Installing GCC

For ccc version 4.3.3

(¢s2009q1)

Copyright (©) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see
below), and with the Back-Cover Texts being (b) (see below). A copy of the license is
included in the section entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

./gfdl.html

Table of Contents

1 Installing GCC........... 1
2 Prerequisites.................. L. 3
3 Downloading GCC.............................. 7
4 Installing GCC: Configuration................. 9
5 Building......... ... 29
5.1 Building a native compiler oo 29
5.2 Building a cross compiler........... ... i 31
5.3 Building in parallel....... ... o 32
5.4 Building the Ada compiler L. 32
5.5 Building with profile feedbackol 32

6 Installing GCC: Testing....................... 33
6.1 How can you run the testsuite on selected tests?............... 33
6.2 Passing options and running multiple testsuites................ 34
6.3 Additional testing for Java Class Libraries..................... 34
6.4 How to interpret test results.......... il 35
6.5 Submitting test results........ ... 35

7 Installing GCC: Final installation............ 37
8 Installing GCC: Binaries...................... 39
9 Host/target specific installation notes for GCC
.. 41

10 Old installation documentation 65
10.1 Configurations Supported by GCC.......... 65
GNU Free Documentation License............... 69

ADDENDUM: How to use this License for your documents 75

Chapter 1: Installing GCC 1

1 Installing GCC

The latest version of this document is always available at http://gcc.gnu.org/install/.

This document describes the generic installation procedure for GCC as well as detailing
some target specific installation instructions.

GCC includes several components that previously were separate distributions with their
own installation instructions. This document supersedes all package specific installation
instructions.

Before starting the build /install procedure please check the Chapter 9 [Specific], page 41.
We recommend you browse the entire generic installation instructions before you proceed.

Lists of successful builds for released versions of GCC are available at
http://gcc.gnu.org/buildstat.html. These lists are updated as new information
becomes available.

The installation procedure itself is broken into five steps.

Please note that GCC does not support ‘make uninstall’ and probably won’t do so in
the near future as this would open a can of worms. Instead, we suggest that you install
GCC into a directory of its own and simply remove that directory when you do not need
that specific version of GCC any longer, and, if shared libraries are installed there as well,
no more binaries exist that use them.

http://gcc.gnu.org/install/
http://gcc.gnu.org/buildstat.html

Chapter 2: Prerequisites 3

2 Prerequisites

GCC requires that various tools and packages be available for use in the build procedure.
Modifying GCC sources requires additional tools described below.

Tools/packages necessary for building GCC

ISO C90 compiler
Necessary to bootstrap GCC, although versions of GCC prior to 3.4 also allow
bootstrapping with a traditional (K&R) C compiler.

To build all languages in a cross-compiler or other configuration where 3-stage
bootstrap is not performed, you need to start with an existing GCC binary
(version 2.95 or later) because source code for language frontends other than C
might use GCC extensions.

GNAT

In order to build the Ada compiler (GNAT) you must already have GNAT in-
stalled because portions of the Ada frontend are written in Ada (with GNAT
extensions.) Refer to the Ada installation instructions for more specific infor-
mation.

A “working” POSIX compatible shell, or GNU bash
Necessary when running configure because some /bin/sh shells have bugs
and may crash when configuring the target libraries. In other cases, /bin/sh
or ksh have disastrous corner-case performance problems. This can cause target
configure runs to literally take days to complete in some cases.

So on some platforms /bin/ksh is sufficient, on others it isn’t. See the
host/target specific instructions for your platform, or use bash to be sure.
Then set CONFIG_SHELL in your environment to your “good” shell prior to
running configure/make.

zsh is not a fully compliant POSIX shell and will not work when configuring
GCC.

A POSIX or SVR4 awk
Necessary for creating some of the generated source files for GCC. If in doubt,
use a recent GNU awk version, as some of the older ones are broken. GNU awk
version 3.1.5 is known to work.

GNU binutils
Necessary in some circumstances, optional in others. See the host/target spe-
cific instructions for your platform for the exact requirements.

gzip version 1.2.4 (or later) or

bzip2 version 1.0.2 (or later)
Necessary to uncompress GCC tar files when source code is obtained via FTP
mirror sites.

