘12,34,56,78,765,4321°.
A value of "\03" indicates repeated groups of three digits, as normally used in

the U.S.

In the standard ‘C’ locale, both grouping and mon_grouping have a value of
", This value specifies no grouping at all.

char int_frac_digits

char frac_digits
These are small integers indicating how many fractional digits (to the right of
the decimal point) should be displayed in a monetary value in international and
local formats, respectively. (Most often, both members have the same value.)

In the standard ‘C’ locale, both of these members have the value CHAR_MAX,
meaning “unspecified”. The ISO standard doesn’t say what to do when you
find this value; we recommend printing no fractional digits. (This locale also
specifies the empty string for mon_decimal_point, so printing any fractional
digits would be confusing!)

7.6.1.2 Printing the Currency Symbol

These members of the struct lconv structure specify how to print the symbol to identify
a monetary value—the international analog of ‘¢’ for US dollars.

Each country has two standard currency symbols. The local currency symbol is used
commonly within the country, while the international currency symbol is used interna-
tionally to refer to that country’s currency when it is necessary to indicate the country
unambiguously.

For example, many countries use the dollar as their monetary unit, and when dealing with
international currencies it’s important to specify that one is dealing with (say) Canadian
dollars instead of U.S. dollars or Australian dollars. But when the context is known to be
Canada, there is no need to make this explicit—dollar amounts are implicitly assumed to
be in Canadian dollars.

char *currency_symbol
The local currency symbol for the selected locale.

In the standard ‘C’ locale, this member has a value of "" (the empty string),
meaning “unspecified”. The ISO standard doesn’t say what to do when you
find this value; we recommend you simply print the empty string as you would
print any other string pointed to by this variable.

char *int_curr_symbol
The international currency symbol for the selected locale.

The value of int_curr_symbol should normally consist of a three-letter ab-
breviation determined by the international standard ISO 4217 Codes for the
Representation of Currency and Funds, followed by a one-character separator
(often a space).

In the standard ‘C’ locale, this member has a value of "" (the empty string),
meaning “unspecified”. We recommend you simply print the empty string as
you would print any other string pointed to by this variable.

158 The GNU C Library

char p_cs_precedes

char n_cs_precedes

char int_p_cs_precedes

char int_n_cs_precedes
These members are 1 if the currency_symbol or int_curr_symbol strings
should precede the value of a monetary amount, or 0 if the strings should
follow the value. The p_cs_precedes and int_p_cs_precedes members apply
to positive amounts (or zero), and the n_cs_precedes and int_n_cs_precedes
members apply to negative amounts.

In the standard ‘C’ locale, all of these members have a value of CHAR_MAX,
meaning “unspecified”. The ISO standard doesn’t say what to do when you
find this value. We recommend printing the currency symbol before the amount,
which is right for most countries. In other words, treat all nonzero values alike
in these members.

The members with the int_ prefix apply to the int_curr_symbol while the
other two apply to currency_symbol.

char p_sep_by_space

char n_sep_by_space

char int_p_sep_by_space

char int_n_sep_by_space
These members are 1 if a space should appear between the currency_symbol or
int_curr_symbol strings and the amount, or 0 if no space should appear. The
p_sep_by_space and int_p_sep_by_space members apply to positive amounts
(or zero), and the n_sep_by_space and int_n_sep_by_space members apply
to negative amounts.

In the standard ‘C’ locale, all of these members have a value of CHAR_MAX,
meaning “unspecified”. The ISO standard doesn’t say what you should do
when you find this value; we suggest you treat it as 1 (print a space). In other
words, treat all nonzero values alike in these members.

The members with the int_ prefix apply to the int_curr_symbol while the
other two apply to currency_symbol. There is one specialty with the int_
curr_symbol, though. Since all legal values contain a space at the end the string
one either printf this space (if the currency symbol must appear in front and
must be separated) or one has to avoid printing this character at all (especially
when at the end of the string).

7.6.1.3 Printing the Sign of a Monetary Amount

These members of the struct lconv structure specify how to print the sign (if any) of a
monetary value.

char *positive_sign

char *negative_sign
These are strings used to indicate positive (or zero) and negative monetary
quantities, respectively.
In the standard ‘C’ locale, both of these members have a value of "" (the empty
string), meaning “unspecified”.

Chapter 7: Locales and Internationalization 159

The ISO standard doesn’t say what to do when you find this value; we recom-
mend printing positive_sign as you find it, even if it is empty. For a negative
value, print negative_sign as you find it unless both it and positive_sign
are empty, in which case print ‘-’ instead. (Failing to indicate the sign at all
seems rather unreasonable.)

char p_sign_posn

char n_sign_posn

char int_p_sign_posn

char int_n_sign_posn
These members are small integers that indicate how to position the sign for
nonnegative and negative monetary quantities, respectively. (The string used
by the sign is what was specified with positive_sign or negative_sign.) The
possible values are as follows:

0 The currency symbol and quantity should be surrounded by paren-
theses.

1 Print the sign string before the quantity and currency symbol.

2 Print the sign string after the quantity and currency symbol.

3 Print the sign string right before the currency symbol.

4 Print the sign string right after the currency symbol.

CHAR_MAX “Unspecified”. Both members have this value in the standard ‘C’
locale.