GNU make version 3.79.1 (or later)
You must have GNU make installed to build GCC.

4 Installing GCC

GNU tar version 1.14 (or later)
Necessary (only on some platforms) to untar the source code. Many systems’
tar programs will also work, only try GNU tar if you have problems.

GNU Multiple Precision Library (GMP) version 4.1 (or later)
Necessary to build GCC. If you do not have it installed in your library search
path, you will have to configure with the ‘--with-gmp’ configure option. See
also ‘--with-gmp-1ib’ and ‘--with-gmp-include’.

MPFR Library version 2.3.0 (or later)
Necessary to build GCC. It can be downloaded from http://www.mpfr.org/.
The version of MPFR that is bundled with GMP 4.1.x contains numerous bugs.
Although GCC may appear to function with the buggy versions of MPFR, there
are a few bugs that will not be fixed when using this version. It is strongly
recommended to upgrade to the recommended version of MPFR.
The ‘~-with-mpfr’ configure option should be used if your MPFR Library is
not installed in your default library search path. See also ‘--with-mpfr-1ib’
and ‘--with-mpfr-include’.

jar, or InfoZIP (zip and unzip)
Necessary to build libgcj, the GCJ runtime.

Tools/packages necessary for modifying GCC

autoconf version 2.59

GNU m4 version 1.4 (or later)
Necessary when modifying ‘configure.ac’, ‘aclocal.mé4’, etc. to regenerate
‘configure’ and ‘config.in’ files.

automake version 1.9.6
Necessary when modifying a ‘Makefile.am’ file to regenerate its associated
‘Makefile.in’.
Much of GCC does not use automake, so directly edit the ‘Makefile.in’ file.
Specifically this applies to the ‘gec’, ‘intl’, ‘libecpp’, ‘libiberty’, ‘libobjc’
directories as well as any of their subdirectories.
For directories that use automake, GCC requires the latest release in the 1.9.x
series, which is currently 1.9.6. When regenerating a directory to a newer ver-
sion, please update all the directories using an older 1.9.x to the latest released
version.

gettext version 0.14.5 (or later)
Needed to regenerate ‘gcc.pot’.

gperf version 2.7.2 (or later)
Necessary when modifying gperf input files, e.g. ‘gcc/cp/cfns.gpert’ to re-
generate its associated header file, e.g. ‘gcc/cp/cfns.h’.

DejaGnu 1.4.4
Expect
Tel

Necessary to run the GCC testsuite; see the section on testing for details.

http://www.mpfr.org/

Chapter 2: Prerequisites 5)

autogen version 5.5.4 (or later) and

guile version 1.4.1 (or later)
Necessary to regenerate ‘fixinc/fixincl.x’ from ‘fixinc/inclhack.def’ and
‘fixinc/*.tpl’.
Necessary to run ‘make check’ for ‘fixinc’.

Necessary to regenerate the top level ‘Makefile.in’ file from ‘Makefile.tpl’
and ‘Makefile.def’.

GNU Bison version 1.28 (or later)
Necessary when modifying ‘*.y’ files. Necessary to build the treelang front
end (which is not enabled by default) from a checkout of the SVN repository;
the generated files are not in the repository. They are included in releases.

Berkeley yacc (byacc) has been reported to work as well.

Flex version 2.5.4 (or later)
Necessary when modifying ‘*.1’ files.

Necessary to build GCC during development because the generated output files
are not included in the SVN repository. They are included in releases.

Texinfo version 4.4 (or later)
Necessary for running makeinfo when modifying ‘x.texi’ files to test your
changes.

Necessary for running make dvi or make pdf to create printable documentation
in DVI or PDF format. Texinfo version 4.8 or later is required for make pdf.

Necessary to build GCC documentation during development because the gen-
erated output files are not included in the SVN repository. They are included
in releases.

TEX (any working version)
Necessary for running texi2dvi and texi2pdf, which are used when running
make dvi or make pdf to create DVI or PDF files, respectively.

SVN (any version)

SSH (any version)
Necessary to access the SVN repository. Public releases and weekly snapshots
of the development sources are also available via FTP.

Perl version 5.6.1 (or later)
Necessary when regenerating ‘Makefile’ dependencies in libiberty. Necessary
when regenerating ‘libiberty/functions.texi’. Necessary when generating
manpages from Texinfo manuals. Necessary when targetting Darwin, building
libstdc++, and not using ‘--disable-symvers’. Used by various scripts to gen-
erate some files included in SVN (mainly Unicode-related and rarely changing)
from source tables.

GNU diffutils version 2.7 (or later)
Useful when submitting patches for the GCC source code.

patch version 2.5.4 (or later)
Necessary when applying patches, created with diff, to one’s own sources.

ecjl
gjavah

Installing GCC

If you wish to modify ‘. java’ files in libjava, you will need to configure with
‘-—enable-java-maintainer-mode’, and you will need to have executables
named ecjl and gjavah in your path. The ecjl executable should run the
Eclipse Java compiler via the GCC-specific entry point. You can download a
suitable jar from ftp://sourceware.org/pub/java/, or by running the script
contrib/download_ec].

ftp://sourceware.org/pub/java/

Chapter 3: Downloading GCC 7

3 Downloading GCC

GCC is distributed via SVN and FTP tarballs compressed with gzip or bzip2. It is possible
to download a full distribution or specific components.

Please refer to the releases web page for information on how to obtain GCC.

The full distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the
case of GCC 3.1 and later) compilers. The full distribution also includes runtime libraries
for C++, Objective-C, Fortran, and Java. In GCC 3.0 and later versions, the GNU compiler
testsuites are also included in the full distribution.

If you choose to download specific components, you must download the core GCC dis-
tribution plus any language specific distributions you wish to use. The core distribution
includes the C language front end as well as the shared components. Each language has
a tarball which includes the language front end as well as the language runtime (when
appropriate).

Unpack the core distribution as well as any language specific distributions in the same
directory.

If you also intend to build binutils (either to upgrade an existing installation or for use in
place of the corresponding tools of your OS), unpack the binutils distribution either in the
same directory or a separate one. In the latter case, add symbolic links to any components
of the binutils you intend to build alongside the compiler (‘bfd’, ‘binutils’, ‘gas’, ‘gprof’,
‘1d’, ‘opcodes’, .. .) to the directory containing the GCC sources.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/releases.html

Chapter 4: Installing GCC: Configuration 9

4 Installing GCC: Configuration

Like most GNU software, GCC must be configured before it can be built. This document
describes the recommended configuration procedure for both native and cross targets.

We use srcdir to refer to the toplevel source directory for GCC; we use objdir to refer
to the toplevel build/object directory.

If you obtained the sources via SVN, srcdir must refer to the top ‘gcc’ directory, the one
where the ‘MAINTAINERS’ can be found, and not its ‘gcc’ subdirectory, otherwise the build
will fail.

If either srcdir or objdir is located on an automounted NFS file system, the shell’s
built-in pwd command will return temporary pathnames. Using these can lead to various
sorts of build problems. To avoid this issue, set the PWDCMD environment variable to an
automounter-aware pwd command, e.g., pawd or ‘amq -w’, during the configuration and
build phases.

First, we highly recommend that GCC be built into a separate directory than the sources
which does not reside within the source tree. This is how we generally build GCC; building
where srcdir == objdir should still work, but doesn’t get extensive testing; building where
objdir is a subdirectory of srcdir is unsupported.

If you have previously built GCC in the same directory for a different target machine,
do ‘make distclean’ to delete all files that might be invalid. One of the files this deletes
is ‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does not exist or issues a
message like “don’t know how to make distclean” it probably means that the directory is
already suitably clean. However, with the recommended method of building in a separate
objdir, you should simply use a different objdir for each target.

Second, when configuring a native system, either cc or gcc must be in your path or
you must set CC in your environment before running configure. Otherwise the configuration
scripts may fail.