The ISO standard doesn’t say what you should do when the value is CHAR_MAX.
We recommend you print the sign after the currency symbol.

The members with the int_ prefix apply to the int_curr_symbol while the
other two apply to currency_symbol.

7.6.2 Pinpoint Access to Locale Data

When writing the X/Open Portability Guide the authors realized that the localeconv
function is not enough to provide reasonable access to locale information. The information
which was meant to be available in the locale (as later specified in the POSIX.1 standard)
requires more ways to access it. Therefore the nl_langinfo function was introduced.

char * nl_langinfo (nlitem item) [Function]
The nl1_langinfo function can be used to access individual elements of the locale
categories. Unlike the localeconv function, which returns all the information, nl_
langinfo lets the caller select what information it requires. This is very fast and it
is not a problem to call this function multiple times.

A second advantage is that in addition to the numeric and monetary formatting
information, information from the LC_TIME and LC_MESSAGES categories is available.

The type nl_type is defined in ‘nl_types.h’. The argument item is a numeric value
defined in the header ‘langinfo.h’. The X/Open standard defines the following
values:

160

The GNU C Library

CODESET nl_langinfo returns a string with the name of the coded character set
used in the selected locale.

ABDAY_1
ABDAY_2
ABDAY_3
ABDAY_4
ABDAY_5
ABDAY_6
ABDAY_7 nl_langinfo returns the abbreviated weekday name. ABDAY_1 corre-
sponds to Sunday.

DAY_1
DAY_2
DAY_3
DAY 4
DAY_5
DAY_6
DAY_7 Similar to ABDAY_1 etc., but here the return value is the unabbreviated
weekday name.

ABMON_1

ABMON_2

ABMON_3

ABMON_4

ABMON_5

ABMON_6

ABMON_7

ABMON_8

ABMON_9

ABMON_10

ABMON_11

ABMON_12 The return value is abbreviated name of the month. ABMON_1 corresponds

to January.

MON_1

MON_2

MON_3

MON_4

MON_5

MON_6

MON_7

MON_8

MON_9

MON_10

MON_11

MON_12 Similar to ABMON_1 etc., but here the month names are not abbreviated.

Here the first value MON_1 also corresponds to January.

Chapter 7: Locales and Internationalization 161

AM_STR

PM_STR The return values are strings which can be used in the representation of
time as an hour from 1 to 12 plus an am/pm specifier.
Note that in locales which do not use this time representation these strings
might be empty, in which case the am/pm format cannot be used at all.

D_T_FMT The return value can be used as a format string for strftime to represent
time and date in a locale-specific way.

D_FNMT The return value can be used as a format string for strftime to represent
a date in a locale-specific way.

T_FMT The return value can be used as a format string for strftime to represent
time in a locale-specific way.

T_FMT_AMPM

The return value can be used as a format string for strftime to represent
time in the am/pm format.

Note that if the am/pm format does not make any sense for the selected
locale, the return value might be the same as the one for T_FMT.

ERA The return value represents the era used in the current locale.

Most locales do not define this value. An example of a locale which
does define this value is the Japanese one. In Japan, the traditional
representation of dates includes the name of the era corresponding to the
then-emperor’s reign.

Normally it should not be necessary to use this value directly. Specifying
the E modifier in their format strings causes the strftime functions to
use this information. The format of the returned string is not specified,
and therefore you should not assume knowledge of it on different systems.

ERA_YEAR The return value gives the year in the relevant era of the locale. As for
ERA it should not be necessary to use this value directly.

ERA_D_T_FMT
This return value can be used as a format string for strftime to represent
dates and times in a locale-specific era-based way.

ERA_D_FMT
This return value can be used as a format string for strftime to represent
a date in a locale-specific era-based way.

ERA_T_FMT
This return value can be used as a format string for strftime to represent
time in a locale-specific era-based way.

ALT_DIGITS
The return value is a representation of up to 100 values used to represent
the values 0 to 99. As for ERA this value is not intended to be used
directly, but instead indirectly through the strftime function. When
the modifier 0 is used in a format which would otherwise use numerals
to represent hours, minutes, seconds, weekdays, months, or weeks, the
appropriate value for the locale is used instead.

162

The GNU C Library

INT_CURR_SYMBOL
The same as the value returned by localeconv in the int_curr_symbol
element of the struct lconv.

CURRENCY_SYMBOL
CRNCYSTR The same as the value returned by localeconv in the currency_symbol
element of the struct lconv.

CRNCYSTR is a deprecated alias still required by Unix98.

MON_DECIMAL_POINT
The same as the value returned by localeconv in the mon_decimal_
point element of the struct lconv.

MON_THOUSANDS_SEP
The same as the value returned by localeconv in the mon_thousands_
sep element of the struct lconv.

MON_GROUPING
The same as the value returned by localeconv in the mon_grouping
element of the struct lconv.

POSITIVE_SIGN
The same as the value returned by localeconv in the positive_sign
element of the struct lconv.

NEGATIVE_SIGN
The same as the value returned by localeconv in the negative_sign
element of the struct lconv.

INT_FRAC_DIGITS
The same as the value returned by localeconv in the int_frac_digits
element of the struct lconv.

FRAC_DIGITS
The same as the value returned by localeconv in the frac_digits ele-
ment of the struct lconv.

P_CS_PRECEDES
The same as the value returned by localeconv in the p_cs_precedes
element of the struct 1conv.

P_SEP_BY_SPACE
The same as the value returned by localeconv in the p_sep_by_space
element of the struct lconv.

N_CS_PRECEDES
The same as the value returned by localeconv in the n_cs_precedes
element of the struct lconv.

N_SEP_BY_SPACE
The same as the value returned by localeconv in the n_sep_by_space
element of the struct lconv.

Chapter 7: Locales and Internationalization 163

P_SIGN_POSN
The same as the value returned by localeconv in the p_sign_posn ele-
ment of the struct lconv.

N_SIGN_POSN
The same as the value returned by localeconv in the n_sign_posn ele-
ment of the struct lconv.

INT_P_CS_PRECEDES
The same as the value returned by localeconv in the int_p_cs_
precedes element of the struct lconv.

INT_P_SEP_BY_SPACE
The same as the value returned by localeconv in the int_p_sep_by_
space element of the struct lconv.

INT_N_CS_PRECEDES
The same as the value returned by localeconv in the int_n_cs_
precedes element of the struct lconv.

INT_N_SEP_BY_SPACE
The same as the value returned by localeconv in the int_n_sep_by_
space element of the struct lconv.

INT_P_SIGN_POSN
The same as the value returned by localeconv in the int_p_sign_posn
element of the struct lconv.

INT_N_SIGN_POSN
The same as the value returned by localeconv in the int_n_sign_posn
element of the struct lconv.

DECIMAL_POINT

RADIXCHAR
The same as the value returned by localeconv in the decimal_point
element of the struct lconv.

The name RADIXCHAR is a deprecated alias still used in Unix98.

THOUSANDS_SEP
THOUSEP The same as the value returned by localeconv in the thousands_sep
element of the struct lconv.

The name THOUSEP is a deprecated alias still used in Unix98.

GROUPING The same as the value returned by localeconv in the grouping element
of the struct lconv.

YESEXPR The return value is a regular expression which can be used with the
regex function to recognize a positive response to a yes/no question.
The GNU C library provides the rpmatch function for easier handling in
applications.

NOEXPR The return value is a regular expression which can be used with the regex
function to recognize a negative response to a yes/no question.

164 The GNU C Library

YESSTR The return value is a locale-specific translation of the positive response
to a yes/no question.

Using this value is deprecated since it is a very special case of message
translation, and is better handled by the message translation functions
(see Chapter 8 [Message Translation], page 169).

The use of this symbol is deprecated. Instead message translation should
be used.

NOSTR The return value is a locale-specific translation of the negative response
to a yes/no question. What is said for YESSTR is also true here.

The use of this symbol is deprecated. Instead message translation should
be used.

The file ‘langinfo.h’ defines a lot more symbols but none of them is official. Using
them is not portable, and the format of the return values might change. Therefore
we recommended you not use them.

Note that the return value for any valid argument can be used for in all situations
(with the possible exception of the am/pm time formatting codes). If the user has not
selected any locale for the appropriate category, nl_langinfo returns the information
from the "C" locale. It is therefore possible to use this function as shown in the
example below.

If the argument item is not valid, a pointer to an empty string is returned.

An example of nl_langinfo usage is a function which has to print a given date and
time in a locale-specific way. At first one might think that, since strftime internally uses
the locale information, writing something like the following is enough:

size_t
i18n_time_n_data (char *s, size_t len, const struct tm *tp)
{
return strftime (s, len, "JX %D", tp);
}

The format contains no weekday or month names and therefore is internationally usable.
Wrong! The output produced is something like "hh:mm:ss MM/DD/YY". This format is only
recognizable in the USA. Other countries use different formats. Therefore the function
should be rewritten like this:

size_t
i18n_time_n_data (char *s, size_t len, const struct tm *tp)
{
return strftime (s, len, nl_langinfo (D_T_FMT), tp);
}

Now it uses the date and time format of the locale selected when the program runs. If
the user selects the locale correctly there should never be a misunderstanding over the time
and date format.