To configure GCC:

% mkdir objdir
% cd objdir
% srcdir/configure [options] [target]

Distributor options

If you will be distributing binary versions of GCC, with modifications to the source code,
you should use the options described in this section to make clear that your version contains
modifications.

--with-pkgversion=version
Specify a string that identifies your package. You may wish to include a build
number or build date. This version string will be included in the output of gcc
--version. This suffix does not replace the default version string, only the
‘GCC’ part.

The default value is ‘GCC’.

10 Installing GCC

--with-bugurl=url
Specify the URL that users should visit if they wish to report a bug. You are of
course welcome to forward bugs reported to you to the FSF, if you determine
that they are not bugs in your modifications.

The default value refers to the FSF’s GCC bug tracker.

Target specification

e GCC has code to correctly determine the correct value for target for nearly all native
systems. Therefore, we highly recommend you not provide a configure target when
configuring a native compiler.

3

e target must be specified as ‘--target=target’ when configuring a cross compiler;
examples of valid targets would be m68k-coff, sh-elf, etc.

e Specifying just target instead of ‘-—target=target’ implies that the host defaults to
target.

Options specification

Use options to override several configure time options for GCC. A list of supported options
follows; ‘configure —-help’ may list other options, but those not listed below may not
work and should not normally be used.

Note that each ‘--enable’ option has a corresponding ‘--disable’ option and that each
‘-—with’ option has a corresponding ‘~-without’ option.

—-—prefix=dirname
Specify the toplevel installation directory. This is the recommended way to
install the tools into a directory other than the default. The toplevel installation
directory defaults to ‘/usr/local’.

We highly recommend against dirname being the same or a subdirectory of
objdir or vice versa. If specifying a directory beneath a user’s home direc-
tory tree, some shells will not expand dirname correctly if it contains the *~’
metacharacter; use $HOME instead.

The following standard autoconf options are supported. Normally you should
not need to use these options.

-—exec-prefix=dirname
Specify the toplevel installation directory for architecture-
dependent files. The default is ‘prefix’.

--bindir=dirname
Specify the installation directory for the executables called by users
(such as gcc and g++). The default is ‘exec-prefix/bin’.

--libdir=dirname
Specify the installation directory for object code libraries and in-
ternal data files of GCC. The default is ‘exec-prefix/1ib’.

--libexecdir=dirname
Specify the installation directory for internal executables of GCC.
The default is ‘exec-prefix/libexec’.

Chapter 4: Installing GCC: Configuration 11

--with-slibdir=dirname
Specify the installation directory for the shared libgcce library. The
default is ‘1ibdir’.

-—infodir=dirname
Specify the installation directory for documentation in info format.
The default is ‘prefix/info’.

--datadir=dirname
Specify the installation directory for some architecture-independent
data files referenced by GCC. The default is ‘prefix/share’.

--mandir=dirname
Specify the installation directory for manual pages. The default
is ‘prefix/man’. (Note that the manual pages are only extracts
from the full GCC manuals, which are provided in Texinfo format.
The manpages are derived by an automatic conversion process from
parts of the full manual.)

--with-gxx-include-dir=dirname
Specify the installation directory for G++ header files. The default
is ‘prefix/include/c++/version’.

--program-prefix=prefix
GCC supports some transformations of the names of its programs when in-
stalling them. This option prepends prefix to the names of programs to install
in bindir (see above). For example, specifying ‘--program-prefix=foo-’ would
result in ‘gcc’ being installed as ‘/usr/local/bin/foo-gcc’.

--program-suffix=suffix
Appends suffix to the names of programs to install in bindir (see above). For
example, specifying ‘--program-suffix=-3.1’ would result in ‘gcc’ being in-
stalled as ‘/usr/local/bin/gcc-3.1".

--program-transform-name=pattern

Applies the ‘sed’ script pattern to be applied to the names of programs to
install in bindir (see above). pattern has to consist of one or more basic
‘sed’ editing commands, separated by semicolons. For example, if you
want the ‘gcc’ program name to be transformed to the installed program
‘/usr/local/bin/myowngcc’ and the ‘g++’ program name to be transformed
to ‘/usr/local/bin/gspecial++’ without changing other program names, you
could use the pattern ‘--program-transform-name=’s/~gcc$/myowngcc/;
s/ g++$/gspecial++/’’ to achieve this effect.

All three options can be combined and used together, resulting in more com-
plex conversion patterns. As a basic rule, prefix (and suffix) are prepended
(appended) before further transformations can happen with a special transfor-
mation script pattern.

As currently implemented, this option only takes effect for native builds; cross
compiler binaries’ names are not transformed even when a transformation is
explicitly asked for by one of these options.

12

Installing GCC

For native builds, some of the installed programs are also installed with
the target alias in front of their name, as in ‘i686-pc-linux-gnu-gcc’.
All of the above transformations happen before the target alias is
prepended to the name—so, specifying ‘--program-prefix=foo-’ and
‘program-suffix=-3.1", the resulting binary would be installed as
‘/usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1".

As a last shortcoming, none of the installed Ada programs are transformed yet,
which will be fixed in some time.

--with-local-prefix=dirname

Specify the installation directory for local include files. The default is
‘/usr/local’. Specify this option if you want the compiler to search
directory ‘dirname/include’ for locally installed header files instead of
‘/usr/local/include’.

You should specify ‘--with-local-prefix’ onmly if your site has a different
convention (not ‘/usr/local’) for where to put site-specific files.

The default value for ‘--with-local-prefix’is ‘/usr/local’ regardless of the
value of ‘--prefix’. Specifying ‘--prefix’ has no effect on which directory
GCC searches for local header files. This may seem counterintuitive, but actu-
ally it is logical.

The purpose of ‘--prefix’ is to specify where to install GCC. The local header
files in ‘/usr/local/include’—if you put any in that directory—are not part
of GCC. They are part of other programs—perhaps many others. (GCC installs
its own header files in another directory which is based on the ‘--prefix’ value.)

Both the local-prefix include directory and the GCC-prefix include directory
are part of GCC’s “system include” directories. Although these two directories
are not fixed, they need to be searched in the proper order for the correct
processing of the include_next directive. The local-prefix include directory is
searched before the GCC-prefix include directory. Another characteristic of
system include directories is that pedantic warnings are turned off for headers
in these directories.

Some autoconf macros add ‘-I directory’ options to the compiler command
line, to ensure that directories containing installed packages’ headers are
searched. When directory is one of GCC’s system include directories, GCC
will ignore the option so that system directories continue to be processed in
the correct order. This may result in a search order different from what was
specified but the directory will still be searched.

GCC automatically searches for ordinary libraries using GCC_EXEC_PREFIX.
Thus, when the same installation prefix is used for both GCC and packages,
GCC will automatically search for both headers and libraries. This provides
a configuration that is easy to use. GCC behaves in a manner similar to that
when it is installed as a system compiler in ‘/usr’.

Sites that need to install multiple versions of GCC may not want to use the
above simple configuration. It is possible to use the ‘--program-prefix’,
‘-—program-suffix’ and ‘--program-transform-name’ options to install mul-
tiple versions into a single directory, but it may be simpler to use different

Chapter 4: Installing GCC: Configuration 13

prefixes and the ‘--with-local-prefix’ option to specify the location of the

site-specific files for each version. It will then be necessary for users to specify
explicitly the location of local site libraries (e.g., with LIBRARY_PATH).

The same value can be used for both ‘--with-local-prefix’ and ‘--prefix’
provided it is not ‘/usr’. This can be used to avoid the default search of
‘/usr/local/include’.

Do not specify ‘/usr’ as the ‘-—with-local-prefix’! The directory you use for
‘-—with-local-prefix’ must not contain any of the system’s standard header
files. If it did contain them, certain programs would be miscompiled (including
GNU Emacs, on certain targets), because this would override and nullify the
header file corrections made by the fixincludes script.

Indications are that people who use this option use it based on mistaken ideas
of what it is for. People use it as if it specified where to install part of GCC.
Perhaps they make this assumption because installing GCC creates the direc-
tory.