7.7 A dedicated function to format numbers

We have seen that the structure returned by localeconv as well as the values given to nl_
langinfo allow you to retrieve the various pieces of locale-specific information to format

Chapter 7: Locales and Internationalization 165

numbers and monetary amounts. We have also seen that the underlying rules are quite
complex.

Therefore the X/Open standards introduce a function which uses such locale information,
making it easier for the user to format numbers according to these rules.

ssize_t strfmon (char *s, size_t maxsize, const char *format, ...) [Function]
The strfmon function is similar to the strftime function in that it takes a buffer,
its size, a format string, and values to write into the buffer as text in a form specified
by the format string. Like strftime, the function also returns the number of bytes
written into the buffer.

There are two differences: strfmon can take more than one argument, and, of course,
the format specification is different. Like strftime, the format string consists of
normal text, which is output as is, and format specifiers, which are indicated by a
‘%. Immediately after the ‘%’, you can optionally specify various flags and formatting
information before the main formatting character, in a similar way to printf:

e Immediately following the ‘%’ there can be one or more of the following flags:

‘=f’ The single byte character f is used for this field as the numeric fill
character. By default this character is a space character. Filling with
this character is only performed if a left precision is specified. Tt is
not just to fill to the given field width.

The number is printed without grouping the digits according to the
rules of the current locale. By default grouping is enabled.

0 At most one of these flags can be used. They select which format
to represent the sign of a currency amount. By default, and if ‘+ is
given, the locale equivalent of +/— is used. If ‘C is given, negative
amounts are enclosed in parentheses. The exact format is determined
by the values of the LC_MONETARY category of the locale selected at
program runtime.

The output will not contain the currency symbol.

=’ The output will be formatted left-justified instead of right-justified
if it does not fill the entire field width.

The next part of a specification is an optional field width. If no width is specified 0
is taken. During output, the function first determines how much space is required. If
it requires at least as many characters as given by the field width, it is output using
as much space as necessary. Otherwise, it is extended to use the full width by filling
with the space character. The presence or absence of the ‘-’ flag determines the side
at which such padding occurs. If present, the spaces are added at the right making
the output left-justified, and vice versa.

So far the format looks familiar, being similar to the printf and strftime formats.
However, the next two optional fields introduce something new. The first one is a ‘#
character followed by a decimal digit string. The value of the digit string specifies
the number of digit positions to the left of the decimal point (or equivalent). This
does not include the grouping character when the ‘°’ flag is not given. If the space
needed to print the number does not fill the whole width, the field is padded at the

166 The GNU C Library

left side with the fill character, which can be selected using the ‘=" flag and by default
is a space. For example, if the field width is selected as 6 and the number is 123, the
fill character is ‘*’ the result will be ‘**%123’.

The second optional field starts with a ‘.’ (period) and consists of another decimal
digit string. Its value describes the number of characters printed after the decimal
point. The default is selected from the current locale (frac_digits, int_frac_
digits, see see Section 7.6.1.1 [Generic Numeric Formatting Parameters], page 156).
If the exact representation needs more digits than given by the field width, the dis-
played value is rounded. If the number of fractional digits is selected to be zero, no
decimal point is printed.

As a GNU extension, the strfmon implementation in the GNU libc allows an optional
‘L’ next as a format modifier. If this modifier is given, the argument is expected to
be a long double instead of a double value.

Finally, the last component is a format specifier. There are three specifiers defined:

‘i’ Use the locale’s rules for formatting an international currency value.
‘n’ Use the locale’s rules for formatting a national currency value.
A Place a ‘% in the output. There must be no flag, width specifier or

modifier given, only ‘%%’ is allowed.

As for printf, the function reads the format string from left to right and uses the
values passed to the function following the format string. The values are expected to
be either of type double or long double, depending on the presence of the modifier
‘L’. The result is stored in the buffer pointed to by s. At most maxsize characters
are stored.

The return value of the function is the number of characters stored in s, including the
terminating NULL byte. If the number of characters stored would exceed maxsize, the
function returns —1 and the content of the buffer s is unspecified. In this case errno
is set to E2BIG.

A few examples should make clear how the function works. It is assumed that all the
following pieces of code are executed in a program which uses the USA locale (en_US). The
simplest form of the format is this:

strfmon (buf, 100, "@%n@%n@%n@", 123.45, -567.89, 12345.678);
The output produced is
"Q@$123.450-$567.890$12,345.68Q"

We can notice several things here. First, the widths of the output numbers are different.
We have not specified a width in the format string, and so this is no wonder. Second, the
third number is printed using thousands separators. The thousands separator for the en_US
locale is a comma. The number is also rounded. .678 is rounded to .68 since the format
does not specify a precision and the default value in the locale is 2. Finally, note that the
national currency symbol is printed since ‘4n’ was used, not ‘i’. The next example shows
how we can align the output.

strfmon (buf, 100, "@%=+%11n@%=%11n@%=*11n@", 123.45, -567.89, 12345.678);

The output this time is:

Chapter 7: Locales and Internationalization 167

"Q $123.45@ -$567.890 $12,345.68Q"

Two things stand out. Firstly, all fields have the same width (eleven characters) since
this is the width given in the format and since no number required more characters to be
printed. The second important point is that the fill character is not used. This is correct
since the white space was not used to achieve a precision given by a ‘#’ modifier, but
instead to fill to the given width. The difference becomes obvious if we now add a width
specification.

strfmon (buf, 100, "@%=+11#5n@%=+11#5n@%=x11#5ne",
123.45, -567.89, 12345.678);
The output is
"Q@ $*x*123.450-$**x567.890 $12,456.68Q"

Here we can see that all the currency symbols are now aligned, and that the space
between the currency sign and the number is filled with the selected fill character. Note
that although the width is selected to be 5 and 123.45 has three digits left of the decimal
point, the space is filled with three asterisks. This is correct since, as explained above, the
width does not include the positions used to store thousands separators. One last example
should explain the remaining functionality.

strfmon (buf, 100, "@%=0(16#5.310%=0(16#5.3i@%=0(16#5.31iQ",
123.45, -567.89, 12345.678);
This rather complex format string produces the following output:
"@ USD 000123,450 @(USD 000567.890)@ USD 12,345.678 Q"

The most noticeable change is the alternative way of representing negative numbers. In
financial circles this is often done using parentheses, and this is what the ‘(' flag selected.
The fill character is now ‘0’. Note that this ‘0’ character is not regarded as a numeric zero,
and therefore the first and second numbers are not printed using a thousands separator.
Since we used the format specifier ‘i’ instead of ‘n’, the international form of the currency
symbol is used. This is a four letter string, in this case "USD ". The last point is that since
the precision right of the decimal point is selected to be three, the first and second numbers
are printed with an extra zero at the end and the third number is printed without rounding.

7.8 Yes-or-No Questions

Some non GUI programs ask a yes-or-no question. If the messages (especially the questions)
are translated into foreign languages, be sure that you localize the answers too. It would be
very bad habit to ask a question in one language and request the answer in another, often
English.

The GNU C library contains rpmatch to give applications easy access to the correspond-
ing locale definitions.

int rpmatch (const char *response) [Function]
The function rpmatch checks the string in response whether or not it is a correct
yes-or-no answer and if yes, which one. The check uses the YESEXPR and NOEXPR data
in the LC_MESSAGES category of the currently selected locale. The return value is as
follows:

1 The user entered an aflirmative answer.

0 The user entered a negative answer.

168 The GNU C Library

-1 The answer matched neither the YESEXPR nor the NOEXPR regular expres-
sion.

This function is not standardized but available beside in GNU libc at least also in the
IBM AIX library.

This function would normally be used like this:

/* Use a safe default. */
_Bool doit = false;

fputs (gettext ("Do you really want to do this? "), stdout);
fflush (stdout);
/* Prepare the getline call. */

line = NULL;

len = 0;

while (getline (&line, &len, stdout) >= 0)
{

/* Check the response. */
int res = rpmatch (line);
if (res >= 0)
{
/* We got a definitive answer. */
if (res > 0)
doit = true;
break;
}
}
/* Free what getline allocated. */
free (line);

Note that the loop continues until an read error is detected or until a definitive (positive
or negative) answer is read.

Chapter 8: Message Translation 169

8 Message Translation

The program’s interface with the human should be designed in a way to ease the human
the task. One of the possibilities is to use messages in whatever language the user prefers.

Printing messages in different languages can be implemented in different ways. One
could add all the different languages in the source code and add among the variants every
time a message has to be printed. This is certainly no good solution since extending the set
of languages is difficult (the code must be changed) and the code itself can become really
big with dozens of message sets.

A better solution is to keep the message sets for each language are kept in separate files
which are loaded at runtime depending on the language selection of the user.

The GNU C Library provides two different sets of functions to support message trans-
lation. The problem is that neither of the interfaces is officially defined by the POSIX
standard. The catgets family of functions is defined in the X/Open standard but this is
derived from industry decisions and therefore not necessarily based on reasonable decisions.

As mentioned above the message catalog handling provides easy extendibility by using
external data files which contain the message translations. lL.e., these files contain for each
of the messages used in the program a translation for the appropriate language. So the
tasks of the message handling functions are

e locate the external data file with the appropriate translations.
e load the data and make it possible to address the messages
e map a given key to the translated message

The two approaches mainly differ in the implementation of this last step. The design
decisions made for this influences the whole rest.

8.1 X/Open Message Catalog Handling

The catgets functions are based on the simple scheme:

Associate every message to translate in the source code with a unique identifier.
To retrieve a message from a catalog file solely the identifier is used.