--enable-shared[=package [, ...]]
Build shared versions of libraries, if shared libraries are supported on the target
platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default
on all platforms that support shared libraries.

If a list of packages is given as an argument, build shared libraries only for the
listed packages. For other packages, only static libraries will be built. Pack-
age names currently recognized in the GCC tree are ‘libgcc’ (also known as
‘gec’), ‘libstdc++ (not ‘libstdc++-v3’), ‘1libffi’, ‘z1ib’, ‘boehm-gc’, ‘ada’,
‘libada’, ‘libjava’ and ‘libobjc’. Note ‘libiberty’ does not support shared
libraries at all.

Use ‘--disable-shared’ to build only static libraries. Note that
‘--disable-shared’ does not accept a list of package names as argument,
only ‘--enable-shared’ does.

--with-gnu-as
Specify that the compiler should assume that the assembler it finds is the GNU
assembler. However, this does not modify the rules to find an assembler and will
result in confusion if the assembler found is not actually the GNU assembler.
(Confusion may also result if the compiler finds the GNU assembler but has not
been configured with ‘--with-gnu-as’.) If you have more than one assembler
installed on your system, you may want to use this option in connection with
‘-—with-as=pathname’ or ‘--with-build-time-tools=pathname’.
The following systems are the only ones where it makes a difference whether
you use the GNU assembler. On any other system, ‘--with-gnu-as’ has no
effect.

e ‘hppal.O-any-any’
e ‘hppal.l-any-any’
e ‘i386-any-sysv’

e ‘m68k-bull-sysv’

e ‘m68k-hp-hpux’

14

Installing GCC

‘m68000-hp-hpux’
‘m68000-att-sysv’
‘sparc-sun-solaris?2.any’

‘sparc64-any-solaris2.any’

On the systems listed above (except for the HP-PA | the SPARC, for ISC on the
386, if you use the GNU assembler, you should also use the GNU linker (and
specify ‘--with-gnu-1d’).

--with-as=pathname
Specify that the compiler should use the assembler pointed to by pathname,
rather than the one found by the standard rules to find an assembler, which

are:

Unless GCC is being built with a cross compiler, check the
‘libexec/gcc/target/version’ directory. libexec defaults to
‘exec-prefix/libexec’; exec-prefix defaults to prefix, which defaults
to ‘/usr/local’ unless overridden by the ‘--prefix=pathname’
switch described above. target is the target system triple, such as
‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as
3.0.

If the target system is the same that you are building on, check operating
system specific directories (e.g. ‘/usr/ccs/bin’ on Sun Solaris 2).

Check in the PATH for a tool whose name is prefixed by the target system
triple.

Check in the PATH for a tool whose name is not prefixed by the target
system triple, if the host and target system triple are the same (in other
words, we use a host tool if it can be used for the target as well).

You may want to use ‘-—with-as’ if no assembler is installed in the directories
listed above, or if you have multiple assemblers installed and want to choose
one that is not found by the above rules.

--with-gnu-1d

Same as ‘--with-gnu-as’ but for the linker.

--with-ld=pathname
Same as ‘——with-as’ but for the linker.

--with-stabs

Specify that stabs debugging information should be used instead of whatever
format the host normally uses. Normally GCC uses the same debug format as
the host system.

On MIPS based systems and on Alphas, you must specify whether you want
GCC to create the normal ECOFF debugging format, or to use BSD-style stabs
passed through the ECOFF symbol table. The normal ECOFF debug format
cannot fully handle languages other than C. BSD stabs format can handle other
languages, but it only works with the GNU debugger GDB.

Normally, GCC uses the ECOFF debugging format by default; if you prefer
BSD stabs, specify ‘--with-stabs’ when you configure GCC.

#with-gnu-as
#with-as

Chapter 4: Installing GCC: Configuration 15

No matter which default you choose when you configure GCC, the user can use
the ‘-gcoff’ and ‘-gstabs+’ options to specify explicitly the debug format for
a particular compilation.

‘-—with-stabs’ is meaningful on the ISC system on the 386, also, if
‘——with-gas’ is used. It selects use of stabs debugging information embedded
in COFF output. This kind of debugging information supports C++ well;
ordinary COFF debugging information does not.