This means for the author of the program that s/he will have to make sure the meaning
of the identifier in the program code and in the message catalogs are always the same.

Before a message can be translated the catalog file must be located. The user of the
program must be able to guide the responsible function to find whatever catalog the user
wants. This is separated from what the programmer had in mind.

All the types, constants and functions for the catgets functions are defined/declared in
the ‘nl_types.h’ header file.

8.1.1 The catgets function family

nl_catd catopen (const char *cat_name, int flag) [Function]
The catgets function tries to locate the message data file names cat_name and loads
it when found. The return value is of an opaque type and can be used in calls to the
other functions to refer to this loaded catalog.

170

The GNU C Library

The return value is (nl_catd) -1 in case the function failed and no catalog was
loaded. The global variable errno contains a code for the error causing the failure.
But even if the function call succeeded this does not mean that all messages can be
translated.

Locating the catalog file must happen in a way which lets the user of the program
influence the decision. It is up to the user to decide about the language to use and
sometimes it is useful to use alternate catalog files. All this can be specified by the
user by setting some environment variables.

The first problem is to find out where all the message catalogs are stored. Every
program could have its own place to keep all the different files but usually the catalog
files are grouped by languages and the catalogs for all programs are kept in the same
place.

To tell the catopen function where the catalog for the program can be found the user
can set the environment variable NLSPATH to a value which describes her/his choice.
Since this value must be usable for different languages and locales it cannot be a
simple string. Instead it is a format string (similar to printf’s). An example is
/usr/share/locale/}L//N: /usr/share/locale/%L/LC_MESSAGES/%N

First one can see that more than one directory can be specified (with the usual syntax
of separating them by colons). The next things to observe are the format string, %L
and %N in this case. The catopen function knows about several of them and the
replacement for all of them is of course different.

YA This format element is substituted with the name of the catalog file. This
is the value of the cat_name argument given to catgets.

%L This format element is substituted with the name of the currently selected
locale for translating messages. How this is determined is explained be-
low.

w1 (This is the lowercase ell.) This format element is substituted with the

language element of the locale name. The string describing the selected
locale is expected to have the form lang[_terr[.codeset]] and this
format uses the first part lang.

YA This format element is substituted by the territory part terr of the name
of the currently selected locale. See the explanation of the format above.

%he This format element is substituted by the codeset part codeset of the
name of the currently selected locale. See the explanation of the format
above.

W Since % is used in a meta character there must be a way to express the
% character in the result itself. Using %% does this just like it works for
printf.

Using NLSPATH allows arbitrary directories to be searched for message catalogs while

still allowing different languages to be used. If the NLSPATH environment variable is

not set, the default value is
prefix/share/locale/}L/}N:prefix/share/locale/}L/LC_MESSAGES//%N

Chapter 8: Message Translation 171

where prefix is given to configure while installing the GNU C Library (this value is
in many cases /usr or the empty string).

The remaining problem is to decide which must be used. The value decides about
the substitution of the format elements mentioned above. First of all the user can
specify a path in the message catalog name (i.e., the name contains a slash character).
In this situation the NLSPATH environment variable is not used. The catalog must
exist as specified in the program, perhaps relative to the current working directory.
This situation in not desirable and catalogs names never should be written this way.
Beside this, this behavior is not portable to all other platforms providing the catgets
interface.

Otherwise the values of environment variables from the standard environment are
examined (see Section 25.4.2 [Standard Environment Variables|, page 692). Which
variables are examined is decided by the flag parameter of catopen. If the value is
NL_CAT_LOCALE (which is defined in ‘n1_types.h’) then the catopen function use the
name of the locale currently selected for the LC_MESSAGES category.

If flag is zero the LANG environment variable is examined. This is a left-over from the
early days where the concept of the locales had not even reached the level of POSIX
locales.

The environment variable and the locale name should have a value of the form lang[_
terr [.codeset]] as explained above. If no environment variable is set the "C" locale
is used which prevents any translation.

The return value of the function is in any case a valid string. Either it is a translation
from a message catalog or it is the same as the string parameter. So a piece of code
to decide whether a translation actually happened must look like this:

{
char *trans = catgets (desc, set, msg, input_string);
if (trans == input_string)
{
/* Something went wrong. */
}
}

When an error occurred the global variable errno is set to

EBADF The catalog does not exist.

ENOMSG The set/message tuple does not name an existing element in the message
catalog.

While it sometimes can be useful to test for errors programs normally will avoid any
test. If the translation is not available it is no big problem if the original, untranslated
message is printed. Either the user understands this as well or s/he will look for the
reason why the messages are not translated.

Please note that the currently selected locale does not depend on a call to the setlocale
function. It is not necessary that the locale data files for this locale exist and calling
setlocale succeeds. The catopen function directly reads the values of the environment
variables.

172 The GNU C Library

char * catgets (nl_catd catalog_desc, int set, int message, const [Function]
char *string)
The function catgets has to be used to access the massage catalog previously opened
using the catopen function. The catalog_desc parameter must be a value previously
returned by catopen.

The next two parameters, set and message, reflect the internal organization of the
message catalog files. This will be explained in detail below. For now it is interesting
to know that a catalog can consists of several set and the messages in each thread
are individually numbered using numbers. Neither the set number nor the message
number must be consecutive. They can be arbitrarily chosen. But each message
(unless equal to another one) must have its own unique pair of set and message
number.

Since it is not guaranteed that the message catalog for the language selected by
the user exists the last parameter string helps to handle this case gracefully. If no
matching string can be found string is returned. This means for the programmer that

e the string parameters should contain reasonable text (this also helps to under-
stand the program seems otherwise there would be no hint on the string which
is expected to be returned.

e all string arguments should be written in the same language.

It is somewhat uncomfortable to write a program using the catgets functions if no
supporting functionality is available. Since each set/message number tuple must be unique
the programmer must keep lists of the messages at the same time the code is written. And
the work between several people working on the same project must be coordinated. We
will see some how these problems can be relaxed a bit (see Section 8.1.4 [How to use the
catgets interface|, page 175).

int catclose (nl-catd catalog_desc) [Function]
The catclose function can be used to free the resources associated with a message
catalog which previously was opened by a call to catopen. If the resources can be
successfully freed the function returns 0. Otherwise it return —1 and the global
variable errno is set. Errors can occur if the catalog descriptor catalog_desc is not
valid in which case errno is set to EBADF.

8.1.2 Format of the message catalog files

The only reasonable way the translate all the messages of a function and store the result in
a message catalog file which can be read by the catopen function is to write all the message
text to the translator and let her/him translate them all. I.e., we must have a file with
entries which associate the set/message tuple with a specific translation. This file format is
specified in the X/Open standard and is as follows:

e Lines containing only whitespace characters or empty lines are ignored.

e Lines which contain as the first non-whitespace character a $ followed by a whitespace
character are comment and are also ignored.

e If a line contains as the first non-whitespace characters the sequence $set followed by
a whitespace character an additional argument is required to follow. This argument
can either be:

Chapter 8: Message Translation 173

— a number. In this case the value of this number determines the set to which the
following messages are added.

— an identifier consisting of alphanumeric characters plus the underscore character.
In this case the set get automatically a number assigned. This value is one added
to the largest set number which so far appeared.

How to use the symbolic names is explained in section Section 8.1.4 [How to use
the catgets interface|, page 175.

It is an error if a symbol name appears more than once. All following messages
are placed in a set with this number.

e If a line contains as the first non-whitespace characters the sequence $delset followed
by a whitespace character an additional argument is required to follow. This argument
can either be:

— a number. In this case the value of this number determines the set which will be
deleted.

— an identifier consisting of alphanumeric characters plus the underscore character.
This symbolic identifier must match a name for a set which previously was defined.
It is an error if the name is unknown.

In both cases all messages in the specified set will be removed. They will not appear in
the output. But if this set is later again selected with a $set command again messages
could be added and these messages will appear in the output.

e If a line contains after leading whitespaces the sequence $quote, the quoting character
used for this input file is changed to the first non-whitespace character following the
$quote. If no non-whitespace character is present before the line ends quoting is disable.

By default no quoting character is used. In this mode strings are terminated with the
first unescaped line break. If there is a $quote sequence present newline need not be
escaped. Instead a string is terminated with the first unescaped appearance of the
quote character.

A common usage of this feature would be to set the quote character to ". Then any
appearance of the " in the strings must be escaped using the backslash (i.e., \" must
be written).

e Any other line must start with a number or an alphanumeric identifier (with the under-
score character included). The following characters (starting after the first whitespace
character) will form the string which gets associated with the currently selected set and
the message number represented by the number and identifier respectively.

If the start of the line is a number the message number is obvious. It is an error if the
same message number already appeared for this set.

If the leading token was an identifier the message number gets automatically assigned.
The value is the current maximum messages number for this set plus one. It is an
error if the identifier was already used for a message in this set. It is OK to reuse
the identifier for a message in another thread. How to use the symbolic identifiers will
be explained below (see Section 8.1.4 [How to use the catgets interface], page 175).
There is one limitation with the identifier: it must not be Set. The reason will be
explained below.

174 The GNU C Library

The text of the messages can contain escape characters. The usual bunch of characters
known from the ISO C language are recognized (\n, \t, \v, \b, \r, \f, \\, and \nnn,
where nnn is the octal coding of a character code).