‘-—with-stabs’ is also meaningful on 386 systems running SVR4. It selects use
of stabs debugging information embedded in ELF output. The C++ compiler
currently (2.6.0) does not support the DWARF debugging information normally
used on 386 SVR4 platforms; stabs provide a workable alternative. This requires
gas and gdb, as the normal SVR4 tools can not generate or interpret stabs.

--disable-multilib
Specify that multiple target libraries to support different target variants, calling
conventions, etc. should not be built. The default is to build a predefined set
of them.

Some targets provide finer-grained control over which multilibs are built (e.g.,
‘--disable-softfloat’):

arc—*—-elf*
biendian.

arm-*-* fpu, 26bit, underscore, interwork, biendian, nofmult.
m68*-*—* softfloat, m68881, m68000, m68020.

mips*x—*—x*
single-float, biendian, softfloat.

powerpc*—*—%, rs6000*—*—x*
aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, bien-
dian, sysv, aix.

-—enable-threads
Specify that the target supports threads. This affects the Objective-C compiler
and runtime library, and exception handling for other languages like C++ and
Java. On some systems, this is the default.

In general, the best (and, in many cases, the only known) threading model
available will be configured for use. Beware that on some systems, GCC has
not been taught what threading models are generally available for the system.
In this case, ‘~—enable-threads’ is an alias for ‘~-enable-threads=single’.

--disable-threads
Specify that threading support should be disabled for the system. This is an
alias for ‘--enable-threads=single’.

-—enable-threads=1ib
Specify that Iib is the thread support library. This affects the Objective-C
compiler and runtime library, and exception handling for other languages like
C++ and Java. The possibilities for Iib are:

16

aix
dce

gnat

mach

no
posix
posix95
rtems
single
solaris
vxworks
win32
nks

—-—-enable-tls

Installing GCC

AIX thread support.
DCE thread support.

Ada tasking support. For non-Ada programs, this setting is equiv-
alent to ‘single’. When used in conjunction with the Ada run
time, it causes GCC to use the same thread primitives as Ada uses.
This option is necessary when using both Ada and the back end
exception handling, which is the default for most Ada targets.

Generic MACH thread support, known to work on NeXTSTEP.
(Please note that the file needed to support this configuration,
‘gthr-mach.h’; is missing and thus this setting will cause a known
bootstrap failure.)

This is an alias for ‘single’.

Generic POSIX/Unix98 thread support.

Generic POSIX/Unix95 thread support.

RTEMS thread support.

Disable thread support, should work for all platforms.
Sun Solaris 2 thread support.

VxWorks thread support.

Microsoft Win32 API thread support.

Novell Kernel Services thread support.

Specify that the target supports TLS (Thread Local Storage). Usually con-
figure can correctly determine if TLS is supported. In cases where it guesses
incorrectly, TLS can be explicitly enabled or disabled with ‘~-enable-tls’ or
‘-—disable-tls’. This can happen if the assembler supports TLS but the C
library does not, or if the assumptions made by the configure test are incorrect.

—-disable-tls

Specify that the target does not support TLS. This is an alias for
‘-—enable-tls=no’.

--with-cpu=cpu

Specify which cpu variant the compiler should generate code for by default.
cpu will be used as the default value of the ‘-mcpu=’ switch. This option is
only supported on some targets, including ARM, 1386, M68k, PowerPC, and

SPARC.

--with-schedule=cpu
--with-arch=cpu
--with-tune=cpu
--with-abi=abi
--with-fpu=type
--with-float=type

These configure options provide default values for the ‘-mschedule=’,

‘-march=’, ‘-mtune=’, ‘-mabi=’, and ‘-mfpu=

" options and for ‘-mhard-float’

Chapter 4: Installing GCC: Configuration 17

or ‘-msoft-float’. As with ‘~-with-cpu’, which switches will be accepted
and acceptable values of the arguments depend on the target.

--with-mode=mode
Specify if the compiler should default to ‘-marm’ or ‘-mthumb’. This option is
only supported on ARM targets.