Important: The handling of identifiers instead of numbers for the set and messages is
a GNU extension. Systems strictly following the X/Open specification do not have this
feature. An example for a message catalog file is this:

$ This is a leading comment.
$quote "

$set SetOne
1 Message with ID 1.
two " Message with ID \"two\", which gets the value 2 assigned"

$set SetTwo
$ Since the last set got the number 1 assigned this set has number 2.
4000 "The numbers can be arbitrary, they need not start at one."

This small example shows various aspects:
e Lines 1 and 9 are comments since they start with $ followed by a whitespace.

e The quoting character is set to ". Otherwise the quotes in the message definition would
have to be left away and in this case the message with the identifier two would loose
its leading whitespace.

e Mixing numbered messages with message having symbolic names is no problem and
the numbering happens automatically.

While this file format is pretty easy it is not the best possible for use in a running
program. The catopen function would have to parser the file and handle syntactic errors
gracefully. This is not so easy and the whole process is pretty slow. Therefore the catgets
functions expect the data in another more compact and ready-to-use file format. There is
a special program gencat which is explained in detail in the next section.

Files in this other format are not human readable. To be easy to use by programs it is a
binary file. But the format is byte order independent so translation files can be shared by
systems of arbitrary architecture (as long as they use the GNU C Library).

Details about the binary file format are not important to know since these files are always
created by the gencat program. The sources of the GNU C Library also provide the sources
for the gencat program and so the interested reader can look through these source files to
learn about the file format.

8.1.3 Generate Message Catalogs files

The gencat program is specified in the X/Open standard and the GNU implementation
follows this specification and so processes all correctly formed input files. Additionally some
extension are implemented which help to work in a more reasonable way with the catgets
functions.

The gencat program can be invoked in two ways:
‘gencat [Option]... [Output-File [Input-File]...]‘

This is the interface defined in the X/Open standard. If no Input-File parameter is
given input will be read from standard input. Multiple input files will be read as if they are

Chapter 8: Message Translation 175

concatenated. If Qutput-File is also missing, the output will be written to standard output.
To provide the interface one is used to from other programs a second interface is provided.
‘gencat [Option]... -o Output-File [Input-Filel...°¢
The option ‘-0’ is used to specify the output file and all file arguments are used as input
files.

Beside this one can use ‘=’ or ‘/dev/stdin’ for Input-File to denote the standard input.
Corresponding one can use ‘=" and ‘/dev/stdout’ for Output-File to denote standard out-
put. Using ‘-’ as a file name is allowed in X/Open while using the device names is a GNU
extension.

The gencat program works by concatenating all input files and then merge the resulting
collection of message sets with a possibly existing output file. This is done by removing
all messages with set/message number tuples matching any of the generated messages from
the output file and then adding all the new messages. To regenerate a catalog file while
ignoring the old contents therefore requires to remove the output file if it exists. If the
output is written to standard output no merging takes place.

The following table shows the options understood by the gencat program. The X/Open
standard does not specify any option for the program so all of these are GNU extensions.
4_V7
‘~-version’
Print the version information and exit.
(_h7
‘-=help’ Print a usage message listing all available options, then exit successfully.
‘--new’ Do never merge the new messages from the input files with the old content of
the output files. The old content of the output file is discarded.
(_Hﬂ
‘-~header=name’
This option is used to emit the symbolic names given to sets and messages in
the input files for use in the program. Details about how to use this are given in
the next section. The name parameter to this option specifies the name of the

output file. It will contain a number of C preprocessor #defines to associate a
name with a number.

Please note that the generated file only contains the symbols from the input
files. If the output is merged with the previous content of the output file the
possibly existing symbols from the file(s) which generated the old output files
are not in the generated header file.

8.1.4 How to use the catgets interface

The catgets functions can be used in two different ways. By following slavishly the X/Open
specs and not relying on the extension and by using the GNU extensions. We will take a
look at the former method first to understand the benefits of extensions.

8.1.4.1 Not using symbolic names

Since the X/Open format of the message catalog files does not allow symbol names we have
to work with numbers all the time. When we start writing a program we have to replace
all appearances of translatable strings with something like

176 The GNU C Library

catgets (catdesc, set, msg, "string")

catgets is retrieved from a call to catopen which is normally done once at the program
start. The "string" is the string we want to translate. The problems start with the set
and message numbers.

In a bigger program several programmers usually work at the same time on the program
and so coordinating the number allocation is crucial. Though no two different strings must
be indexed by the same tuple of numbers it is highly desirable to reuse the numbers for
equal strings with equal translations (please note that there might be strings which are
equal in one language but have different translations due to difference contexts).

The allocation process can be relaxed a bit by different set numbers for different parts
of the program. So the number of developers who have to coordinate the allocation can be
reduced. But still lists must be keep track of the allocation and errors can easily happen.
These errors cannot be discovered by the compiler or the catgets functions. Only the user
of the program might see wrong messages printed. In the worst cases the messages are
so irritating that they cannot be recognized as wrong. Think about the translations for
"true" and "false" being exchanged. This could r