--with-divide=type
Specify how the compiler should generate code for checking for division by zero.
This option is only supported on the MIPS target. The possibilities for type

are:
traps Division by zero checks use conditional traps (this is the default on
systems that support conditional traps).
breaks Division by zero checks use the break instruction.
--with-1lsc

On MIPS targets, make ‘-mllsc’ the default when no ‘-mno-1lsc’ option is
passed. This is the default for Linux-based targets, as the kernel will emulate
them if the ISA does not provide them.

--without-11lsc
On MIPS targets, make ‘-mno-11sc’ the default when no ‘-mllsc’ option is
passed.

--enable-__cxa_atexit
Define if you want to use __cxa_atexit, rather than atexit, to register C++ de-
structors for local statics and global objects. This is essential for fully standards-
compliant handling of destructors, but requires __cxa_atexit in libc. This option
is currently only available on systems with GNU libc. When enabled, this will
cause ‘-fuse-cxa-atexit’ to be passed by default.

--enable-target-optspace
Specify that target libraries should be optimized for code space instead of code
speed. This is the default for the m32r platform.

--disable-cpp
Specify that a user visible cpp program should not be installed.

--with-cpp-install-dir=dirname
Specify that the wuser wvisible cpp program should be installed in
‘prefix/dirname/cpp’, in addition to bindir.

--enable-initfini-array
Force the use of sections .init_array and .fini_array (instead of .init and
.fini) for constructors and destructors. Option ‘--disable-initfini-array’
has the opposite effect. If neither option is specified, the configure script will
try to guess whether the .init_array and .fini_array sections are supported
and, if they are, use them.

-—enable-maintainer-mode
The build rules that regenerate the GCC master message catalog ‘gcc.pot’ are
normally disabled. This is because it can only be rebuilt if the complete source

18 Installing GCC

tree is present. If you have changed the sources and want to rebuild the catalog,
configuring with ‘~-enable-maintainer-mode’ will enable this. Note that you
need a recent version of the gettext tools to do so.

--disable-bootstrap
For a native build, the default configuration is to perform a 3-stage boot-
strap of the compiler when ‘make’ is invoked, testing that GCC can compile
itself correctly. If you want to disable this process, you can configure with
‘-—disable-bootstrap’.

--enable-bootstrap
In special cases, you may want to perform a 3-stage build even if the target
and host triplets are different. This could happen when the host can run
code compiled for the target (e.g. host is i686-linux, target is i486-linux).
Starting from GCC 4.2, to do this you have to configure explicitly with
‘-—enable-bootstrap’.

--enable-generated-files-in-srcdir
Neither the .c and .h files that are generated from Bison and flex nor the info
manuals and man pages that are built from the .texi files are present in the SVN
development tree. When building GCC from that development tree, or from
one of our snapshots, those generated files are placed in your build directory,
which allows for the source to be in a readonly directory.

If you configure with ‘--enable-generated-files-in-srcdir’ then those gen-
erated files will go into the source directory. This is mainly intended for generat-
ing release or prerelease tarballs of the GCC sources, since it is not a requirement
that the users of source releases to have flex, Bison, or makeinfo.

—--enable-version-specific-runtime-1libs
Specify that runtime libraries should be installed in the compiler specific subdi-
rectory (‘1ibdir/gcc’) rather than the usual places. In addition, ‘1ibstdc++"’s
include files will be installed into ‘Iibdir’ unless you overruled it by using
‘-—with-gxx-include-dir=dirname’. Using this option is particularly use-
ful if you intend to use several versions of GCC in parallel. This is cur-
rently supported by ‘libgfortran’, ‘libjava’, ‘libmudflap’, ‘1ibstdc++’, and
‘libobjc’.

--enable-languages=langl,lang2, ...
Specify that only a particular subset of compilers and their runtime libraries
should be built. For a list of valid values for langN you can issue the following
command in the ‘gcc’ directory of your GCC source tree:

grep language= */config-lang.in

Currently, you can use any of the following: all, ada, c, c++, fortran, java,
objc, obj-c++, treelang. Building the Ada compiler has special require-
me